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Letf(m) be a real-valued, number theoretic function . We say thatf(m) is additive
if f(mn) = f(m) +f(n) whenever (m, n) = 1 . If f(m) satisfies the additional restriction
that f(p) = f(p2) _ f(p3) = . . ., then we say that f(m) is strongly additive . We denote
the class of additive functions by .4.

A function fEF .2/ is called finitely monotonic if there exists an infinite sequence
xk -+ oo and a positive constant A, so that for each xk there are integers

1 <-- a, <a2 < . . . <an<xk

satisfying n > ~xk and f(a 1 ) < f(a 2) < . . . < f(an) . In other words, f(m) is said to be
finitely monotonic if, infinitely often, f(m) is non-decreasing on a positive proportion
of the integers between 1 and Xk. Let ill denote the class of finitely monotonic
functions .

Approximately 25 years ago, Erdös [3] proved that a monotonic, additive function
is a constant multiple of the logarithm . In the same paper Erdös conjectured that
even when an additive function is monotonic on a sequence of integers with density 1,
then the conclusion still holds . This was later proved by Kátai [4] . At about the
same time Kátai's result appeared, B . J . Birch proved the following theorem, which
may be found in [1] .

THEOREM (Birch) . Let f(m) be an additive function, and let g(m) be any monotonic
non-decreasing function . �uppose that for every e > 0, f(m)-g(m)l < E for all but
o(x) of the integers I < m < x, as x -> co . Then f(m) = c log m.

In the present paper, we shall show that if f is finitely monotonic, then f
approximates a constant multiple of the logarithm . Thus, we prove the

THEOREM. Let f c- d. A necessary and sufficient condition that f c- .& is that there
exist a positive constant c and an additive function g so that

where
f(m) = clogm+g(m),

	

(1)

Z 1 < oo .

	

(2)
g(p) * o p

This theorem was first stated as Theorem XII in [3], although without proof.
We include all of the details here .

Proof of Theorem (sufficiency) . �uppose that f(m) satisfies (1) and (2). Then
g(m) must vanish on a sequence of integers of positive density . On this sequence,
f(m) is non-decreasing .
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To prove that the conditions (1) and (2) are necessary will be much more difficult .
We shall first deduce from Lemma 1 and Lemma 2 that if f e M, then f has the form

f(m) = c log m+g(m),

y
(g , (p))2

< oo,
r

	

p

q<p<r

Y.n-2 <E,
q<n
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(3)

(4)

and where g'(p) = g(p) if jg(p)J < 1 and g'(p) = 1 otherwise. Next, we employ
Lemma 3 and Lemma 4 to prove that the condition (4) can be strengthened to the
condition (2) . This will prove the theorem .

Definition . Let f c 4 . Then .f is said to be finitely distributed if there exists an
infinite sequence x k -; oo and positive constants cl and c2 so that for each xk there
exist integers 1 < a, < . . . < an < xk for which I f(ati)-f(a;)l < c2 , 1 < i, j < n, and
n>c i xk .

It is seen from this definition that finitely distributed functions are distinguished
by the fact that, infinitely often, a positive proportion of their values, defined on
[I, x k], lie in a strip of constant width . (The functions c log n, for example, are
finitely distributed for each constant c .)

The study of finitely distributed functions was begun by Erdös in [3] . One of the
results of his work there is the

LEMMA I (Erdös) . A necessary and sat dent condition that f be finitely distributed
is that f satisfy conditions (3) and (4) .

Proof of Lemma 1 . Erdös' original proof may be found in Theorem V of [3] .
Another proof, based on analytic methods is given in [5] .

LEMMA 2. �uppose that f c /// . Then f satisfies conditions (3) and (4) .

Proof of Lemma 2. We suppose that for each xk -), oo there are sets of integers
C6'k =

	

, xk) _ {ai < xk : 1 < j < n ; n > ~ Xk} for which

f(al) f(a2) < . . . < f(an)-

We shall deduce that f (m) is finitely distributed . The conclusion of Lemma 2 will
then follow immediately from Lemma 1 .

Thus, choose E > 0. Choose primes q and r so that

H 0 -p -1 ) < E,
qP,<r

where the product is over primes p in the indicated range . Also, put

P = H P.

Then the number of a t E% for which (a ti , P) = I does not exceed 2Exk , for all
sufficiently large xk.

Define numbers a ti ' by a ti = a t ' 7z ti , where 7r ti is the largest factor of ati dividing P.
It is possible that ati ' and 7r á are not relatively prime . But if we choose q so large that

(5)



3 64

	

P. ERDŐ� AND C. RYAVEC

then there are at most sxk of the a i for which (a i ', 7r) > 1 . Hence, we add the require-
ment that the prime q satisfies (5) . Thus, at least (A- 3s) xk of the a i E Wk satisfy the
conditions ai = ai' 7ri, 7ri J P, 7r i > 1, (a i ', 7r i) = 1 . Denote this subset of Wk by ók .

Now suppose that for infinitely many xk there are two numbers aj > ai of -9k
for which aj' = ai ' , and that there are at least 8xk numbers al E -!2k which satisfy
aj > ai > a i (i .e ., j - i > 8xk ), where 6 > 0 is independent of k. Then f is finitely
distributed. To see this, recall that aj' = a i ' means that

from which it follows that
f(aj) -f(ai) = f(nj)-f(ni),

since (7ri, a i) = 1 . Moreover, since aj > al > a i , we have

I f(ai)-f(ai)l < Jf(7rj) -f( 7ri)j ;

and so f is finitely distributed .
Therefore, we assume that between any two numbers aj and a i of C?I k such that

aj ' = a i ', there are o(xk) numbers a i of -Jk, as xk --> oo . We shall arrive at a
contradiction .

Put

µ = min
aj ,n t e P

aj

	

ai

i
7tj
7r,

-1 . 7rj >

	

7r1 } .

Then µ > 0 and independent of xk .
Choose the largest number aj e _!2k for which aj ' = ai' for some i j. Denote this

largest number by ajl . Then let a il be the smallest number such that ajl' = ail' .
Between ajl and ail there are at most o(xk) numbers of -~2k . Also,

ajl = ai l 7rjl Trig -1 > ai l(1+µ) .

Next, let ajz be the largest number of Ok less than a il and for which ajz , = ai for
some i = j2 . Let a il be the smallest number for which ajz ' = ai z ' . As before,
ajz > a iz (1 + µ) .

Continuing in this way, we obtain a sequence of numbers

ajl > a il > ajz > a iz > . . . > ajh > a ih ,

where h is chosen so that (1 + µ)h > q > (1 + µ)h-1 . With h chosen in this way, there
are at most xklq numbers of -9k less than a ih . We note, also, that the number of a i
for which a i ' can equal a given aj' is at most the number of distinct 7Ti, a bounded
number (certainly less than e") . Finally, note that the number of a i for which ai ' is
never equal to another aj', is at most xklq .

Hence, in the above procedure, we have accounted for a total of at most

(l/q+3s+o(h)+1/q)xk +2he"

numbers in Wk, which contradicts JWk I > Axk, if s is chosen sufficiently small .
It follows that f(m) is finitely distributed. A direct application of Lemma 1

shows that f must satisfy conditions (3) and (4) .
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LEMMA 3 . �uppose that f e d is finitely monotonic . Then the strongly additive
function f *, defined by f *(pr) = f(p), is also finitely monotonic .

Proof of Lemma 3 . The hypotheses of Lemma 3 state that there exists an infinite
sequence xk --> co and a positive constant íl so that for each xk there are integers
1 < a i < a2 < . . . < an < xk with 17 > ~Xk and f(al) < f(a2) < . . . < f(an).

Choose N = N(~) so large that

Z p -r <
p" >N
r,> 2

With this choice of N, at least í Xk/2 of the a i < xk have no prime power divisor pr

(r > 2) satisfying pr > N. Hence, the order of the set �k = �k(N), defined by

�k ={a i < Xk :p'Ia i , r>2=> p"<N},
is at least ~Xk/2.

Let -9 consist of those integers whose prime power divisors pr satisfy p" < N
(where we now allow the possibility r = 1), and let D denote the product of all of the
integers d c Gd . For each d E 9, put

�k(d) = {ai e �k : (ai , D) d

Then some set �k(d) has order at least Axle/2D ; and for each a i in this set, we see that
a i/d is square-free. In addition, if a i < a; are in this set, then f(a i/d) < f(a;/d) . It
follows that the strongly additive f *, defined by f *(pr) = f(p), is finitely monotonic .

Henceforth, without loss of generality, we will assume that the finitely monotonic
function f, given in the statement of the theorem of this paper, is strongly additive .
This assumption is justified by Lemma 3 .

LEMMA 4. �uppose that f is a strongly additive function which satisfies (3) and (4) .
Then the finite frequencies n -i Y, 1, where summation is over values of m such that

,n
m < n, f(m)-c log m-a(n) < x, have a limiting distribution function F(x) as n -> oo,
where

a (n) - Z g, (p)
pán p

Moreover, F(x) will be continuous if and only if

g(p) #0 p

Proof of Lemma 4 . The statement of Lemma 4 was first enunciated by Erdös
as Theorem II of [3] ; and a proof was given there in the case when lg(p)) is bounded .
A complete proof of Lemma 4 may be found in Theorem 2 of [2] .

Proof of Theorem (Necessity) . From Lemma 4, we may find a constant A so
that the number of m < xk for which -A < f(m) - c log m - a (xk) < A exceeds
(I -íl/4) xk . �ince there are at least ílxk elements of Wk (,Vk is defined in the proof of
Lemma 2), there are at least (íl-2(x,/4)) xk = ~Xk/2 elements of Wk which satisfy
ílxk/4 < ai < xk and - A < f(ai) - c log ai - a(xk) < A . Denote the set of these ai in
Wk by 9k, where l199kl > ílxk/2 .



366

	

P. ERDŐ� AND C. RYAVEC

Divide the interval [),xk/4, xk) into T equal parts, where T is a large, but fixed,
positive integer. Then, we have

T-1
PXk/4 , xk) = U 161 x0 �1+ 1 xk)

1=0

where

and

and

Then

T-1= U I 1 ,
I=0

(,,/4)(T -l)+l
T

An interval II will be called good if it contains at least Axk/4T of the numbers of
,Pk . Clearly, the number of elements of ~k , which do not lie in good intervals, is
not more than T (Axk/4 T) _ Axk/4. Hence, there are at least Ax k/4 numbers of �ok
in good intervals ; and, so, there are at least

~xk/4

	

_ T
= vT

(1-, ./4) xk/ T

	

4-,.

good intervals . It follows that on one of these good intervals, say on I L ,
0 < L < T-1, the total variation of f(ai) - c log a i - a(xk) does not exceed 2A/vT,
since f is monotonic on the a i E Yk . Moreover, since IL is a good interval,

`4k a IL I > Txk/4T.

Therefore, if we let E'm 1 denote the summation over those natural numbers m
satisfying

�L xk<m<�L+1xk,

r~- 2A < f(M)-clogm-a(xk ) < rl+ v7, ,

then, for some real number n, we have

(�L+1 - �L) -1 xk -1 Z ' 1 = (1-,Z/4)-1 T xk -1 C„ 1
m

	

m

(1-A14) -1 Txk -1 (Axk/4T)
= v > 0.

	

(6)

�uppose, now, that F(x) is a continuous function . Let E"m 1 denote the summation
over those natural numbers m satisfying

1 <m< 31+1Xk5,

li-
2T

<f(M) - c logm - a(31+1 xk) < r]+ v7, .

a-1-1 2:„

	

2A

	

2A +o(1),1 xkm 1 F tl+
vT)

-F ?1 +
VT)
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as xk -+ oo . �ince a(xk)-a(51+1 xk) = 0(1) as xk -> oo, we see that

6

	

2A
-F

	

2A

	

~ l + 0(1) xk _+ oo
'

	

(7)1+1 CF((r1+ v -T

	

(q-	
)I

= xk -
-t

m

where the symbol "'m 1 denotes summation over integers m satisfying

1 <m<61+ixk,
and

2A

	

2A
F q+ v7,

)
-F(il_v7.,

)
_ (�L+1 - �L)

-1

Combining equations (6) and (8), we obtain

�(P) # 0

1
- < oo,
P

n-2T < f(M)-c logm-a(xk) < 11 + vT

�ubtracting equation (7) with l = L -1 from equation (7) with l = L, and dividing
the difference by �L+1-6L> yields

2A

	

2A
vT,

	

vT
	 ~ +0(1) i v

' 1 +0(1), xk --> oo .

	

(8)
m

as xk -> oo . �ince T can be chosen as large as we like (but fixed with respect to x k)
we see that F cannot be continuous. Hence, by Lemma 4,

which proves the theorem .
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