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The well known arrow symbol

(1) n → (k1, . . . , k`)
r
`

means that if we split the r-tuples of a set, S, |S| = n into ` classes, than
for some i, 1 ≤ i ≤ ` there is a subset Si ⊆ S, |Si| ≥ ki all of whose r-tuples

are in the i-th class. Denote by F
(`)
r (k1, . . . , k`) the smallest n for which (1)

holds. The determination of F
(`)
r (k1, . . . , k`) is probably hopeless and may

not be a ”reasonable” problem, just as the determination of the n-th prime
by a simple explicit formula is not reasonable. Very few exact results are
known and all those are for r = 2 (r = 1 is trivial) [1]. It is perhaps not
quite hopeless to try to get asymptotic results but even here our knowledge
is meager, or to be more precise non-existent.

Here is a short outline of some of the known results [1],[2] (c, c1, . . . will
denote positive absolute constants not necessarily the same if they occur in
different formulas).

(2) F
(2)
2 (u, v) ≤

(
u + v − 2

u− 1

)

(3) 2
n
2 < F

(2)
2 (n, n) <

c log log n

log n

4n

n2

(4) c1n
2/(log n)2 < F

(2)
2 (3, n) < c2n

2 log log n/ log n
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Put expr Z = exp(expr−1 Z), exp1 Z = eZ .

(5) F (2)
r (n, n) < expr−1 crn.

Very likely

(6) F (2)
r (n, n) > expr−1 c

′

rn.

To prove (6) it would suffice to show that

(7) F
(2)
3 (n, n) > exp2 cn.

But (7) has so far resisted all attempts. F
(2)
3 (n, n) > ecn2

can be proved easily
by the so-called probabilistic method, but this method cannot give a better

result here. Finally F
(`)
2 (3, . . . , 3) < [e · `!] + 1, but perhaps this bound can

be replaced by c`.
In view of this unsatisfactory state of affairs we will study a modified problem
(at least for ` = 2) which may shed some light on these questions.

(8) n →
(

k,

[
u
v

])r

denotes the truth of the following statement: Split the r-tuples of a set of
n elements into two classes. Then either there are k elements all of whose
r-tuples are in class I or there is a set of u elements which contains at least v
r-tuples of class II. We studied this symbol in our triple paper [4] with Rado
if n is an infinite cardinal, but it seems to us that (8) leads to interesting and
deep questions for finite n too and we hope to convince the reader of this.
fr(n; u, v) denotes the largest value of k for which (8) holds. We will try to
study fr(n; u, v) as v increases, u is fixed and n is very large; unfortunately
we will not be very successful but the problem is really very difficult and we

will make some plausible conjectures. The statement n →
(

k,

[
u(
u
r

) ])r

is

of course the same as the old symbol n → (k, u)r. We will almost entirely
restrict ourselves to finite problems, but will include a short discussion of
transfinite tournaments. Often we will not give full details of the proofs, but
will give a short outline with appropriate references to the literature.

Our principal conjecture states that as v increases from 1 to
(

u
r

)
at first

fr(n; u, v) grows like a power of n (as v increases), then at a well defined

h
(r)
1 (u), fr(n; u, v) grows like a power of log n then at h

(r)
2 (u), fr(n; u, v) grows

like a power of log log n etc. and finally fr(n; u, h
(r)
r−2(u)) grows like a power
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of logr−2 n (logt n is the t-fold iterated logarithm of n), h
(r)
r−2(u) <

(
u
r

)
; and

finally fr(n; u,
(

u
r

)
also grows like a power of logr−2 n. We think we know the

value of h
(r)
1 (u) and can certainly determine it easily for any fixed u. We

are much less certain about h
(r)
2 (u), h

(r)
3 (u) etc. The first nontrivial case is

u = r + 1. Trivially fr(n; u, 1) = n for every u ≥ r and we conjecture that

h
(r)
i (r + 1) = i + 2 but can prove this only for i = 1.

First we will deal with the case r = 2 and r > 2 if n is small (the trivial
zone). Here no great mysteries remain, but the exact order of magnitude
of f2(n; u, v) is not in general known. Than we discuss the case r = 3 in
some detail, and finally we give a short resumé of our meagre knowledge for
r > 3. We discuss the case r = 3, u = 4 in some detail, also because of its
connection with tournaments.

I. r=2

Assume first 2v ≤ u. Then trivially

(9) f2(n; u, v) = n− v + 1.

(9) is a really trivial since 2v ≤ u implies that if no set of u vertices spans
v edges of the second class then there are at most v − 1 edges of the second
class and (9) follows. Further trivially

(10) f2(2n; 2v, v + 1) = n.

and all values of f2(n; u, v) can easily be determined for v < u, we leave the
simple (but sometimes unpleasant) details to the reader. Here we do not
really use r = 2, in the general case the values of fr(n; u, v) are trivial for
v <

[
u+r−2

r−1

]
and again we leave the determination of fr(n; u, v) in the ”trivial

zone” to the reader (for r > 2 the details will be even more unpleasant than
for r = 2 ). The first non-trivial result states

Theorem 1. Let n > n0(u), then

f2(n; u, v) < n1−εu , fr

(
n; u,

[
u+r−2

r−1

])
< n1−ε

(r)
u .

Both inequalities of Theorem 1 easily follow by the so-called probability
method - in fact the first one is contained in [8] and the second one follows
by the method used in [8] and [9]. We only state the idea of the method
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the interested reader can easily reconstruct the details by consulting the two
papers quoted above.

Consider the complete r-graph of n vertices. Choose in all possible ways
` = [n1+n] of its r-tuples where n = n(u) is sufficiently small. Thus we get[(

n
r

)
`

]
r-graphs on n vertices. A simple computation shows that if we neglect

σ

([(
n
r

)
`

])
of these r-graphs then the remaining r-graphs have the following

two properties: There is an εu so that every set of [n1−εu ] vertices contains
at least t = t(n) of our chosen r-tuples but that there are only σ(t) u-tuples
which contain at least

[
u+r−2

r−1

]
of our r-tuples. Omitting all the r-tuples from

these ”bad” u-tuples, we obtain an r-graphs on n vertices every u-tuple of
which has fewer than

[
u+r−2

r−1

]
r-tuples, but every set of [n1−εv ] vertices con-

tains at least one of our r-tuples. This completes the outline of the proof
of Theorem 1. This simple minded method is often surprisingly successful
(for further applications see the forthcoming book of P. Erdős and J. Spencer
”On applications of probability methods to combinatorial problems”).

It is easy to see that

fr

(
n; u,

[
u + r − 2

r − 1

])
> nc

for some c = c(u, r) but it would be of interest to try to get as good inequa-
lities for fr

(
n; u,

[
n+r−2

r−1

])
as possible. We will only discuss the case r = 2.

The case u = 3 has already been stated in (4), (4) can be written as

c1n
1/2

(
log log n

log n

)1/2

< f2(n; 3, 3) < c2n
1/2/ log n.

We would guess that

(11) cn1− 1
u

3 /(log n)c4 < f2(n; 2s + 1, 2s + 1) < cn1− 1
u

3 /(log n)c6

for even u we do not hazard a guess.

It is likely that

lim
n⇒∞

log f2(n; u, v)/ log n = cu,v

exists for every u and v, as stated previously cu,v = 1 for v < u. cu,v is
of course a decreasing function of v and we do not know if it is strictly
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decreasing. We feel sure that

lim
n⇒∞

log f2

(
n; u,

(
u

2

))
/ log n =

1

u− 1

but this has been proved only for u = 3 (see [10]).

II. r=3

First we investigate u = 4. v = 1 is of course in the trivial zone and
f3(n; 4, 1) = n. v = 2 is not quite trivial.

Theorem 2. (2n)1/2 ≤ f3(n; 4, 2) < c1n
c2 (c2 < 1).

First we prove the lower bound. Let X1, . . . , Xt be a maximal indepen-
dent set of our graph i.e. no triple (Xi, Xj, X`), 1 ≤ i < j < ` ≤ t occurs
in our three-graph but for every other vertex Jj 1 ≤ j ≤ n − t there is a
triple (Xu, Xv, Xj) in our graph. No two triples of our graph can have a pair
in common (for otherwise we have four vertices containing two triples) thus(

t
2

)
≥ n − t, which proves the lower bound. c3n

1/2 with a smaller c3 than

21/2 cold also have been obtained by a result of J. Spencer [10]. The upper
bound can be obtained by the probability method. It seems certain that

(12) lim
n→∞

log f3(n; 4, 2)/ log n

exist, but we have not proved this and do not know if the value of the
limit in (12) is 1/2. The probability method does not seem to give this.

Theorem 3. c1 log n/ log log n < f3(n; 4, 3) ≤ (2 log n/ log 2) + 1.

First we prove the lower bound. Denote again by X1, . . . , Xt the vertices
of a maximal independent set. For every other vertex Xj, 1 ≤ j ≤ n − t
our graph must contain a triple (Xu, Xv, Xj), 1 ≤ u < v ≤ n − t. Thus we
can assume that the same pair say (X1, X2) occurs in at least n/t2 triples
(X1, X2, Xj), 1 ≤ j ≤ n/t2. Now none of the triples (Xi, Xj1 , Xj2), i = 1, 2
1 ≤ j1 < j2 ≤ n/t2 can occur in our 3-graph for otherwise the quadruple
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(X1, X2, Xj1 , Xj2) would contain three triples of our graph. Thus say X1 is
independent of {X1, . . . , X[ n

t2
]}.

Repeating the same argument for the 3-graph spanned by {X1, . . . , X[ n
t2

]}
we obtain the lower bound of Theorem 3. We unfortunately could not decide
if f3(n; 4, 3) > c log n is true or not.

Now we prove the upper bound of Theorem 3. Erdős and Moser [11]
proved that there is a tournament Tn (i.e. a directed complete graph) of
n vertices which does not contain a transitive subtournament of more than
2 log n/ log 2 vertices. Further it is easy to see that a tournament of four
vertices contains at least two transitive subtournaments of 3 elements. Con-
sider now the set of all triples of our Tn which form a non transitive triple.

Clearly this family does not contain

[
4
3

]
, but since Tn does not contain

a transitive subtournament of size [2 log n/ log 2] + 1, every subset of size
[2 log n/ log 2] + 1 must contain one of our triples, this completes the proof
of Theorem 3.

Now we give short discussion of infinite tournaments. Ramsey’s theorem
easily implies that every infinite tournament contains an infinite transitive
subtournament. A few years ago Laver constructed a tournament of a size
ℵ1 which does not contain an uncountable transitive subtournament. Using
the continuum hypothesis one can construct for every m ≥ ℵ0 a tournament
of size m+ which does not contain a transitive subtournament of size m+.

On the other hand if m is weakly compact then every tournament of size
m contains a transitive subtournament of size m.

Finally it follows from results of Jensen and Shore that if V = L is assu-
med and cf(m) is not weakly compact then there is a tournament of size m
which does not contain a transitive subtournament of size m. Now we prove

Theorem 4. Let m be strong limit, and cf(m) weakly compact. Then
every tournament of size m contains a transitive subtournament of size m.

We split the triples of our tournament into two classes. In the first class
are the transitive triples and in the second class the non transitive ones.
As stated previously every quadruple contains at most two triples of the
second class. A well-known theorem of Rado and ourselves [4] states: Let
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m be strong limit, cf(m) weakly compact. Then m → (m,

[
4
3

]
)3. Thus

our tournament contains a subtournament of size m all of whose triples are
transitive which of course implies that it is itself transitive, which completes
the proof of Theorem 4.

Theorem 5. f3(n; k,

(
k
3

)
) > 1/2(log n)

1
2(k−1)

Theorem 5 is essentially contained in older results of Erdős, Hajnal and
Rado [4] and Erdős and Rado [3] but for completeness we give the simple
proof. Theorem 5 is clearly equivalent to

(13) n → ([(log n)
1

2(k−1) ], k)3.

Let |S| = n be a set of n elements. Split the triples of S into two classes.
Assume that we already found elements X1, . . . , X` of S and a subset

S
(`)
1 ⊂ S, Xi 6∈ S

(`)
1 1 ≤ i ≤ `, |S(`)

1 | >
n

2`2
,

so that all the triples (Xi1 , Xi2 , Xi), where i1 < i ≤ ` and (Xi1 , Xi2 , Z), Z ∈
S

(`)
1 belong to the same class (in other words the class of (Xi1 , Xi2 , Xi) and

(Xi1 , Xi2 , Z) only depends on the pair (Xi1 , Xi2) ). Let X`+1 be any element

of S
()
1 . We now divide S

(`)
1 into 2` classes, Z1 ∈ S

(`)
1 and Z2 ∈ S

(`)
2 belong to

the same class if all the triples

(Xi, X`+1, Z1) and (Xi, X`+1, Z2), i = 1, . . . , `

belong to the same class. Clearly at least one of these classes has at least

1

2`

(
|S(`)

1 | − 1
)

>
n

2(`+1)2

elements. This class we call S
(`+1)
1 .

We continue this construction as log as possible and obtain a sequence
X1, . . . , Xt, t > (log n)1/2, so that the class of the triple (Xi, Xj, Xk), 1 ≤
i < j < k ≤ t only depends on the pair (Xi, Xj). Put the pair (Xi, Xj), 1 ≤
i < j ≤ t− 1 in the same class as the triple (Xi, Xj, Xt). Then by (2) there
either is a set of elements k− 1, Xi1 , . . . , Xik−1

1 ≤ i1 < · · · < ik−1 ≤ t− 1 all

of whose pairs are in class II or a set S1 of
[
t1/k−1

]
elements all whose pairs

are in class I. In the first case all triples of (Xi1 , . . . , Xik−1
, Xt) are in II and
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in the second all triples of S1∪{Xt} are in I. This proves (13) and Theorem 4.

It seems certain that to every ε > 0 there is a k0 = k0(ε), so that for
every k > k0

(14) n 9 ([(log n)ε] , k)3 .

We could not even prove

(15) lim
n⇒∞

f3

(
n; k,

(
k
3

))
/ log n = 0.

(15) probably holds already for k = 4.

Theorems 2 and 3 give h
(3)
1 (4) = 3. It is not difficult to show that h

(3)
1 (5) =

5, h
(3)
1 (6) = 9, h

(3)
1 (7) = 14, h

(3)
1 (8) = 21, h

(3)
1 (9) = 31. Now we try to explain

all that we know about h
(3)
1 (u). First we define a function g

(3)
1 (u) by recursion.

Put g
(3)
1 (1) = g

(3)
1 (2) = 0. Assume that g

(3)
1 (m) has already been defined for

all m < n. Then

(16) g
(3)
1 (n) = max

a+b+c=n
(g

(3)
1 (a) + g

(3)
1 (c) + abc).

In fact it is easy to see that

(17) g
(3)
1 (n) = X + Y + Z + XY Z

where X+Y+Z=n and X,Y,Z are as nearly equal as possible.

Theorem 6. f2(n; k, g
(3)
1 (k)) > nεk .

The proof of Theorem 6 will be by induction with respect to k. We will
not give an explicit estimation for εk, though this could be done without
much difficulty. Before giving the details we state our principal.

Conjecture I. h
(3)
1 (k) = g

(3)
1 (k) + 1. In other words

(18) f3(n; k, g
(3)
1 (k) + 1) < c

′

k log n.

Unfortunately we cannot prove (18), but before we discuss this we prove
Theorem 6. In fact we will prove a stronger statement. We define by in-

duction a class of 3-graphs G(3)(k; `k) of k vertices and `k ≤ g
(3)
1 (k) triples
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as follows: G(3)(3, 1) is a triple (i.e. a 3-graph of three vertices and one
triple). Assume that the graphs G(3)(m; `m) have already been defined for
all m < k. The graphs G(3)(k; `k) are defined as follows. Consider all parti-
tions k = u1 +u2 +u3 and consider G(3)(u1; `u1)∪G(3)(u2; `u2)∪G(3)(u3; `u3)
with the vertices X1, . . . , Xu1 ; Y1, . . . , Yu2 ; Z1, . . . , Zu3 and add further all the
triples (Xi, Y`, Zr), 1 ≤ i ≤ u1, 1 ≤ j ≤ u2, 1 ≤ r ≤ u3. Thus we obtain our
graphs G(3)(k; `k).

Instead of Theorem 6. we prove the following stronger structural
Theorem 7.

Theorem 7. Let εk > 0 be sufficiently small and n > n0(εk) sufficiently
large. Then every G(3)(n) either contains all the graphs G(3)(k; `k) as subg-
raphs or G(3)(n) contains an independent set of size nεk .

First we remark that if t is fixed and nt is small enough and m > m0(t, nt),
|S| = m, A1, . . . , Aj, Ai ⊂ S, |Ai| = t a family of t-tuples so that every subset
S1 ⊂ S, |S1| > mnt contains at least one of the A’s then j > mt−1/2.

The remark follows immediately from the result of Spencer [10] (a direct
proof is also easy). By the way the result remains true with j > mt−δt for
every δt > 0 if εt is small enough.

To prove Theorem 7 we use induction with respect to k. Theorem 7 tri-
vially holds for k ≤ 3. Assume that it holds for every k′ < k and we will
prove it for k. Let G(3)(k; `k) be defined by the partition u1 + u2 + u3 =
k, 1 ≤ u1 ≤ u2 ≤ u3. Consider now the graph G(3)(u1 + u2 + 1) ha-
ving the vertices X1, . . . , Xu1 ; Y1, . . . , Yu2 ; Z1. On the X’s it coincides with
G(3)(u1; `u1) on the G’s with G(3)(u2; `u2) and further it contains all the trip-
les (Xi, Yj, Z1); 1 ≤ i ≤ u1, 1 ≤ j ≤ u2,

(
G(3)(u1 + u2 + 1)

)
is a subgraph of

G(3)(k; `k).

We can of course assume that G3(n) does not contain an independent set
of size nεk . But then by our induction hypothesis it contains our G(3)(u1 +
u2 + 1) as a subgraph and in fact we can assume that if εk is small enough

then every set of vertices of size nδk , δk = ε
1/2
k contains our G(3)(u1 + u2 + 1)

as a subgraph. But then by our remark G(3)(n) contains at least nu1+u2+1/2

copies of our G(3)(u1 + u2 + 1). But then a simple computation shows that
there are vertices

X1, . . . , Xu1 ; Y1, . . . , Yu2 ; Z1, . . . Zs, s ≥ n1/2
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so that our G(3)(n) contains on X1, . . . , Xu1 a 3-graph isomorphic to G(3)(u1; `u1)
on Y1, . . . , Yu2 a subgraph isomorphic to G(3)(u2; `u2) and finally G(3)(n) con-
tains all the triples

(Xi, Yj, Zr); 1 ≤ i ≤ u1, 1 ≤ j ≤ u2, 1 ≤ r ≤ s.

Now consider the subgraph of G(3)(n) spanned by Z1, . . . Zs. We can of
course again assume that it does not contain an independent set of size nεk .
Thus by our induction hypothesis it contains a subgraph G(3)(u3; `u3) having
the vertices Z1, . . . Zu3 . Now the graph spanned by X1, . . . , Xu1 ; Y1, . . . , Yu2 ;
Z1, . . . Zu3 contains our G(3)(k; `k) as required - this completes the proof of
Theorem 7.

Having proved Theorem 7 we now explain our reasons for believing con-
jecture I. Let us colour the edges of the complete graph whose vertices are
the integers by three colours. We wish to maximize the number of triangles
(a, b, c), 1 ≤ a < b < c ≤ k for which the edge (a, b) has colour I, (b, c) colour
II and (a, c) colour III. Denote this maximum by F1(k). It is immediate that

F1(k) ≥ g
(3)
1 (k).

Conjecture II. F1(k) = g
(3)
1 (k).

Unfortunately we have no real evidence for conjecture II except that we
easily proved it for small values of k.

Theorem 8. h
(3)
1 (k) ≤ F1(k) + 1.

Observe that Theorem 8 and Conjecture II implies by Theorem 6 Con-
jecture I, thus the only missing link is the proof of Conjecture II.
Theorem 8 is clearly equivalent to

(19) n 9
(

ck log n,

[
k

F1(k) + 1

])3

where ck is a sufficiently large constant.

We prove (19) by the so called probability method.

Colour the edges of a graph of n labelled vertices by 3 colours in all

possible ways. The number of distinct colourings is 3

(
n
2

)
. The triples
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(a, b, c), 1 ≤ a < b < c for which (a, b) has colour I, (b, c) has colour II and
(a, c) has colour III we put in class II the other triples we put in class I. By the

definition of F
(3)
1 (k) no k-tuple can contain more than F

(3)
1 (k) triples of class

II. On the other hand a simple computation shows that all but σ(3

(
n
2

)
)

of the colourings have the property that every set of [ck log n] contains a
triple of the second class if ck is a sufficiently large constant. To see this put
[ck log n] = T . It is well known that a set of size T contains (1+σ(1))T 2

6
= L

triples any two of which have at most one element in common. Thus by a
simple argument [12] there are for sufficiently large ck at most

3

(
n
2

) (
n
T

)
(1− 1/8)L < 2

(
n
2

)
nT e−T 2/100 = σ(3

(
n
2

)
)

colourings for which there is a set of size T not containing a triple of the
second class. This proves (19) and Theorem 8.

Before closing this chapter we mention a few related questions. Let us
colour the edges of the complete graph whose vertices are the integers ≤ k
by two colours so that the number of triangles (a, b, c), a < b < c, (a, b) and
(b, c) are coloured I and (a, c) is coloured II is maximal. Denote this maxi-
mum by F2(k). Perhaps F1(k) = F2(k). Trivially F2(k) ≥ F1(k).
An older problem of V.T. Sós and P. Erdős states: Colour the edges of a
complete graph of n vertices by three colours so that the number of tirang-
les all whose edges get a different colour is maximal. Denote this maxi-
mum by F3(k). They conjectured that F3(k) is obtained as follows: Clearly
F3(1) = F3(2) = 0, F3(3) = 1, F3(4) = 4. Suppose F3(k1) has already been
determined for every k1 < k. Then

F3(k) = F3(u1) + F3(u2) + F3(u3) + F3(u4)

+ u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4,
(20)

where u1 + u2 + u3 + u4 = k and the u’s are as nearly equal as possible. We
made no progress with (20).

III. r > 3

The first non-trivial case is u = r+1. As stated already in the introduction
we conjecture

(21) h
(r)
i (r + 1) = i + 2
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We can only prove this for i = 1.

(22) fr(n; r + 1, 2) > n1/r−1

follows easily like the proof of Theorem 2. Thus to prove (21) for i = 1 we
only have to show

Theorem 9. c′r log n/ log log n < fr(n; r + 1, 3) < cr log n.

For r = 3 Theorem 9 follows from Theorem 3, but we give an outline
of a slightly different proof which works also for r = 3. We again use met-
hods of probabilistic combinatorial analysis. Colour the edges of a Kn (a

complete graph of n labelled vertices) by

(
r
2

)
colours. We can do this

in

(
r
2

)(
n
2

)
ways. Colour the edges of Kr of r labelled vertices 1, . . . , r

by

(
r
2

)
different colours from 1 to

(
r
2

)
, say lexicographically. A simple

computation shows that for all but σ

(
r
2

)(
n
2

) of the colourings of our

Kn every K[cr log n] contains at least one Kr coloured in this way, but every
Kr=1 contains at most two such complete graphs Kr. Put now the r-tuples
coloured lexicographically in class II and the others in class I and we obtain
the upper bound in Theorem 9.
The lower bound can be obtained as in Theorem 3.
Unfortunately we have no idea how to prove (21) for i > 1. By the methods
of Theorem 5 it is quite easy to prove

(23) fr(n; r + 1, i + 2) > cr,i(logi n)εr,i .

The great difficulty is to prove an inequality in the opposite direction.

Now we investigate h
(r)
1 (k). Define g

(r)
1 (k) as follows: g

(r)
1 (k) = 0 for k < r,

g
(r)
1 (r) = 1. Assume that g

(r)
1 (k1) has already been defined for all k1 < k.

Put

g
(r)
1 (k) =

r∑
i=1

g
(r)
1 (u1) +

r∏
i=1

ui

where
∑r

i=1 ui = k and the u’s are as nearly equal as possible. We have
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Theorem 6.’ fr(n; k, g
(r)
1 (k)) > nεk,r .

The proof is similar to that of Theorem 6 and we suppress it.

Conjecture I.’ h
(r)
1 (k) = g

(r)
1 (k) + 1.

We are of course much less certain about conjecture I’ than about con-
jecture I. This and many other remaining questions we hope to investigate
(if we live) in the future, though we should add that it is our sincere hope
that others we do this before us.
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