A CHARACTERIZATION OF FINITELY
MONOTONIC ADDITIVE FUNCTIONS

P. ERDOS anp C. RYAVEC

Let f(m) be a real-valued, number theoretic function. We say that f(m) is additive
if f(mn) = f(m)+f(n) whenever (m, n) = 1. If f(m) satisfies the additional restriction
that f(p) = f(p?) = f(p®) =..., then we say that f(m) is strongly additive. We denote
the class of additive functions by 7.

A function fe o/ is called finitely monotonic if there exists an infinite sequence
X, — 00 and a positive constant 4, so that for each x; there are integers

1<a, <a,<...<a, < x

satisfying n > Ax, and f(a,) < f(a,) <...< f(a,). In other words, f(m) is said to be
finitely monotonic if, infinitely often, f(m) is non-decreasing on a positive proportion
of the integers between 1 and x,. Let .# denote the class of finitely monotonic
functions.

Approximately 25 years ago, Erdos [3] proved that a monotonic, additive function
is a constant multiple of the logarithm. In the same paper Erdos conjectured that
even when an additive function is monotonic on a sequence of integers with density 1,
then the conclusion still holds. This was later proved by Katai [4]. At about the
same time Katai’s result appeared, B. J. Birch proved the following theorem, which
may be found in [1].

THEOREM (Birch). Let f(m) be an additive function, and let g(m) be any monotonic

non-decreasing function. Suppose that for every & > 0, | f(m)—g(m)| < ¢ for all but
o(x) of the integers 1 < m < x, as x - . Then f(m) = clogm.

In the present paper, we shall show that if f is finitely monotonic, then f
approximates a constant multiple of the logarithm. Thus, we prove the

THEOREM. Let fe of. A necessary and sufficient condition that fe M is that there
exist a positive constant ¢ and an additive function g so that

f(m) = clogm+g(m), (D
where
i < 0. 2)
g(p)#0 D

This theorem was first stated as Theorem XII in [3], although without proof.
We include all of the details here.

Proof of Theorem (sufficiency). Suppose that f(m) satisfies (1) and (2). Then
g(m) must vanish on a sequence of integers of positive density. On this sequence,
f(m) is non-decreasing.
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To prove that the conditions (1) and (2) are necessary will be much more difficulit.
We shall first deduce from Lemma 1 and Lemma 2 that if fe .#, then f has the form

S(m) = clogm+g(m), 3)
where
' 2
5 (g’ () _ - @)
P p

and where g'(p) = g(p) if |g(p)] <1 and g'(p) = | otherwise. Next, we employ
Lemma 3 and Lemma 4 to prove that the condition (4) can be strengthened to the
condition (2). This will prove the theorem.

Definition. Let fesf. Then f is said to be finitely distributed if there exists an
infinite sequence x, — oo and positive constants ¢, and ¢, so that for each x, there
exist integers 1 < @, <...< a, < x;, for which |f(a))—f(a;)| < ¢;, 1 <1i, j < n, and
n 2 Cy Xy

It is seen from this definition that finitely distributed functions are distinguished
by the fact that, infinitely often, a positive proportion of their values, defined on
[1, x.], lie in a strip of constant width. (The functions ¢ logn, for example, are
finitely distributed for each constant c.)

The study of finitely distributed functions was begun by Erdds in [3]. One of the
results of his work there is the

LeMMA 1 (Erdds). A necessary and sufficient condition that f be finitely distributed
is that f satisfy conditions (3) and (4).

Proof of Lemma 1. Erdos’ original proof may be found in Theorem V of [3].
Another proof, based on analytic methods is given in [S].

LEMMA 2. Suppose that fe .#. T hen f satisfies conditions (3) and (4).

Proof of Lemma 2. We suppose that for each x, — oo there are sets of integers
C.=%C(f, x) ={a; < x,: 1 <j < n; n>= Aix; for which

flay) < flay) <...< fla,).

We shall deduce that f(m) is finitely distributed. The conclusion of Lemma 2 will
then follow immediately from Lemma .
Thus, choose ¢ > 0. Choose primes g and r so that

n (l_p—l) <g,

g<p<r

where the product is over primes p in the indicated range. Also, put

P= T p

q<p<r

Then the number of a;e%, for which (a;,, P) = 1 does not exceed 2ex,, for all
sufficiently large x;.

Define numbers a;,” by a; = a;," n;, where «; is the largest factor of a; dividing P.
It is possible that @;,” and =; are not relatively prime. But if we choose g so large that

Y wEL (5)

qsn
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then there are at most ex, of the a; for which (a;/, n;) > 1. Hence, we add the require-
ment that the prime q satisfies (5). Thus, at least (1— 3¢) x, of the @, e %, satisfy the
conditions a; = a;' n;, n;| P, w; > 1, (a;, ;) = 1. Denote this subset of %, by Z,.

Now suppose that for infinitely many x, there are two numbers a; > a; of Z,
for which a;" = a;, and that there are at least ox;, numbers g,€ 2, which satisfy
a; > a; > a; (ie., j—i > dx;), where 6 > 0 is independent of k. Then f is finitely
distributed. To see this, recall that a;' = ¢, means that

a; a;
. -
uf T,

from which it follows that

a)—fla) = f(m) —f(m)),
since (m;, a;) = 1. Moreover, since @; > a; > a;, we have

| fla) —f(a)| < |f(m;)—f(m)l;

and so fis finitely distributed.
Therefore, we assume that between any two numbers ¢; and a; of &, such that

a/ = a;, there are o(x;) numbers ¢, of Z,, as x;, » 0. We shall arrive at a

contradiction.
Put

LI

;> T
T'I:l'. ’ l}

[= min {
e P
Then u > 0 and independent of x;.
Choose the largest number a; € &, for which a;' = a;" for some i # j. Denote this
largest number by a;,. Then let @; be the smallest number such that g;’' = q; .
Between a;, and a;, there are at most o(x;) numbers of Z,. Also,

s -1
ajl - al'l 71'11 nh ; al'1(]' +ﬂ).

Next, let a;, be the largest number of & less than «; and for which a; . = a; for
some i# j,. Let a;, be the smallest number for which «;," = a;,". As before,
a;, =2 a;,(1+ p).

Continuing in this way, we obtain a sequence of numbers

a;, > a; >a;,>a,>.>a, >a,

where / is chosen so that (1+p)" =g > (14 p)"~!. With 4 chosen in this way, there
are at most x;/q numbers of &, less than ;. We note, also, that the number of g;
for which a;" can equal a given a;' is at most the number of distinct 7;, a bounded
number (certainly less than e"). Finally, note that the number of @; for which a;" is
never equal to another g/, is at most x,/q.

Hence, in the above procedure, we have accounted for a total of at most

(1/g+3e+o(h)+1/q) x;+2he"

numbers in %, which contradicts |%,| = Ax;, if ¢ is chosen sufficiently small.
It follows that f(m) is finitely distributed. A direct application of Lemma 1
shows that /' must satisfy conditions (3) and (4).
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LemMMA 3. Suppose that fe of is finitely monotonic. Then the strongly additive
Sfunction f*, defined by f*(p") = f(p), is also finitely monotonic.

Proof of Lemma 3. The hypotheses of Lemma 3 state that there exists an infinite
sequence x; — co and a positive constant A so that for each x; there are integers
1<a, <a,<..<a,<x with n > Ax, and f(ay) < f(a,) <...< f(a,).

Choose N = N(A) so large that

Y prr A2

pr>N
r=2

With this choice of N, at least Ax;/2 of the a; < x; have no prime power divisor p"
(r = 2) satisfying p" > N. Hence, the order of the set S, = S, (N), defined by

Si={a;<x.:p'la, r=2=p <N},
is at least Ax,/2.
Let 2 consist of those integers whose prime power divisors p" satisfy p" < N
(where we now allow the possibility r = 1), and let D denote the product of all of the
integers de &. For eachde 2, put

Sk(d) = {aiESk i (a,-, D) - d}.

Then some set S, has order at least Ax,/2D; and for each q; in this set, we see that
a;/d is square-free. In addition, if a; < a; are in this set, then f(a,/d) < f(a;/d). 1t
follows that the strongly additive f*, defined by f*(p") = f(p), is finitely monotonic.

Henceforth, without loss of generality, we will assume that the finitely monotonic
function f, given in the statement of the theorem of this paper, is strongly additive.
This assumption is justified by Lemma 3.

LEMMA 4. Suppose that f'is a strongly additive function which satisfies (3) and (4).
Then the finite frequencies n~ 'Y 1, where summation is over values of m such that
m

m < n, f(m)—clogm—a(n) < x, have a limiting distribution function F(x) as n — oo,
where

a(n) = 3 g'(p)

psn P
Moreover, F(x) will be continuous if and only if

1
— = oo.

g(p)#0 P
Proof of Lemma 4. The statement of Lemma 4 was first enunciated by Erdds
as Theorem 1I of [3]; and a proof was given there in the case when |g(p)| is bounded.
A complete proof of Lemma 4 may be found in Theorem 2 of [2].

Proof of Theorem (Necessity). From Lemma 4, we may find a constant 4 so
that the number of m < x;, for which —A < f(m)—clogm—o(x,) < A exceeds
(1—4/4) x,. Since there are at least Ax; elements of &, (¥, is defined in the proof of
Lemma 2), there are at least (ﬂ.—-2(2/4)) X, = Ax;/2 elements of %, which satisfy
Ixi /4 < a; < x, and — A < f(a;)—cloga;—a(x;) < A. Denote the set of these a; in
%, by &,, where | &, > ix,/2.
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Divide the interval [1x,/4, x,) into T equal parts, where T is a large, but fixed,
positive integer. Then, we have

T—1
[Ax;/4, x;) = :Uo [6; Xk, 8y 1 Xi)

T-1
= U Ih
1=0

where (A4)(T =) +1
b= = .

An interval I, will be called good if it contains at least Ax,/4T of the numbers of
;. Clearly, the number of elements of &;, which do not lie in good intervals, is
not more than T (ix,/4T) = Ax,/4. Hence, there are at least 1x,/4 numbers of &,
in good intervals; and, so, there are at least

Ax, /4 AT
(1=4/4)x/T 4-2

= 3T

good intervals. It follows that on one of these good intervals, say on I,
0 < L < T -1, the total variation of f(a;)—c loga;—a(x;) does not exceed 24/vT,
since f is monotonic on the a;€ %,. Moreover, since I, is a good interval,

1%, N1, > Ax,/4T.

Therefore, if we let >.',, 1 denote the summation over those natural numbers m
satisfying
OL Xy <MK Opyq X
and

24 24
-~ <fim)—clogm—a(x) <1+ -,

then, for some real number #, we have

(5L+1—'5L)~1xk‘1 >'1= (1_1/4)_1 Txk_l > 1

> (1=2/4)7" Tx,” ' (Ax,/4T)
=v>0, (6)

Suppose, now, that F(x) is a continuous function. Let Y., 1 denote the summation
over those natural numbers m satisfying

1 <m< 641X
and 24

24
n— ST < fm)—clogm—oa(d;,1 X)) <n+ T

Then

24 2A
i -1 " . =y e
O+ 1 X §m le(n+ vT) F(n+ vT)-!—o(I),
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as x, — 00. Since a(xy)—a(d;4, x;) = o(l) as x;, — oo, we see that

24 24 NV
5,+1[F(n+7§:)—f7(q——7?7)] = X IZ 1+o(l), x,— o0, (7

e

where the symbol }"”,, 1 denotes summation over integers m satisfying

1 <m < 0ppq X
and
2A

24
= < f(m)—clogm—u(x;) < n+ Tk

Subtracting equation (7) with I = L—1 from equation (7) with I = L, and dividing
the difference by 6., ,—9,, yields

2A 2A _ e
Fln+ o) =F(1= o) = Guei=0 57 T 140D, ms 0 @)

Combining equations (6) and (8), we obtain

24

F(n-!— —;-F)—F(n— —i—i;—) +o(l) = v

as x; — 00. Since T can be chosen as large as we like (but fixed with respect to x;)
we see that F cannot be continuous. Hence, by Lemma 4,

i
2, 7 5
glp)#0 P

which proves the theorem.

References
1. B.J Birch, ** Multiplicative functions with non-decreasing normal order ™, 42 (1967), 149-151.
2. P. D. T. A. Elliott, and C. Ryavec, ** The distribution of the values of additive arithmetical

functions ’, Acta Mathematica, 216 (1971), 143-164.
. P. Erdés, *“ On the distribution function of additive functions »’, Ann. Math., 47 (1946), 1-20.
. 1. Katai, ** A remark on number theoretical functions ’, Acta Arithmetica, X1V (1968), 409-415.
. C. Ryavec, ‘* A characterization of finitely distributed additive functions ', J. Number Theory,
2 (1970), 393-403.

o W

University of Colorado.



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

