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SOME PROBABILISTIC REMARKS ON FERMAT'S
LAST THEOREM

F. ERDOS AND 5. ULAM

Let ay << @y < - -+ be an infinite sequence of integers satisfying
i, = (¢ + o(1)jn* for some > 1 One can ask: Is it likely that
g + a; = a, or, more generally, a; + - -+ a;, = @, has infinitely
many solutions. We will formulate this problem precisely and show
that if @> 3 then with probability 1, @i + a; = a, has only finitely
many solutions, but for «= 3, a; + @) = a, has with probability 1
infinitely many solutions. Several related questions will also be
discussed.

Following [1] we define a measure in the space of sequences of
integers. Let @ > 1 be any real number. The measure of the set of
sequences containing n has measure ¢n'~1 and the measure of the
set of sequences not containing n has measure 1 — egnle=! Tt easily
follows from the law of large numbers (see [1]) that for almost all
sequences A= {g; < ag < * -} ("almost all” of course, means that
we neglect a set of sequences which has measure 0 in our measure)
we have

M AW =+ oe X b =1+ ot)eaxte

n=1
where A(x) = ¥, - 1. (1) implies that for almost all sequences A
(2) a, = (1 + o(1))(nlei)
Now we prove the following
Taeorem. Leta = 3. Then for almost all A
(:3) 4 + 4 = 4

has omly a finite nuwmber of solutions. If @ = 3, then for almost all A,
(3) has infinitely many solutions.

It is well known that x* + y'= 2% has no solutions, thus the se-
quence {n?} belongs to the exceptional set of measure 0.

Assume a > 3. Denote by E, the expected number of solutions of
@, + a; = a, We show that E, is finite and this will immediately
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614 P. ERDOS AND 5. ULAM

imply that for almost all sequences A, @ + 4; = a, has only a finite
number of solutions. Denote by P(u) the probability (or measure)
that u isin A, We evidently have
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which proves our theorem for @> 3. One -::nultI calculate the prob-
ability that {3} has exactly r solutions (r=0,1, -+ -}
Let now = 3. The case a= 3 is the most interesting; the case
a<3 can he dealt with similarly, Denate by E(x) the expected
number of solutions of {3} if a5, g, and a, are = ». We have

5: Bin) Y Pu)Plo)=c/' s = L=

fi=1] u+ir=n u+B=n {uu}y:!

(4)
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= (1+ o{l)e,? —= = (] + a{])leitep loig x.
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By a little ealenlation, it would be easy to determine ¢y explicitly.
Now we prove by a ‘\iIIll]ll. second moment 1rgument that for almost
all A the number of solutions fi{ A, x) of ¢ + @; = a,, a, = x satisfies

(3) filA x) = (1 + o(1))e)’e; logx, thatis folA, x)E(x)— 1.

To prove (5) we first compute the expected value of fy{ A, x)

The expected value of f5(A, x) was Es(x) which we computed in
(4). Denote by E,%x) the expected value of fi(A, x)%. We evidently
have

(6) Eqdx) = b Pin )P(ng) = P{tiy, g, 0y, Up)

E=Sn =y lEn =1 By 4By =g lig+ g =Ha .

where Plu,, v;, ts, t3) is the probability that u, vy, ug, vy oecurs in
our sequence, If these four numbers are distinet, then clearly
Pluy, ug, vy, ve) = Pluy)Plus}P(v))P{vz), but if say u; = ug, the prob-
ability is larger. Hence E;%(x) > (Ej(x))? and to get the opposite
inequality we have to add a term which takes into account that the
four terms do not have to he distinet, or 1y < ng, 4 = ug,
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Ey¥x) < (Ej(x))?

4o PaBmt e —o) D Pl)PlorPes)

iy =1 Wy by =iy Ty

< (B + S Ploalbly + 00 = v)

{1] my =1 1 =1
<(B@)+ 3 = S Plo) < (E)i+ 3 2
n=l ty=1 a=1 M
< (E3(x)*) + ¢; log x.
Thus
(8) (Ealx®)) < E3¥x) < (Es(x))* + ¢; log x.

(8) implies by the Tchebycheff inequality that the measure of the set
A for which

(9) Ifs(A x) = Eslx)| > elog x
is less than cfe® log x. This easily implies that for almost all A
(10) “T fal A, x)Eq(x) = 1.

To show (10) let x; = 24ee & From (9) and the Borel-Cantelli
Lemma it follows that

(1) Jim fy(A, s)Ex(x) = 1.

(11) now easily implies (10), f3(A x) is a nondecreasing function of
¥, thus if © < x < xp, fullA o) = (A 23 (A, %ea). Thus (11)
follows from Es(x ) Eq(xeq)— 1.

By the same method we can prove that for a < 3

TS AT S T
s ela) |
Similarly we can investigate the equation
(12) LR I 2 Dat ek P

Here by the same method we can prove that for >k + 1 with
probability 1, (12) has only a finite number of solutions and for
a = k + 1 it has infinitely many solutions.

Euler conjectured that the sum of k — 1 (kth) powers is never a
kth power. This is true for k = 3, unknown for k = 4 and has been
recently disproved for k = 5 [2]. As far as we know it is possible that
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for every k= 3 there are only a finite number of kth powers which
are the sum of k — 1 or fewer kth powers,

Let 8 > 1 be a rational number. One can ask whether [n#] + [m#)
= [I", has solutions in integers n, m, L One would guess that for
B8 < 3 the equation always has infinitely many solutions but that the
measure of the set in 8, 8 > 3, for which it has infinitely many solu-
tions has measure O, but it is not hard to prove that the g's for
which it has infinitely many solutions is everywhere dense.
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