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Abstract, In o series of papers, of which the present one is Part 1, it is shown that solutions 1o a
variety of problems in distance ggometry, potential theory and thoory of metric spaces are
provided by appropriate applications of graph theoretic results,

§1

In what follows we are going to discuss systematic applications of
graph theory — among others — to geometry, to potential theory, and
to the theory of function-spaces. This sounds perhaps surprising to those
who still think of graph theory as the “slum of topology™. These appli-
cations show that suitably devised graph theorems act as flexible logical
tools (essentially as generalizations of the pigeon hole principle) and
have nothing to do with topology at all. We believe that the applications
given in this sequence of papers do not exhaust all possibilities ol appli-
cations of graph theory to other branches of mathematics. Scattered
applications of graph theory to geometry and number theory (mostly
via Ramsey’s theorem) existed already in the papers of Erdos and
Szekeres [6] and Erdos |2, 5). The inherence of graph theoretic methods
in the problems we are dealing with is indicated also by the fact that it
leads often to best possible results.

* Orlginal version recedved PO June 197 1 revised version recelved 17 September 971,
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Several parts of the results contained in this sequence of papers were
subject to lectures given by the authors. The first lecture was given by
the last named author on Aug. 30, 1968 in Calgary. The first printed
account, reproducing lectures of the last named two authors at the Con-
ference on Combinatorial Structures and Their Applications in June
1969 at the University of Calgary, appeared in the Proceedings of this
Conference (see [17] and [20]). The second paper of this series which
was written much earlier than the present one, appeared already in [7].
Accounts were given also by the second named author in a lecture at
Imperial College, London, in 1970,

The first group of applications refers to the distance distribution of
point sets in a compléte metric space. Let (X, d) be a complete metric
space and let F be a family of point sets f in X satisfying the following
restrictions:

(1.1) For a sufficiently large R, all sets of F are in a sphere of radius
R.

(1.2) If f& Fand f| is a finite subset of f, then f, € F.

(1.3) If fE F is finite, P € f, then for arbitrary € > 0 there exists a
£ in X such that

Pi+P, diP.P))<e,
and the set
fi=sfvi{f}

belongs to the family F too.

Important examples of such families in case of finite-dimensional
euclidean spaces R* , which interest us in this paper almost exclusively,
are:

{a). The family F of all ¢closed domains in R* with maximal chord |
(taking in account that in R% translation does not change distances).

(b}, All closed subsets of the closure of a fixed bounded domain D in
RN 1< k),

(c). All closed sets in R* whose projection to all hyperplanes in R!

(I < k) can be translated into the closure of a fixed bounded /~dimensio-
nal domain.

For given I let //, denote the subfamily of £ whose elements [ satis-
fy the additional restriction
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{1.4) Ifi=n.
We are interested in the distribution of distances
{1.5) a®,, P, l<u<pv<n,

in sets f which belong to F,,.

The families F are so general that at first glance it seems hopeless to
assert anything nontrivial for the distribution in this generality. Never-
theless we have found that by introducing “the packing-constants '
belonging to the family /™ a great deal can be said about the distribu-
tion. These constants are defined forw = 2 by

(1.6)  8,=86,(F)=  sup min_ d(P,,P)) .
(Pl PRl EF, 1 Si<ji<y

These constants obviously exist and are monotoenic in p:
(1.7) 6,282 ...

Moreover they are also “monotonic in F7 in the sense that F, C F,
implies obviously

(1.8)  B,(F)<5,(F,y), p>2,
In the case of R*, we have also

(1.9) lim 8,=0,

pra=

We found that in the general case, in addition to the packing constants,
the “‘critical indices™ 75, i3, ... play a decisive role in the distribution of
distances of the sets of F, . They are defined by

(L10)  83= =8, 2 05y = =8, 2 By = oo

3 iy

and for convenience we define

(3ly H=le

! The name can be justifiod the casiest when the family F consists of the point sets on the
upit sphere. Having spherical distance, for each » = 2 suitably placed disjoint cups with spheri-
citl radii £yre realise the densest packing by » congruent spherical caps of the unit sphere.
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We can formulate now

Theorem 1. For each fixed v = 2and n = is, the number of distances
d(F Fy) (i 5 §) in each set fof F, satisfying the inequality

(1:12) diPr-.PJ.Jiﬁfu”F E,ij
is ar least

(L13)  3nfli,—in.

The theorem is best possible in a very strong sense. Equality in (1.13)
can be attained for all F -families, forall v = 2andn > i, n = 0 (modi ).

§2

In order to show that Theorem 1 leads to genuine geometrical results,
let first F be the family of sets on the periphery of the unit circle. Then
evidently

&, = 2 sin (w(l) (0=2,3,..)

and §; = /. Hence by Theorem | fory = 2 we have: If n > v and » points
lie on the periphery of the unit circle, then at least l;*'lni,"u — 3n) dis-
tances are < 2 sin (r/(#+1)). Putting m points on the periphery very
close to each vertex of a regular v-gon, we see at once that the number
of distances < 2 sin{w/(r+1)) {eyven the number of distances
< 2 sin (w/p) — 0. n small positive) equals 3n%/v — 3 n indeed.

Another important case when all packing constants can be deter-
mined is given by the subsets of an arc AB having the property that if P
is fixed on it and @ moves along it off P then

(2.1) {_}'—Fdﬂcreuses strictly monotonically .

In this case — as is casy to see — &, is furnished by the side length b, of
the “inscribed quasi-regular w-gon APy Py ... P, 87 defined by




APy =PyPy=..=P P, =P, B=b,

the points P, being on the arc.

All packing constants belonging to circular arcs can be explicitly
determined. Several packing constants belonging to the unit-square in
R* and unit cube in R have been determined in the papers of Meir
and Schaer [ 12] and Schaer [ 14]. Probably all packing constants
belonging to g convex curve can be explicitly determined (somewhat in
the sense of {2.2)).

In the case when the family F consists of plane sets with maximal
chord length |, the packing constants &, 2 < v < 7 were determined
for a different purpose by Bateman and Erdos in 1951 [1]; they are

{2-3] 5‘2253'-' 1 5 5‘4=%\."{-'...'-, 55 =%l\lf'—s__|"+
§s=1{(2sm712%, &;=1L.

As proved by Thue (see [18]), &, is, for large v, asymptotically

(En2yaph

Since in thiscase i, =v + 1 (2< p < 5), for » = 2 Theorem | yields that
if > 3 points are located on a plane with maximal distance 1, then at
least :n? — %n distances are < £+/2. This was the only known case of
Theorem 1 (see Erdos [3]). A classical case of the determination of the
packing constants is known since Newton and Gregory. If Fconsists of
all subsets of the unit sphere in R?, their known dispute (see [8], p. 236)
boils down to the question whether or not in thiscase 8 3 < 1 =8, or
&3 = 82 Since now, this time in nonspherical metric,

@5  dy=2 Ey=3, Bomts Gy=8 =55,

we havei, =vfor2<p<4andi; = 6. Theorem | now yields, e.g. for
v =4, that if n > 4 points lie on the unit sphere, at least fn* — +n
euclidean distances between them are < /2 (and generally no more). ?

Schoenberg [15] and Seidel [ 16] found that choosing F to be the family
2 Since the Newton—Gregory dispute, the ssquence of packing-constants is intensely investi-

gated from the point of view of strict monotonicity. Using Thearsm 1 the other way around,
one can devise a peneral meth LBy = By IT 0L 8 true (see [21] ).
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of all sets in R* with maximal chord length 1, beside the trivial b=
83 = ... =8, = 1, we have

[+ 2) if & is even ,
24) b=

VI 2k — Dk +4k+3) ifkisodd,

and hence i, = k£ + 1. Theorem | gives e.g. that if n > & + | points in Rk
(k even) have maximal distance 1 then at most kn?/(2k + 2) distances
can be greater than +/&/(k + 2). In other words. if we have (for some
even k) a system of n > & + | points with maximal distance | and more
than kn?/(2k + 2) of the distances are > /k/(k + 2), then the system
cannot be isometrically embedded in R* (again best possible). Such type
of non-embeddability criteria seem not to be observed before.

All these motivate the interest in the general problems of prescrib-
ability, uniqueness and geometrical realizability of the sequence of pack-
ing constants (as mentioned already in [20]).

§3

Theorem 1 gives sharp lower bounds for the number of distances not
exceeding §;  in F, € F. What can be said of the number of distances
not exceeding & for a fixed 67 We are going to prove

Theorem 2. /f 0 < § < 6, and v = 2 is (uniquely ) determined by

(3.0 5, <8<S; .

Lo 41

then for n = i, the number of distances d{Pi.J-‘:,}. i, in each set fof
F, satisfving the inequality

(3.2) a’{P,-.ﬂ]E b
is at least

(3.3) n3(2i,) —in .




£4 213

This lower bound is best possible for all F~families, for all § < &, and
n>i,n=0(modi,).

A particularly elegant (but somewhat weaker) form can be given to
Theorem 2 by observing that, together with its best possibility concern-
ing 1, it implies the existence of

(34)  lim () mino(f),

Rkt EFy
where o(f) denotes the number of pairs £, F; in f with
(3.5) dipf;, P)< 8, %< 1.
Denoting the limit in (3.4) by H(8) and calling it *‘the lower distance-
distribution function of the family £, an alternative form of Theorem
2is
Theorem 2'. For all F<families of sets in (X, d), the lower distance distri-
bution function H(8) is a right-continuous step function with jumps

ol at 6§ =8 i and

lim  Hp(8)=1/G,.), v=2,3,...

Eby*
(Note the definition of i, in (1.11)).

54
Next we turn to some applications in complex function theory. Let
B be a bounded and closed set on the plane with boundary a8. Then we
assert for the capacity (see [10]) of B

Theorem 3. [ 38 belongs to an F-family satisfying (1.1), (1.2).(1.3)
with packing constants & and

(4.1) v ? log(1/6%)

diverges, then the capacity of B is 0,
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The theorem is best possible in the sense that for arbitrary small
€ > 0 there exist sets £ with positive capacity such that

(4.2) Ty log(1/6%)  diverges.

»

Maore generally, we shall prove

Theorem 4. [ B is a bounded and closed contintium (whase comple-
ment is simply connected) and 88 belongs to an F-family of sets satis-
fring (1.1, (1.2). (1.3) and having the packing constants &, then the
outer conformal radins v = riB) obevs the inequality

@3) @< I (@gyti-ve,

Since ., 1/(w — 1)p =1, both sides of (4.3) are linear in a magnify-
ing constant. hence without loss of generality we may assurme

o
[T
Il

If we retain in (4.3) only the first few packing-constants we can get
upper bounds for ri#}.

Obviously (4.3) can be used as a sysfem of inequalities, giving upper
bounds for the outer conformal radius via various geometrical proper-
ties of the set (expressed by our F-families).

As is well known, Polya proved the inequality

F< mnd(B)
where F stands for the outer Jordan measure ol £ and d(8) for its
transfinite diameter (supposing now only that £ is bounded and closed).

Connecting this with the real content of Theorem 4 we get

Corollary 4.1. If B is a bounded and closed set in R? with auter Jordan
measure F 5o that o8 belongs to ane of our set-families H with packing
constants 8 ,(H), then we have the inequality

(44)  F<w I8, (HRIDY




&3 215

This is a purely geometrical inequality between certain geometrical
constants of B. It would be of interest to lind a geometrical proof for it
and also to find the higher-dimensional analogues, mainly for R?.

§56

Next we turn to some applications which yield bounds for energy
integrals. Let D be a bounded and closed set in R* with positive finite
Idimensional Jordan measure | D], [ < k. We consider integrals of the
form

5.)  Koy= [ [ ePO)dup dv,
10}

connected to a mass distribution with density 1 on D. Here PQ means
euclidean distance and g(x) is any function satisfving

(3.2} (i) gl(x)is monotonically decreasing
(ii) glx)is bounded from below in (0, §4).

The cases

glx)=logx ', 0 o e a>1,

are ohviously included. Now we choose as the family F all subsets of D.
Then we assert

Theorem 5. Denating by &, the packing constants of the family F, the
inegquality

(53) DI Mg = £ B
=1
holds for all glx) satisfying (5.2).

Equality helds in (5.3) for g(x) = |. It is perhaps of interest to note that
the evaluation points on the right-hand side do not depend on g, remind-
ing the classical formulae of mechanical quadrature.

Denoting the potential at P generated by glx) (with uniform mass
distribulion) by
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(54  GP)= [gPQdyy ,
()

Theorem 5 vields at once the inequality

(55)  sup G(P)> D] 2 gs,)tv—w.
P& =2

It is therefore a plausible conjecture that for every 3, 0 < v < |, the
inequality

(5.6)  G(P)=>~|D| § 2(5,)/(v—1)w

holds in I? with the possible exception of a set of measure < |D). This
would be an interesting counterpart of the classical upper bound of
Ahlfors—Cartan (see [13]). We could prove so far a weaker theorem
only. Let gix) be positive and monotonically decreasing forx > O and
let the index r be defined (if it exists) by

(5.7  max {g(8,)/(v — v} =g8,)(r—1)r.
.
Then we have

Theorem 6. For the potential G(F) generated by g(x) in (5.4) the in-
equality

A
G(PY= 71D §2 g8 )w— 1w

holds in D for every v, 0 < v < |. with exception of a set of measure
YW1 —(r—1)"Yy D at most.

§6

Next we turn to the proof of Theorem |. It is based on the following
graph theorem [17]:
Forgiven K, N, 3< K< N, let

A
P
B
|
| 5%}

(6.1) N={K—-1)t+s; o
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A graph Ty (admitting only simple edges and no loops) with NV vertices
which does not contain a complete subgraph of order K cannot have
more than

K—2
AK—-1)

2

(6.2) (N =52 +(3)

edges. In the unique extremal graph (where equality can be attained),
the vertices can be divided into K — 1 disjoint classes each containing
f+ | or f vertices so that each pair of vertices from dilferent classes is
connected by an edge whereas pairs from identical classes are not con-
nected.

Let now v be fixed and (P}, P;. ..., P} be in F . We make correspond
to it a graph A, with vertices Py, P, ..., Py, as follows: P{and Py (f < k)
be connected by an edge in &, if and only if

(6.3) diP P ) > 8 (=8 1) .
Let
n=im+th, O hsi,— 1.
We assert that the number of pairs satisfying (6.3) cannot exceed

i, =1

(6.4) n?—r+ (M= U

2t

For, otherwise, the graph A] had more than U edges and thus the graph
theorem (6.1)-(6.2) with

Nen, K=i{+1, t=m, s=h

would imply the existence of a complete subgraph of order i, + |. Re-
turning to distances, however, this would mean that for suitable points
Py Paiiiis Pfl_“ from {P,, ..., P, 1, all distances were > ﬁ,-llﬂ. Since the
number of points is finite, for a sufficiently small 5 > 0 all these dis-
tances are even > 6, ,; +n, But this is in contradiction to the definition
of the s in (1.6). Hence our assertion (6.4) is correct. But then the
number of pairs with
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d(Pr, Py < B; a1 1< j<k<n,
is at least
() — 31, — DI k%~ )

=indfi, —dn+1h (1 —hfi) > Lndfi, —in,

as claimed.

§7

In order to prove that Theorem 1 is best possible for all F~families
and forall » 2= 2, let tor arbitrarily small € > 0 the set

(7.1) {P1:P3s i PR}
be in £y such that

(7.:2) min_ d(P*,P) > 6 —€.
IS jSkS iy ¥

Let M be an arbitrary positive integer. Repeated use of (1.3) results that
arbitrarily close to each of the points P, M — 1 different points can be
found so that the resulting system IT of n = Mi, points belongs to I,
and the distance of two points located “‘close™ to different points is

>8 —~2.
L
Since &; > 8; .y, € can be chosen so small that
. L=y
E ? e &E’p-l'l 5

iy

Hence the number of distances between points of Il not exceeding §; 4,
is indeed

L,0D =i, GM2 —3M) =i ,Gnji2 —3nfi) =i, —n .

In arder to prove Theorem 2, we observe that the estimation (3.3)
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follows at once from monotonicity with respect to 8. Hence we have
only to show that it is best possible also for & iy+1 < 8 < 8; . Fixing such
a &, and choosing an 1 > 0 so small that

8<4 2n,

iy
the reasoning of §7 repeated with e = ;7 vields the desired conclusion.

g8

Betfore proving Theorems 3 and 4, we shall prove Theorem 5. We
remark first that without loss of generality we may assume

(8.1)  g(x)>0, 0<x<8,,

Namely, if (5.3) holds for this case and g, (x) decreases monotonically
for x > 0 sa that

gi{x)=z—¢y, 0<x<8§,,

then applying the result to g(x) = g,(x) + ¢, we get

:.1.].‘2.‘-'|‘2 f fduPvaHDJ"z f fgl{_ﬁﬁ}dupdug
() (Lxy () ()

hence the theorem follows for the general case. So we may asuppose
(8.1).
Let f={P, P;, ..., P,} € F,, and consider the sum

def
(8.2) K-y ¥y 2P, Py) = ) glr,).

l=feksn 1=f=k<n
This can be split into partial sums according to

ﬁhﬂﬂ‘irﬁciﬁ;, 5 [ o
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(permitting also empty sums if it happens that §,,, = §,). Owing to the
mongtonicity of g(x) this gives

(8.3) o

IIME

£(5&}wﬁ )
where W), denotes the number of pairs (7, k), j # k. with
Bpay < Fp < 8y .
Using the notation
®4) z, % w,,
m=
it follows from Theorem 1 that forn = — 1,
(8.5) Zyzinfth—1) —in
Further. clearly, for certain integer L
Zy=0 Tor h=1L.

Using partial summation we gel from (8.3)

5,2 2 g(8,)(Zy — Z3) + 283025 — Zy) + ..+ 8(b, _ WNZp_y —Z,))

L-1
=2n (8,502, + ’Ea (gldy) —gld, N2y}

= 20 2(g(5,)Z, +Ea (2(8;,) — 2(8;,_ NZ;} -

All terms of the last sum are nonnegative; hence retaining only the
terms with i < n + 1 and applying (8.5) we get

el

8, = 202 {g(By)(zn* —gn) + E (g(B,) — g(8,_ NERh —1)—3m)}

n

n+l
=2n A nglb, )+ 1nt(gls,) + h1}3 (g(8,) — g8y, Nith — 1))}

= 2 g(8,)/(h— Dh .
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Now Theorem 5 follows from (8.6) by usual passage to limit.

§9
Next we turn to the proof of Theorem 6. Let 2, z,, ..., z,, be in 8 and

i
Ezy,nz)=()' I loglz —zgl™! ﬁ‘{gr‘ T log(lfry).

1=j< k<n 15/<k<n
The minimum on B of E(z,, 25, .... z,;) for fixed n exists and is attained
for a system of points {z7, 23, ..., 2 } on B.

Denoting by rfy the corresponding distances, we have

(9.1) E(zy, o zp)=52G M 2 log(1/r)}
1 <i#k=n

which, applying the reasoning of §8, yields
f
(9.2)  E@}, .,z ={n—1)" I, (1 = 1)h) log (1/8}) .
As Fekete proved [9], the left side of (9.2) tends to log A™! asn = e,

A being the transfinite diameter of B, Owing to the known relation
A =r(8), the proof of Theorem 4 is now completed.

£10
Theorem 3 is a remarkable special case of Theorem 4; so we turm now
fo prove the assertion preceding (4.2) concerning its best possibility, Let
0< e < 55 be fixed and let

(0.1 - 2<n,<n; <.

a sequence of integers (to be determined later). Then every number in
(0, 1} can be represented in the form

(10.2) x=§i Cofttyny .t | Do, <A, —1.

Let our set B consist of x"s having as ¢, “digit” the valuesO orn, - 1.
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We want to estimate 8_;, the 2 *th packing constant of this set. Having

any 2% points of our set, at least 2 26=1 of these have common first digit,
at least 252 of these have identical first two digits, ..., at least 2 have
first & — | identical digits. Hence

(10.3) 8, < (g — Dimyng.ny < Vnyngme

Owing to the monotonicity of the packing constants we have for
zk < p< zk-l-]

5”{ I,III”‘HI...HA-____J_ ;

Hence
def 2F71-1 ak+_ |
L = X v ¥eloghsl > log(n ny...m_y) T wEte
p=1k a2k

5 R b [k+1 Hl"E};}lk tﬂg{ni nZ'“nﬁl—l'}

« 2k{l—e)
> % u%l logn,

Choosing now

(10.4) n,=[2207%9 TS [ .
»

we gel

k—1
> 1 l—Hl—eb b zl—ﬁe}r_ z’ﬁek
k 0 Ry
with a numerical constant ¢. Thus the series (4.2) indeed diverges.
If we can prove that the transfinite diameter of our set is positive
then the proof of the assertion (4.2) is finished. This will be done by
exhibiting for each integer /, o elements x,, of our set so that

/
(105) [ I |x—x M >e>0
1=/<k=2

independently of {, For this purpose we choose for each / = 3 the points

X, as




510

(]
|1
L)

!
(10.6) Zoeinina.. & =0o0or n—1.
i1 jln g i i i

We split the product in (10.5) into

(10.7) I I,..00, ,,

where IT is extended to all factors |x; —x | such that the first different
digit in the expansion (10.6) of x; and x; occurs on the vth place. Each

such factor is therefore (putting n, = 1)

(10.8) >(n, — Dnny..n, — _E

o (r, — Dinyng...my

=lmny..n,y — 2inyngn,

=(lfmyny.n, )01 —=2fn).
In order to calculate the number of factors in I1 ,, we observe that the
first » — 1 identical digits in x; and x; can be chosen on 201 ways, the

last [ — » digits of x; resp. x; can be chosen independently on 2% ways.
This gives rise to (277)>2*~! factors in I1,,. Hence

I,>{(1/nyny..n,_)(1 _EJ.IHH}};:-—I.?EI—M ‘
and thus the product in ( 10.5) is at least

H—vialcnl
nn 1 _2 }2 F2H-1)
ey (gm0 —2fn,)

Il .. 4=l
P tEnEE—I“m]ni n, M1 —2/n,)

-1
>epexp{=—2 "5 27%(logn; +logny+ ... +logn, i)}

with a positive numerical ¢, . Since, owing to the choice (10.4), indeed
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§1

Finally we turn to the proof of Theorem 4. We shall denote by ||
the number of elements of a set 5. We shall need the following

Lemma 1. [f L, L,, ..., L, are subsets of the finite set L and for
=152 n M,

(11.1) | L= ((m—1)/m)IL]|,
then the intersection of all L, s is not empty.
Proof. For the proof let

1885 sln n=|LI,

be all elements of w and let &, be the number of L,’s which contain /,,.
Then we have, using (11.1),

i &
nim — 1}{;Ei 1L;l = LI A
g e

which implies that max _ & = m. This is equivalent to our assertion.

b

We shall need an easy corollary of the graph theorem (6.1), (6.2),
which we shall formulate as

Lemma 2. If in a graph G, with N vertices every vertex has degree at
least ((y — 2)/(y — 1IN, then Gy, contains a complete subgraph of
order 7y,

Proof. The proof is easy. The degree condition implies that the number
of edges in the graph is greater than the corresponding quantity in (6.2).
This proves the lemma.

We shall also need

Lemma 3. Let 'y be a graph with N vertices which does not contain any
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complete subgraph on K vertices, 3< K <N, Let
(11.2) O0=sA<1KK-1).

Then the number of vertices of degree not exceeding (1 —XN)N in Uy fs
greater than

(11.3) {1 -MK-2)}IN.

Proof. For the proof we decompose the vertices of 'y, into the disjoint
classes £3, and £25, the first one containing all vertices of degree

(114) >(1-MN

and £2, the others. The essential observation is that £2, cannot contain
a complete subgraph of order K — 1. Suppose namely that

(11.5)  @Q,,Cs . Qx4

were the vertices of such a subgraph. Denoting forj=1, 2, ..., K — | the
set of vertices in I’y which are connected by an edge to Q, by R, we
have by (11.4),

(11.6) IRj>(1-MN, =L . Kk=1.

This implies, owing to (11.2), that

4

K—1

iR;I.'b- .

Hence Lemma 1 is applicable to the R;’s with m = K — 1. Consequently,
[y would contain a vertex @* which is contained in all R, i.e. is con-
nected to all @'s. But then (Q, Q5. ... Qg ;. Q") would be a complere
subgraph of order K in Iy, in contradiction to our assumptions. Thus
£1, contains no complete subgraphs of order X' — 1. But then the appli-
cation of Lemma 2 to Gy = £ with y =K ~ | implies that the degree
of at least one vertex in £2; with respect to £, is
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K
K—

<E=3q,

and hence its degree with respect ta I'y, is less than

! K-3 I
N Iﬂll+ﬁ 182, =N — K3 1§21 .

This yields in connection with (11.4) that

l
K —2

(1 -MN<N - 121,

ie.

19,1 < MK — 2N

This implies indeed that more than (1 — MK — 2))N vertices in I'y, have
degree < (1 — XN,

We shall use Lemma 3 in the following form:
If "y contains no complete subgraphs of order K and A satisfies
(11.2), then the complementary graph I",, conlains more than

{(11.7) (1 — ™K — 20N
vertices of degree (with respect to I_;, )

(11.8)  >AN.

§12

Now we can turn to the proof of Theorem 7. Let Py, Py, ..., P, bein
an f from the family & with packing constants &, and critical indices
iy, i1, ... . Fora fixed v = 2, corresponding to £, ..., P, we define a
graph G with vertices P;, j= 1, 2, ..., n, as follows:

The edge P/ Py occurs in 0 if and only if

(12.1) PP, >8

||- {= a'l.'l'-'-‘-l} .

|
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We easily see, as before, that & does not contain a complete subgraph
of order i ; =i,+ 1. Thus, applying Lemma 3 in the form (11.7),
(11.8)with 'y, = &, N=n, K=(i, + 1), we get that for

(12.2) 0=<A= /i,

more than

(12.3) (1 —Ni, — 1)n

points F; have the property that the inequality

PP <8

holds for more than An points P, k # j. Thus the positivity and mono-
tonicity of g{x) implies that

(124) nl kEI gUPLF) 2 hgl(d; o).
k#F

By usual passage to limit we obtain that the inequality
(12.5) G ZA1D1g8; )

holds in the set fof F with the possible exception of a sef of measure
(12:6) =X, —1)\D);

Replacing A by (1/i,)y, 0 <+ < 1, this yields that the inequality
(12.7)  GLP) = (yIDIfiy) g8, , ) = vIDIEE; | Wiy — Dige Vs
holds in each set f of the family F with exception of a set of measure

<yl =1i)D| =1 - 1{{i oy = 1) 1D] .

Defining r by (5.7), the inequality (12.7) implies on choosing v so that
i1 =rthat



118 P. Erdiw et al,, € some spplications of graph theory, T

-
GPYZzy|D| £ glb)/(v—1)v
p=2

at most holds in D with the exception of a set of measure

yI1D| (1 —1/(r— 1))
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