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RAMSEY BOUNDS FOR GRAPH PRODUCTS

Pavr Erpds, RoeerT J. McELEcE AnND HERBERT TAYLOR

Here we show that Ramsey numbers Mk, --- k,) give
sharp wpper bounds for the independence numbers of product
graphs, in terms of the independence numbers of the factors,

The Ramsey number Mk, --+, k,) iz the smallest integer m with
the property that no matter how the (’g’) edges of the complete

graph on m nodes are partitioned into n colors, there will be at least
one index i for which a complete subgraph on k; nodes has all of its
edges in the ith color. Ramsey’s Theorem tells that these numbers
exist but only a few exact values are known.

The complement graph G has the same nodes as G and the
ecomplementary set of edges.

The independence number «(G) of a graph &, is the largest
number of nodes in any eomplete subgraph of G.

The produet &, % --- =G, of graphs G, «-+, G, is the graph
whose nodes are all the ordered n-tuples (a,, -+-, a,) in which a, is a
node of G, for each i from 1 to n, and whose edges are as follows.
A get of two nodes {{a, »+-, a,), (b, -+, b))} will be an edge of
G, % -++ % (7, if and only if the nodes are distinet and for each 1 from
1 to m, a; = b, or {a, b,) is an edge of G..

THEOREM 1. For arbitrary graphs G, -, G,
G, % +++ X G) < M(@(G) + 1, +++, &(G,) + 1)

Proof. We have a complete subgraph of G, % ..+ xG, o
el = = e« » (7,) nodes. Its edges can be n colored by the following
rule: give {{a,, +~-, @), (@, ==+, &)} color ¢ if ¢ is the first index for
which {a,, #,} is an edge of G..

With this eoloration any case where all the edges on & nodes
have color ¢ requires a complete k subgraph of G, and so reguires
k< alG;) + 1. With the definition of the Ramsey number this ensures
that

alG, % -+ xG) < MalG) +1,---,a2lG,) + 1) .

TreorEM 2. If &, ==+ k. are given, there exist graphs Gy, -+, G,
such that for each tndexr 41 from 1 to n, a(G) =k, and

G o ees WGE) =M+, s0», k, + 1) =1,
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Proof, From the definition of the Ramsey number there must
exist an # color partition of the edges of the complete graph on
Mik, + 1, »»+, ky + 1) = 1 = m modes such that for every i from 1 to
n the largest complete subgraph in the ith color is on k, nodes. For
each i let G; be the graph on the same m nodes having all the edges
not of color i, Thus for each i, @(G;) = k. These G, make the

diagonal a complete m subgraph of &, < ..~ G,, and so
alG, x -+ xG)zm.
Applying Theorem 1 we have
A, X see xG) =Mk + 1,004, k, +1)—1

TausoreEMm 3. If n and & are given, there exists a graph G such
that a{G) = k and putting &k, = k for every 1,

a(G") = Mk, + 1, +++, by + 1) — 1.

Proaf. With m = Mk, + 1, ===, k. + 1) —1 and every k.= &,
refer to the graphs G, +-+, G, as specified for Theorem 2. Now con-
struct G as follows. Let the nodes of G be all the ordered pairs
(a, ) such that 1 = { = n and a is a node of .. Let {(a, 1), (b, j)} be
an edge of & if and only if © = j or {g, b} is an edge of G,

Thus construeted a(G) = k because each «(G,) = k. G* will have
a subgraph isomorphic to @, ¥ --- < G, and consequently

al*) z alG, % =<+ xG)=m.
So again with Theorem 1 we have
Gy =m=Mk +1, »»+, k. +1) -1,
A question remains whether for every k, n with
BE=n< Mk+1,k41)

there exists & such that a(G) = k and «(G°) = n. It is known that
Mi4, 4) = 18, and for each n between 9 and 17 we have found & graph
7 such that a(G) = 3 and «(G") = n. However it i3 only known that
37 < Mi(b, b) < 68 and for example we have no proof that there exists
a graph G such that «(G) = 4 and a(G*) = M(5, 5) — 2.
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