TOPICS IN COMBINATORIAL ANALYSIS

P. Erdos

In the present paper I will discuss some
combinatorial problems which my colleagues
and I considered in the recent past. I will
restrict myself to finite problems and will
try to discuss as much as possible new pro-
blems. It might of course turn out that the
answer to some of the questions is simple,

l. A few weeks ago I posed the following
guestion: Let

la] = n,A € Gl < k< o=l 4 nta,

Then there are three A's every two of which
intersect but all of them do not intersect.
The empty set, the singleton and all sets
containing a gilven element show that this
result 1s best possible,

E. Milner recently found a simple proof

by induction with respect to n. He proved
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the result in the following form: ILet
6| = n,A <6 al >2,1 <k g™

then there are three A's every two of which
intersect but all of them do not intersect,
Let now f(4,n) be *he smallest integer

such that if
|G| = n,a €6, |A ] = 2,1 <k < £(4,n)

there are always three A's every two of which
have common element, but all of them do not
have common element.

A well known theorem of Turan implies
f(2,n) = [g?] + 1 but perhaps for

:>2,5(x5n) = (307) + 1.

A related question is the following one:
Determine the smallest integer <f(n) so that
if |6| = n,A € G2 < k < £(n) then there
are three elements Xx,y,zZ, and three A's
say Ay Aj, A, sO that X,y € A, z 13 Ay s

X,z € Ags ¥ ¢ Aj, Y:2 € Ay, X 3 A . I have

not succeeded in determining or estimating
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f(n). Sauer asked how many such sets can be
given if we assume [Ak[ = 3. He conjectured

“hat the answer is [(2%;)2] + 1, The

[(n51)2] sets X Xy Xy, 2 <1« % <3< m,
do not have this property. Hajnal and I ob-
served that if A, © G, [A] =3, 1 <1< cn®
where C 1s a sufficiently large constant,
then there are 6 distinct elements a,b,c,X,y,2
so that (abx), (acy), (bez)} are all A's,
We have not succeeded in determining the best
value of C,

2. Denote by f(k,n) the smallest inte-
ger such that if we split the k-tuples of a
set of f(k,n) elements into two classes
there always is a set of n elements all of
whose k-tuples are in the same class. The fact
that f(k,n) is finite for every k and n
is of course Ramsey's theorem, It is known

that (the upper bound is due %o Yackel),
(1) c1n2n/2 ¢ flgn) € ¢y i loglog n/nl/2 log n

The proof of the lower bound is probabl-
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listic and non-constructive. It would be very
desirable to obtaln a constructive vroof of
the lower bound especially in view of the fol-

lowing circumstances.

cn2

e.n
X 2

>
(2) 2 < £(3,n) < 2°

The lower bound is obtained by probabilistic
considerations, and it seems imrossible to ob-
tain more by these methods, (2) was proved

by EHajnal, Rado and myself; and we believe that
the upper bound gives the right order of mag-
nitude.

For k > 3 we know that

2c2f(k-l,n) & Eln) @ 9clf(}(-l,n)

Thus the case K =3 is crucial,

m™e basic elements of an r graph (for

0

r = 2 we get the ordinary praphe) are iis

. () +
r-tuples and vertices. G /(n,t) denotes an
r graph of n vertices and t r~tuples. I proved

that every
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contains a K(r)(z,---,z) for & < c, (1og n)l/r,
where K(r)(ﬂ,--~,$) is defined as follows:

The vertices of K(r)(z,---,z) are Xi(J),
1<1i<2;1<J<r, and its X' r-tuples

are {X(l)J X—:(g):"';x-(r)]:
i3 1y

: o
L £ il,---,ir < #&. I also showed that in a
certain sense this theorem is best possible,
it fails for c3(log n)l/r ir eg = c3(cl)
is sufficiently large. For r = 2 these re-
sults are due to Kdrvari and the Turans.
Define the density of an r graph
G(r)(n;t as
X
23
OCur theorem can also be stated in the
following form, Let n be sufficiently large,
then every r-graph of n vertices and positive

!
density contains a large r-graph of density E? .
T

I conjecture that there is an absolute constant
c.. such that if n 1is sufficiently large then

every r graph of r vertices and density
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i r /Ny !
Z-—? + ¢ (i,e.,, every G( )(n,(r)(—? + €))
r r
contains a large subgraph of density
1

>%F+c,. For r =2, this and consi-
derahly more was proved by Stone and myself.

Recently I proved the following theorem:
Split the r-tuples r > 3 of a set of n ele-
ments into two classes, Then there are ele-

ments

x{9),1 < 1 < e (log m) YTl 1 ¢ 5 < ra1

3

such that all the r-tuples

El

(3) (xgi),xgz),xgg),---,xgi"l))

1/r-1 |

1<i, £ cy(log n) L B F

s
belong to the same class., A simple probabi-
listic argument shows that the theorem fails

]
/r=1 ¢

for cé(IOg n) Cy is sufficiently
large. Also it is easy to see that for no

c <1 does a G(r)(n,c(?)) necessarily con-
tain a configuration of type (3). It is not

clear if the theorem can be strengthened,
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e.g., let r = 3, Is it true that there are

elements

3+ T30 1 £ 1 L £(n), f(n)/loglog i

so that all the pairs (X, , X, , Y.) and
e R P
(X;» Y, , Y. ) belong to the same class?
Ji7 o

Perhaps this even holds with f(n) >
c(log n)l/r-l.

The proof of (3) is quite complicated
and I was assisted by some suggestion of
J. Spencer.

Spencer and I proved the following theo=-
rem: Split the r-tuples of a set of n ele=-
ments into two classes, Then for every
m<n there is a t < m such that there is

a set of t elements with at least

r+l s r-1
2 ) 2

ra
(& (E) +cym # (log —

raf -

r tuples of the same class.
Apart from the value of cq and c2,
(%) is best possible. The proof of (4) re-

quires tricky combinatorial and and proba-
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bilities considerations. A slightly weaker

form of (4) will soon appear in our paper in

Networks. PFor applications to probabilistic

methods in combinatorial analysis, see also

our forthcoming book with J, Spencer,
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3. Rado and I investigated the following
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question: Define f(r,n) as the smallest in-
teger such that if |[A ]| =n, 1 <k < f(r,n),
then one can always find r A's which have

rairwise the same intersection., We proved
(1) (r-2)™ < £(r,n) < B

Both the upper and the lower bound in
(1) have been improved by Abbott by factors
tending to infinity exponentially, but nobody

has yet proved
n
(2) Flen) < Cr

(2) is open even for r = 3. (2) would have
many applications in number theory and combi-
natorial analysis and I several times offered
100 dollars for a proof or disproof of (2).

Denote by g(r,n) the smallest integer
such that if

6] =n, A, G, 1 <1< g(r,n)

then there are always r A's which have
pairwise the same intersection. (1) implies

g(r,n) < en—c%/n
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and (2) would imply
\]n

g(r-"n) < (E-er.’

Abbott and I observed that 1lim g(r,n)l/n

n=e
exists and we obtained some rough lower
bounds for g(3,n).
P. Erdds and R. Rado, Intersection theorems
for systems of sets, J. London Math. Soc,
35(1960), 85-90. H. L. Abbott, Some remarks
on a combinatorial theorem of Erdds and Rado,
Canad. Math. Bull. 9(1966), 155-160.

4, A family of sets {Ak} is said to
have property B if there is a set S8 which

meets all the A but does not contain any

k
of them. m(n) is the smallest integer such
that there are m(n) sets (A}, ]Ak] =

n,1 < k <m(n); not having property B, It

is known that
(1) 2" (1 +-%)"l < m(n) < n? o

m(2) = 3, m(3) =7, m(4) is not yet known,

(Hanson showed 16 < m(4) < 29).
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Define m*(n) as the smallest family of
sets  {A ), 1 <k( m*(n), which do not have

property B and for which |A

Kl =

1A n Ayl €1, m'(2) =3, m°(3) =7, m"(4)
is unknown. It is known that m*(n) is fi-
nite for every n, and, in fact, Hajnal and
T showed that for large n, m (n) < 117, As

far as I know it is not even known that

(2) lim (m"(n)¥/™"

=00

exists, I am sure that the answer is af-
firmative and that the 1limit is greater than
2.

Abbott and I have made the following
simple observation: Clearly all the subsets
taken n at a time of a set of 2n-1 ele-
ments do not have property B. On the other
hand if the family (A}, 1 <k <%, ]Ak] -
n, IAi n Ajl < 1 does not have property B
then | U Al = X must ve very large. To

k=1 )_1

see this, observe that by (1), t > 2°(1+n

1

thus since ]Ai N A,| <1, we must have

J



(3) t(3) < (¥) or x> (1+ o(1) )n2"/2,

P. Erdds and A, Hajnal, On a property of
families of sets, Acta Math. Acad. Sci.
Hungar. 12(1961), 87-123: P. Erdds, On a
combinatorial problem II, ibid. 15(1964),
LUS5-44T7; W. Schmidt, On a problem of Erdds
and Hajnal, ibig.

5. V. T. Sos and I considered the
following question. Color the edges of a
Kn (complete graph of n vertices) by three
colors so that we get the largest number of
triangles all of whose edges get different
colors, Denote this number by f(n). It

is easy to see that

Il
o]

lim f£(n)/

-
L 13
o

exists, but we could not determine c.
£(3) =1, £(4) = (&), £(5) = T.
f(n) > (1 + 0(1))6% n is easy, and per-

haps this is best possible, or ¢ = %2 :

Clearly many generalizations are possible,
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Recently HaJnal and I considered the
following modified problem: Let
Xl,--',Xn be the vertices of Kn‘ Color
the edges by three colors I, II and III.
Denote by g(n) the largest number of
triangles (xi, Xd’ Xz)’ i< J< 4t so that
(Xi, Xj) has the color I,(XJ, Xj) color ITI
and (X, xj) color III. Perhaps

lim g(n)/ . = 1/4
ne+oo (3)

g(n) > (%E + o(l)).n3 is easy to see, the
upper bound seems more difficult,

6. I now discuss two further guestions
connected with Ramsey's theorem, It will be
useful to introduce the arrow symbol of Rado
(which we avoided in 2.): n = (a,b)k means
that if we split the k-tuples of a set of
n-elements into two classes there either
is a set of a elements all whose k-tuples
are in class I or a set of b elements all
whose k-tuples are in class II. n % (a,b)k

means that there is a splitting for which
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the above does not hold, f(k,n) of 2,
thus satisfies

£(x,n) » (n,m)%, £(k,n)-1 b (n,n)%,

n - (a,[g])3 means that if we split the
triplets of a set of n elements into two
classes there either is a set of a elements
all whose triplets are in class I or a set

of b elements which contain at least t trip-
lets of class II. This symbol was extensively
investigated for infinite cardinals in our
triple paper with Hajnal and Rado.

Hajnal and I recently showed

(1) n» (n 1/2;[2133, nt (c; logn, [;])3,
n = (c, log n, [%])3,

(1) suggested the following conjecture:

there is an h(t) so that
a

(2) n - (n t: [h?t)])3’ but

n ¥ (e, log n, [h(E)+11)3

We know that h(4) = 2, h(5) = 4, h(6) =8,

h(7) > 13. It is almost certain that
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n{(7) = 13,
By probabilistic arguments we can show
(g(t) 4is defined in 5.)

1’1‘*’ (C lOg n, [g(t§+l] )3'

Unfortunately, we are very far from

being able to show
o t 3
n-+ (n, +
(0% g y])

We can show

3
n -+ (n% [2])3, where £ = (1 + o(1)) %6 .

All these questions could of course be
investigated for r > 32 too, but we have not
yet had the time to do this. For r = 2 it
is known that n = (cnl/t, t+l)2.

Bercov and Hobby proved the following
Ramsey type theorem., Let G be a set. Two
disjoint non-empty classes of r-tuples of G
are sald to have property P(r;u,v) if
every u-tuple of G which contains an r-
tuple of class I alsc contains an r tuple of
class II and every v tuple of G which contains

an r tuple of class II also
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contains an r-tuple of class I. Their theo-
rem asserts that there is a smallest integer
F(r; u,v) so that for |G| > F(r: u,v) no
classes of property P(r; u,v) exist.

Clearly F(r; u,v) = (u,v)r, and I thought
that perhaps F(r; u,v) might be the smallest
integer with this property, in other words
F(r; u,v) coincides with the Ramsey function.
Abbott, Milner and I showed this for r = 2,
u<dh, vgi,

Milner and I, in fact, observed that if
[G| > 11 and one has a system P(2;4,4%) on
G, then there can be no empity guadruple i.e.,
every quadruple contains an edge of class T
and II, and since 11 % (4,9)2 our conjecture
follows for r =2, u= 4, r = 4, Perhaps
this situation is true generally. Let m be
the largest integer for which m 3 (u,v)’.
Then if |G| = m and there are two classes
of r-tuples of G having property P(r;u,v),

every v-tuple must contain an r-tuple of
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both classes., This, if true, would imply our
conjecture, I can only prove it for r = 2,
u =3 and every v > 3. Kleitman just in-
forms me that he showed that ¥F(2,5,5) coin-

cides with the corresponding Ramsey number.

R. D. Bercov and CH. R, Hobby, Permutation
groups on unordered sets, Math. Zeitschrift
115(1970), 165-168,

To finish this report I state two pro-
blems from combinatorial geometry.

The following question is due to G,
Simmons: ILet there be given a set of 2 n
points no three on a line, Xl,-o-,Xen. A
line (Xi‘xj) is called a bisector of the
set if n-1 points are on both sides of this
line, Simmons asked: What is the largest
number of bisectors? Denote this maximum by
f(n). Straus proved f(n) > cn logn, and
Lovasz proved f(n) < cn3/2. Several papers
on these and related subjects will appear in

the near future,
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Straus and T recently asked the following
question: Let there be given n points in the
plane X,,-+*,X,. Join k n pairs (Xi,xJ)
by a path. Prove that there is a straight
line which cuts at least k(k+l) of these
paths. We can prove this with %2 and can
show that k(k+l) 1is best possibvle if it is
true, also we can show it for kX =1 and
k =2,

Sylvester asked the following question:
Let there be given n points in the plane no
four on a line, What is the maximum number
of lines which pass through three of our points?
Sylvester showed that there can be -% (2)"°ln
such lines and a result of Kelly and Moser
implies that the number of such lines is less
then F(3)-c,n.

More generally let Xj,--+,X, be n points
noc r+l of them is on a straight line,
Denote by f(r,n) the largest number of lines
which go through precisely r of the points,

I conjectured f(r,n) = o(ne) but could not
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even prove lim f(r,n)/n = w, Karteszi proved

(1) £l » c,. nlogn

by showing f(r,rn) > n+r f(r,n).

Croft and I considered the function
f*(r,n) where f*(r,n) denotes the maximum
number of lines which pass through precisely
r of the points Xi’ we now no longer assume
that no r+l of the points are on a line, The
example of the lattice points in the plane,
easily shows that
2

f*(r,n) >e¢'n
r

is immediate, and we conjectured that

< Ern2 where Er -+ 0 as r = « ,

W. 0. J. Moser and L, M. Kelly, On the number
of ordinary lines determined by n-points, Ca-

nad. J. Math, 10(1958), 270-279.

The paper of Karteszl appeared in Hun-

garian, Kozepiskolai Mat,., Lapok 1962,
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