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1. Introduction

There have been several instances where some particularly well-chosen
svmbol has enhanced the development of a branch of mathematics, and the
partition symbol

& = (%, %) (1.1

invented by Richard Rado is a case in point. By definition, (1.1) means that
the following relation between the ordinal (or cardinal) numbers =, o, o
holds: If A is an ordered set of order type o (we shall write tp A = «) and if
[AY) = {X < A :|X| = r} is partitioned in any way into two sets K, and K,
then there are p < 2 and A’ <= A such that tp A" = a, and [A'] < K. Erdés
and Rado were the first to realize that a large number of seemingly unrelated
problems in set theory could be reduced to a question of deciding whether or
not some partition relation like (1.1) holds. In (5) and (6) they began a sys-
tematic study of these relations and laid the foundations of what they called a
partition calculus to serve as a kind of unifying principle in set theory. Since
these two pioneer papers several others have been written on the subject. In
particular we refer to the long paper by Erdds, Hajnal, and Rado (3) which
contains an almost complete analysis for partition relations involving infinite
cardinal numbers. Rado’s compact symbol (1.1), which reveals at a glance the
whole content of a fairly complicated combinatorial statement, proved to be
particularly convenient and flexible for the development of this calculus, Apart
from the merit of compactness, the symbol enjoys other advantages. The
negation of any statement (1.1) is conveniently expressed by replacing the
arrow — by a non-arrow +. The symbol has the following obvious monotoni-
city properties, ifa’ = o, ' < fand y’ < y, then (1.1) implies that

o = (7).
The arrow in (1.1) separates the two kinds of monotonicity involved and this is
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helpful in recognizing which relations are best possible. Finally, the symbol
readily lends itself to a number of interesting generalizations (see (6) and (3)).

In this paper we investigate one of these generalizations, the so-called
polarized partition symbol. We consider only the simplest of such relations,

namely those of the form
o %o al}‘-l
— ; 1.2
AR 5

By definition, this means that: If 4 and B are ordered sets,tp A = a,tp B = f,
and if the cartesian product A x B is partitioned in any way into two sets K, and
K,. then there are p <2 and sets A’ = A, B' = B such that tpA' = 0o
tpB’ = f,and A" x B" = K,.Ifoneconsidersinstead, partitions of [4]" x [ B]*
for arbitrary integers #, s, the corresponding relation is represented by replac-
ing the exponents 1,1 in (1.2) by r, 5 ; these more general polarized relations
clearly include the ordinary partition relations (1.1). Since we only consider
relations with the exponents 1,1, for the remainder of this paper we shall omit
these from (1.2) and simply write

P

Note that, as for the ordinary partition symbol, the negation of (1.2) is ex-
pressed by replacing — by ++. Also, we have the same monotonicity proper-
ties:ifa’ Z o0, B = f, 2, < 2, B, < B, (p < 2), then (1.2) implies that

l. arl . Iaro al?}

LBl B By

Polarized partition relations were first introduced in (6), and in (3) a number

of these relations involving cardinal numbers were established. As we already
remarked, the theory for the ordinary partition relations involving cardinal
numbers is fairly complete, but for polarized relations the situation is very
different. There remain unsolved problems inveolving only the smallest trans-
finite cardinal numbers. For example, it is not known if the relation

(N NN,

I8, 7 IR, N,
is true or false. In this paper we shall establish relations of the form (1.2)
which involve ordinal numbers.
As a starting point for our investigation we mention the simple, but slightly
surprising, negative relation

1
n<a

’:'H (wua (j' < wm+ l)a (1'3J

proved by Milner and Rado (9). This asserts that, if tpS = 4 < w,.,, then S
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is the union of ¥, ‘small’ sets 4, (n < w), i.e.
S= {J 4,

andtp 4, < " (n < w). If we put B, = Ay U ... U A, (n < w), then the sets B,
are also ‘small’ (tp B, < ") and the union of any ¥, of these is the whole set
S. This fact may be expressed by means of a negative polarized relation

[i}} H“v“; T} (A < @gqy).

From (1.3), Hajnal (see (2)) deduced the following seemingly paradoxial
theorem: Iftp S = A < w,, then there are N, subsets F (. < ) of S such that
tp F, < w,°"? (i.e. the sets are ‘small’) and the union of any W, of these F , is the
whole set S. This is equivalent to the relation

0] 1 w
[ ,11} 5 [w;”“ 1} (< ,). (1.4)
In this paper we establish some analogous relations. We only consider relations
(1.2) involving ordinal numbers of cardinal N, and for the special case in
which « = @,, § = w,’ and &, = | our discussion is complete. Some of our
results do generalize to ordinals of higher cardinality, but new difficulties are
encountered even in the case of ¥, and a discussion of these results must be
left to a later paper.
In contrast to (1.4) we show (Theorem 1) that

ot e 8
- ) 1.5
[mf ] (1)
whereé < 0,°*? < 0,” < w,, & < ®,and f < w,”. It follows from (1.4) that
the condition ¢ < w,®*?is necessary in (1.5). Also, the trivial cardinal relation

(6,21.2)
P e @

shows that (1.5) is false when o = @,. In general, the condition f < w," is also
necessary for (1.5) since (Theorem 6)

@, | w }
1.
[cul"]H{wl‘”“+l w, .7
if + co(@,") = w,; and y < w,. On the other hand, if co(w,") = w, then it is

T We write co(2) to denote the least ordinal number which is cofinal with 1. Thus co() is
either 1 or an initial ordinal.
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possible to strengthen (1.5), i.e. (Theorem 2)

lor) =z o) 0

if { <w®?<wo,a <o, and coy = w. Note that (1.7) is best possible
since (Theorem 3)

W, 1 a }
— 1.9
{wl-r} {wlm+1 wlT ( )
holdsifw + 1 <y < w,.

We shall prove (Theorem 4) that

‘::):*} - {aiv .f,:v} (1.10)

holds for k < w, o« < @, and y € w + 1. This is stronger than (1.9) when
y = @ + 1. It is not possible to replace k by w in (1.10) since it is known (3,

Theorem 32) that
(2. 2)
o, ®, W,

However, this raises the question whether one can replace 1 by any integer &

in (1.5), (1.8) and (1.9). This is not possible in the case of (1.9) since we can
prove (see (1.16)) with the continuum hypothesist that

* ""1 }4_, [wz “’} (1.12)

¥ L ¥
@y 1 @

ifo+ 2<7y<wm,and co(w,’) = w;. We do not know the status of (1.5) and
(1.8) in this connection.

ProBLEM 1. Is the relation
W, } { 2 w ]
—
»,"* 0, ©,"?
true or false?

There is another problem of this kind (see §4) which we cannot settle.

+ Where we use the continuum hypothesis to prove a result, we prefix the statement by (*)
for easier recognition.
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ProBLEM 2. Does the relation

P R
wlm+2 wlw-lvi é

hold for « < w, and & < ,**??
It follows as a special case of a result proved in (2, Theorem 1) that

Wy 1 6‘)1}
[ﬂh?} ” {05 o, b
ife < 0,y < @, and co(w,") = ©,. We also showed (2, Theorem 2) that
Wy 1 0y
1.14
{wi’}%{m+l m{’] (h19

if co(w ") = w. The method we used to prove (1.13) is very different from the
methods used in this paper. We shall not give the details, but with the same
method used in (2) one can also show that

1
B2 veeswo
We mention these results because these three relations (1.13)-(1.15), together
with (1.4), (1.5), (1.7), (1.8), (1.9) and (1.10) give a complete analysis of the
symbol (1.2) for the case « = v,, i = w,"and g = 1.

In §6 we establish some strong negative results. Using the continuum hypo-
thesis we prove (Theorem 7) that, for y < w, and co(w,") = @,

0, 1 2 0w o
* + v v , . (1.16)
, w”"t+1 e 1 e

Here we are using the partition symbol with alternatives (for the definition see
§2). An equivalent formulation of (1.16) is the following. If tp § = 0 < @,
and the continuum hypothesis is assumed, then there is a family of ¥, sets
F, € S(u<w,) such that (i) tp F,<o*** (i.e. ‘small’ sets), (ii) tp F,nF , <@,
if A # u (i.e. the intersection of any pair is ‘very small’), (iii) each point of S
belongs to only finitely many of the sets F, and (iv) the union of any W, of these
sets is nearly all of S, i.e.

tp (S - U F#) < o,
peN

for any infinite set of indices N. Using a different kind of notation, we proved
(1, Theorem 10.14) that

w 1 ©w
[ ] + v o, (4 < wy).
A wlm ] mlm-z
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In Theorem 8 we establish the analogous result

@ 1 W (]
[ } +> v ; (A < w,).
A @2t 1wt

This last relation is also best possible since (see §7)

@, 1 0 o
— % i
w, @,’ | 4

holdsif¢ < 0,°*? < ) < w,.

2. Notation and preliminary results

Unless stated otherwise small Latin and Greek letters denote ordinal
numbers. Capital letters denote sets and, in particular,

W,={viv<ao}

is the set of countable ordinals. The obliterator sign * above any symbol
means that that symbol is to be disregarded, e.g. {xo, ..., £} = {x, : v < i}.
We write {X,, ..., £;} - to indicate that the set {x,, ..., £,} is ordered so that
x, < x, for p<v<2a Similarly, {x,,...,%;}, means that x, # x, for
i < v < A. The order type of an ordered set S is denoted by tp S.If X, ¥ < §,
then X < Y means that x < y holds for all xe X and y e Y. If S is the disjoint
union of sets S, (v < 2)and S, < S, holds for u < v < 4, then we write

S=S,u...u8(<)or S= | S,(<)
v 4

A subset X of S is cofinal with S if X < {«} is false for every a € S. We define
co(7) to be the least ordinal y such that tp T = u for some cofinal subset T of
{v:v<i}

The cardinal of S is |S|, and [ST = {X = §: |X| = r} for any cardinal
number r, The partition symbol

o= (av)rv{ A (2' l)

means: if tp S = ¢ and [S]" = U K, then there are u < A and 4 = S such
that tp 4 = «, and [4]" = K,.. Ifrx = pforall v < A we write (2.1) as

o« — (B)-
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We need the following simple relations of the form (2.1) with r = 1 (see (9)):

0" = (0", if l<w, and n < o, (2.2)
of » @ ifl<o, 2.3)
(oMo, if ¢ < w,. (2.49)

These results generalize to ordinal numbers of arbitrary cardinality, but we do
not use this fact.

A set mapping is a function /: S - {X : X < S} such that x ¢/ (x) (x€ ).
A free set in this mapping is a subset S’ of S such that x ¢ f(y) forall x, ye §'.
It was shown by Erdds and Specker (7) that, if S = {v:v < w,} and fis a set
mapping on S such that tp (f(x)) < « (<), then there is a free set S’ = S of
type ;. Their proof required the generalized continuum hypothesisbut Hajnal
(8) showed how to eliminate this hypothesis. In (2) we pointed out a general
connection between the theory of set mappings and the polarized partition
relations. We need the above theorem only for the case A = 1 and this may be
expressed by the relation

[ P1 } - [1 “"} (@ < »,). (2.5)

W, o 0y

The polarized partition symbol (1.2) has already been defined. In §§6,7 we
use a slight extension of this by allowing alternative entries. Formally,

o Uyy “vz ‘xvh,
— W Vo W
ﬁ ﬁvl ﬁvz ﬁvkv v A

means:iftp 4 = o, tp B = fand
A B= |] K

v<a

is any partition, then there are ¢ < Aand/ < &k, and sets 4" = 4, B’ = Bsuch
thattp A’ = o, tp B’ = f,and A’ x B' < K.
If K, w K, is a partition of 4 x B then we define

K,(a)={beB:{a,b}ecK,} (acA),
K, (b) ={acA:{a,b}cK,} (beB).

Also, if X = A u B, then we write
KX = | K (p=0o0rl).

A graphis an ordered pair G = (S, E) with E < [S]?. The elements of E are
the edges of G. G = (S, E) is a complete graph if E = [S]% A circuit of G of
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length & (>2) is a sequence x, x,, ..., X; of k distinct elements of S such that
{x;, %;+1} €E (1 <i< k), where x;,; = x;. A graph without circuits is called
a forest.

3. Some lemmas

We establish here some simple lemmas which will be used in the next
section.

LEMMA 1. Let a < w, and let M, e [W,1® (n < w). Then there are p,e M,
(n < w)suchthattp {y, : n < w} > a.

Proof. Tt is enough to prove this in the case @ = w®. For § = 0, the result is
obvious. Now assume that f > 0 and use induction. We may write o’ = o, +
% + ... + &,, where o, = 0®" < 0 (n < w). Let {n : n < w} be partitioned
into N, disjoint infinite sets N, (i < w). Let / < w and suppose we have already
chosen yu,e M, forneNy U ... u N.. ForkeN,, let

M)y ={ueMy:u>p, forall neNyu ...u N;}.

Then M’ is a cofinal subset of W,(k € N,). Since N, is infinite, it follows from
the induction hypothesis that there are elements u, € M’,(n € N;) such that

tp{s, ineN} > o
This defines u, € M, for all n < w. By the construction,

tp{pyin<ao}= Y tp{g,:neN} = Y o =of
I<w I<=w
We frequently use the following result.

LEMMA 2. If Te SquU S; U ... U 8,,(<) and tpT < w,°*?, then there are
v<w,andn < wsuchthattp (TN S,) <" (v < p < ).

Proof. Suppose the lemma is false. For p < @, we may write p = wf + n,
where £ = £(p) < @, and # = n(p) < w. Suppose p < w, and that v, < w,
has been defined for ¢ < p. By our assumption, there is v, < w; such that
v, <v,(0 <p)and tp (TN S,,) > o"?. This defines v, < w, forall p < ;.
From the definition we have

tpT> Y tp(TnS,)> Y o =0,

p<wi p<ai

a contradiction.
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LeEMMA 3. Let S, (n < w) be W, disjoint sets and suppose that tp S, = o™,
where © <y, < 0, and co(w,"™) = w,. Let a < w, and let F,(4 < w,) be N,
sets such that

tp(S,nF) <o (r<o; p<o). 3.1
Thenthereis A = W, suchthattp A = a and

tp (s,, = HLE)AF“) =tpS, (1<) (3.2)

Proof. By the hypothesis, there are y,,(n < @; v < w,) such that

O K Ppo SV S oo € Ppoy <
and
2 wl‘?nv o ml?n'
V<
We may write
Sn = U Smr({)s
1

yew

wheretp S,, = w,". By (3.1) and Lemma 2, there are v(n, ) < @, andi(n, y)
<o(n<w;p<owo;)suchthat

tp (SN F) <o  (v(n, p) <v < o).
There are sets M, € [W,]** (n < w) suchthat M, > M, > ... and
imp)=i(m)  (ueM,).

By Lemma 1, there are u, € M,(n < o) such that A = {y, : » < w} has order
type = a. Choose A < w, such that v(n, u,,) < 4 (m, n < w)and let

k(n) = max {i(n), i(n, po)s ..., i(n, 1)}  (n < w).
Then
tp(F,,, N Sp) < 0™ (mn<w;A<v<ao).
Since k() < w, it follows from (2.2) and (2.3) that
tp(S,,,— U Fn) =" G<o;l<v<w,)
ued
and (3.2) follows.

LeMMA4. Letw + 1 €9, <Y1 € ... €9, < 0, and let

ﬂ < Z ﬂ}l'h == cuf.

<1
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Then there are a countable set N = W, and ordinals §, (v € N) such that

wo+1<p8,<y, colw) =w,

< Y o (3.3

veN

and

Proof. By the hypothesis, there is 6 such that w + 1 <@ <yand § < 0/ *".
If § < y, for some v < @y, then (3.3) holds with N = {v} and B, = 6 + 1. We
may therefore assume that there is vy < w, such that y, =8 (vy < v < @,).
Therefore, y = 6 + 1 and there is ¢ < @, such that § < @/ & If co(w,’) = w,,
then (3.3) holds with N = {v : vo < v < v, + £} and B, = 0. Suppose, on the
other hand, that co(w,’) = . Then there are 6,(n < ®) such that v + 1 <
8, <8, < ... <8, <0 = lim6,,. In this case, (3.3) holds with

n<w

N={v:ivo<v<v +at} and B, i4p+,=0""" (p<é;n<o)

4. Positive results

In contrast to the negative relation

@4 1 w
|/1 }H[wlw 1] th < a3 @.1)

proved in (2), we shall establish the following theorem.

THEOREM 1. Ifa < 0, < 0° Y, < w and o + 2 <y < w,, then
wl}_}{l a} 4.2
{wl.r ¢ Bl @2

Proof. We first prove the result for the case co(w,”) = w,.

Let tpC=w; and let W, x C= K, UK, be a partition such that
tp (Ko(u)) < ¢ for all ue W,. We have to show that there are sets 4 — W, and
B < CsuchthattpAd > a,tpB > fand 4 x B < K.

Since co(w,") = w,, we may write

C= |J =)

V<

where tp C, = 0, (v < »,)and

o+1<yp <y <. <9, <y
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There is # < @, such thaté < @,”* 'y and the sets
F ={v<oitp(Ke() nC) = 0°*"} (1<)

have order type less than 5. Therefore, by (2.5), there are M, N € [W, 1™ such
that
tp (Ko(1) n C,) < 0,°*'  (ueM; veN). (4.3

By Lemma 4 there are a countable set No = N and ordinals 8, (ve N,) such
thatw + 1 < B, < y, and co(® ) = o, (v € Np) and such that

B< Y af.

veNp

Let S, be a subset of C, of type @ (veN,). Then, by (4.3) and Lemma 3,
thereisaset A = M such thattp A > « and

(S~ U Ka)) =105, (veNo)
weAd

This implies that the set
B={J Sv—qKo(#)
HE.

veNo

has type = f and A x B = K. This proves (4.2) for the case co(w,’) = w,.
The case co(w,") = w follows immediately from this. For, if coy = @ and
B < @/, then B < w*! for some § + 1 <y and (4.2) is implied by the

relation
w, ] 1 a:}
oo} > e 5}

The condition & < @,“*? in Theorem 1 is necessary because of (4.1). Also,
in view of the trivial relation (1.6), the condition & < @, is necessary. The
relation (4.2) is best possible in a third sense since (Theorem 6)

!M]H{ 1 ;"f] if co(wy’) = o, (4.4)

o, ot 1+1

This shows that we cannot replace f by w,” in (4.2) when co(w,") = @,. In the
next theorem we show that (4.2) can be strengthened if co(o,") = o.

THEOREM 2. If o < 0,,¢ < 0,°%? < @' < w, and co(y) = w, then
W, 1 =
{“)1?} - {§ wly} ' (D

Proof. We shall prove the result by induction on a. For o = 0 or 1 the result is
obvious. Now assume that 1 < ¢’ < @, and that (4.5) holds for all a < o',
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Since 1 < o' < w,, there are ordinals o, < o’ (# < @) such that
Oz’ =ao+051 +....
Also, by the hypothesis of the theorem, there are y,(n < w) such that

W<y <y <..<y=limy,

Let tp Cy = w,", M, = W, and let K, v K, be any partition of M, x C,
such that tp (Ko(#)) < & (u€ M,). We will show that there are sets A = M,
and B « CysuchthattpA = o', tpB = w,"and 4 x B c K.

By the induction hypothesis, (4.5) holds for « = ay and hence there are sets
Ay = Myand Dy, = Cysuchthattp 4y = ap, tp Dy = @w"and 43 x Dy = K.
Let

Dy = Eq v C, (<),

where E, is the initial section of D, of type w," 2. We may write
EO . U EOp( 4), EOp = U E0p6(<),
Py a<wy

where tp Eg,, = @,°(p, 6 < w,). There is n < w; such that { < w,**'n.

Therefore, since tp Ko(p) < € (ue M) and

oy 1 wl}
o) =1 “
by (2.5), it follows that there are My’ € [M,]* and p, < w, such that

tp (Ko(w) N Eg,,) < 0,1 (neMy’).

Therefore, by Lemma 2, for each p1 e M’ there are p,(p) < @ and o4(p) < @,
such that
tp (Ko(t) 0 Eopys) < 047 for oo(k) < 0 < o3y,

There is a set M, € [M']® such that 4, < M, and such that

Po(p) = po(peM,).

More generally, suppose that # < w and C, = Cy, M, =« M; have been
defined so that tp C, = w," and tp M,, = w,. By the induction hypothesis,
(4.5) holds with & = «, and so there are sets A, = M, and D, = C, such that
tpA, = a,, tp D, = @," and 4, x D, < K;. Let E, be the initial section of
type @,»* % and let

Di’l = Eu v Cn+1 (<)
We may write
E,= |) E,(<) and E,, = | E,,o(<), @7
s<ml

pP<wi
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where tp (E,,,) = o' It follows from (4.6) that there are p, < w, and
M, € [M,]*" such that

tp (KD(“) M Enp,.) < mlm+1 (ue Mn')'

Therefore, by Lemma 2, for each u € M, there are p,(1) < » and ¢,(¢) < @,

such that
tp (Ko(t) N E,,, ) < @P® for 6,(n) < 6 < 0;.

Now choose M, ; € [M,']®" such that p,(1) = p, (€M, ) and such that
A, <M, ..

Proceeding inductively in the above manner, we define sets 4, = M, and
E, = C, (n < w)such that (4.7) holds, tp 4, = o, tpE,,, = o™,

AD < Al < raey
Ey<E;<..y

A, xE,cK, (m<n<ao) (4.8)
Also, there are

Dy < o, Pn < @, and an(lu') < W, for JuEAn! = An+l v Au+2 V..,

such that
tp (Ko(w) N E,,,,) < o, for o,(4) < 0 <o, and ped,. (4.9)

Since 4,’ is countable, there is 6, < o, such that ¢,(x) < o, for all ue 4,".
Put
B,=E,, .. — U Ko(. (4.10)
uedn’
Sincetp (E,, 5,) = @, > 0%, it follows from (4.9) and (2.2) that tp B, = w,™".
Therefore, B = B, U B, U ... (<) has type w,’. From (4.8) and (4.10) it fol-
lows that 4 x B < K, where 4 = AU A; U ... (<). This completes the
proof of the theorem, sincetp A = ap + &; + ... = &,

As we have already noted, the negative relation (4.4) shows that the condi-
tion placed on the cofinality type of y in Theorem 2 is essential. The next
theorem shows that we can drop this condition if we strengthen the restriction
onétoé < w°*!. Theorem 3 shows that (4.4) is a best possible relation.

THEOREM 3. Ifa < w; and @ + 1 < y < w,, then

w,y 1 o
[591’} - Ime+1 sz] . 10

Proof. Inview of Theorem 2 we may assume that co(w,”) = w;.Lettp C = o’
and let K, U K, be any partition of W, x C such that tp (Ko(p)) < 0°**
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(¢ < w,). Since co(w,’) = w,, we may write

c= |)g =)
p<cn
where tp C, = 0,(p < w)and @ < 7o < y; < ... <J,, <. By Lemma 2,
there are p(u) < w, and n(x) < o for p < w, such that

tp(F,nC) <™  (p(p) < p <oy

There is M € [W, 1% such that n( i) = n (€ M). Let A be any subset of M of
order type « and chose p, < @, such that p(u) < p, for all ue A. By (2.2)
and (2.3), we have

ip (Cp = L‘J4 Ko(ﬂ)) =" (po<p<awy)
HE.

and (4.11) follows.
Itis easy to prove that,forl <y < w + land 2 < oy,

lor} = o7 wt)

s d .
! w; w,’
In Theorem 4 we establish a stronger result.

THEOREM 4. Ifk < w,a < w;and ]l € y < w + 1, then

RN}

¥
w, w’ o

Proof. We shall first prove (4.12) for the case k = 1. If y = @ + 1, then this is
a special case of (4.11). Suppose y < . Let tpC =" and let W, x C =
K, U K, be a partition such that tp (Ko(x)) < ,” (1 < w,). Since y < o, it
follows that there are n < @ and Me [W;]* such that tp (Ko(w) < @,
(ne M). Let A be any subset of M of order type «. It follows from (2.2) and
(2.3) that

tp(C- U K) = o7

and so (4.12) holds with k = 1.
Now assume k£ > 1 and use induction. Let W; x C = K, u K,, where
tp C = w,’. Suppose that
tp (Ko(X)) < oy

holds for any X e[W,]*. If tp (Ko(4)) < @, for all p e W, then, since
(4.12) holds with k& = 1, there are A = W, and B = C such that tp4 = o,
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tp B = w,’ and A x B < K,. Therefore, we may assume that tp (Ko(yo)) i
o, for some py < ;. Also, we have

tp (Ko(ko) N Ko(X)) < @/

for X e [W; — {uo}1* . By the induction hypothesis (4.12) holds if k is re-
placed by k — 1 and hence there are 4 = W, — { o} and B = Kq( i,) such
thattp A = 2, tp B=»,” and 4 x B = K. This proves (4.12).

The cardinal relation (3, Theorem 32)

‘ Wy } s :wo wo]
wy ®; Wy
shows that & cannot be replaced by w in (4.12) so the result is best possible. It
is natural to ask whether Theorems 1,2 and 3 can be strengthened by replacing
1byk (<w)in (4.2), (4.5) and (4.11) respectively. We know this is not possible

in the case of Theorem 3 since we will show (Theorem 7), with the help of the
continuum hypothesis, that

lml}""{z w) ifwo+1<y<w, and (4.13)
®, w,” o/ cow = ;.

™

However, we do not know if Theorem 2 is best possible in the sense just des-
cribed. The first problem of this kind which we cannot settle is:

@, 2 o
w2 =, w w2
Wy Wy Wy
true or false?

We conclude this section by proving one further relation of this kind.

ProBLEM 1. Is the relation

THEOREM 5. If o < o, and B < 0" "2, then

)b s

Proof. Let tp C = w,°*? and let W; x C = K, U K, be any partition. There
is § < w, such that § < w“*'n. If tp (Ko(w)) < w,°" ' for all ue Wy, then,
by Theorem 1, there are A = W, and B = Csuchthattp 4 = «,tp B = fand
A x B = K. Therefore, we may assume that there is some p, < ®, such that
tp (K(fo)) = @,""'n. Since tp (K(uo) n K(n) < 0" (e W, —{p,})), it
follows from Lemma 3 that there are 4 = W, —{y,} and B = K(p,) such that
tpA =o,tpB=w""'nand 4 x B = K,. This proves the result.
We do not know if 2 can be replaced by 3 in (4.14).
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PrOBLEM 2, Does the relation

N ]_’ 3 oc}
{wlm+2 =m1m+1 ﬁ

hold for¢ < w, and 8 < ®,°**?

5. Lemmas

We need the following three lemmas in order to prove Theorem 7 in the
next section. Lemma 5 is essentially the same as Lemma 10.5 of (1) and Lemma
6 is a known result due to Erdds, Kakutani and Tukev (4). We repeat the
short proofs of these for the convenience of the reader.

LEMMA 5. Let 0 < |I| € W, M| = 8, (i) and let
M= ‘LJI Mi = {.uos Hys oens .n'ca}g'
Iftp S < w,, then there are sets A, = S (p.€ M) such that

(i) tpAd,, <o (n<w),
(i) {neM:xeA}| <N, for xeS,

(iii) tp (S - U A#) <w” (iel).
pneM
Proof. Since the sets M; (i eI) are infinite, there are mutually disjoint infinite
sets M= M, (iel). Let M| = {u,, :j < o},, where n;o < myy < ... (i€l).
By (2.4) there is a partition of S into disjoint sets C, (n < ®) such that
tpC, <o" (n <w). Let r < . If r = n;; for some pair i, j with iel and
0 < j < w, then we put
= ). Gy
By f-1=RSEN;
Otherwise, if
T 2 q (M = {mo}),

then we put 4, = @. In either case, tp 4, < w," (r < w) by (2.2), and (i)
holds. If x €S, then there is a unique # < @ such that xe C,. But there are
only finitely many pairs i, jwithieI and 0 < j < wsuch thatn;;_; < n < ny;
and so (ii) holds. Finally, (iii) holds since

s-U4,<=yc=p

ueM, A<ng0

and the order type of D is less than @ " by (2.2).
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LemMA 6. The complete graph on W, is the union of W, forests, i.e. there is a
partition [W,]* = E; UE, U ... U E_ such that the graph T; = (W, E;) (i <w)
contains no circuit.

Proof. For p < w, thereis t = #(u) < o such that {v : v < u} = {v,0, V15 ---,
Dy} - Thus, for v < g, there is an unique i < ¢(u) such that v = v,,;. Put
E; = U {vm" )u}a:o
B<wy
Then
[Wl:lz = U E;.
i<w

Suppose that T; = (W,, E;) contains a circuit. Then there are {v, V', u} . = W,
such that {v, u}. € E; and {v', p}. €E, But this implies the contradiction

’
v=v =V,

LEMMA 7. Let [N, = No(i < w) and let G; = (S, E;) (i < w) be a graph without
circuits of length 4. Then there are disjoint sets K ; (i < w) such that

@) K;e[NguUN, U ...uNJ=,
(i) K;nN; # 0 (J<i),
i) [KPNE; =0 (<i).

Proof. We will say that a set K has property P,; (i < # < o) if the conditions
(i) and (ii) of the lemma are satisfied with K; = K and if

(iii) [KPNE;=@ (<n).

This last condition is stronger than (iii) since i < n. We will prove that for
fixed i and n (i € n < ), there are infinitely many mutually disjoint sets
having property P,;.

If i = 0, this is obvious since each one-element subset of Ny has property
P,,. Now assume that 0 < i < # <  and use induction on i. By assumption
there are infinitely many mutually disjoint sets with property P,;_; and we
choose any n + 2 of these, say Lo, Ly, ..., L,+. We claim that, if Fe[N]’
and ¢ > 1(n + 2) (n + 1)%?, then there are xe F and p < n + 1 such that
L, v {x} has property P,;. Suppose this is false. Then, for each xe F and
p < n + lthereare j(p,n) < nand y(p, x) € L, such that

{¥(p, %) x} 4+ € Ejy ).
This follows since (i) and (ii) hold for L, U {x} and (iii)’ holds for L,. There
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are py(x), p(x) <n+1 such that p,(x) # p,(x) and f(ﬂl(x): x) =
J(p2(x), x) = j(x). There are at most 3(n + 2) (n + 1)** different vectors

v(%) = (9109, p2(), 7 (%), ¥ (P13, x), ¥ (P2(x), x))

and hence, there are x;,x,€F such that x; # x, and v(x,) = v(x,) =
(P15 P2, Js ¥15 ¥2)- Notethat p; # p,andhence y; # y,sincey; €L,,y,€L,,
and L,, L,, are disjoint. Therefore, {xy,yy, X5, ¥,}+ is a circuit in G; of
length 4. This contradiction proves our claim, i.e. thereare xe Fand p < n+1
such that Jo = L, {x} has property P,;. This argument may be repeated
choosing another set Ly, ..., L', ; of n + 2 sets with property P, ;_ so that
these are mutually disjoint and disjoint from J,. As before, there are
x'e€N; — Joandp’ < n + 1suchthat J, = L, {x'} has property P,;. In this
way we construct infinitely many mutually disjoint sets with property P,;. The
assertion of the previous paragraph now follows by induction.

In particular, there are infinitely many mutually disjoint sets having property
P;; (i < w). Therefore, we can choose the finite sets K; (i < w) so that (i), (ii)
and (iii) hold and so that these are mutually disjoint.

6. Negative relations

In Theorem 6 we establish the negative polarized partition relation (4.4)
discussed in §4. The condition placed upon the cofinality type of w,’ is
necessary by Theorem 2.

THEOREM 6. Ify < w, and co(w,*) = w,, then

@, 1 w
2 6.1
{fﬂly}ﬁ{mlmi—lﬁ*l wl'p] ( )
Proof. Let S be an ordered set of type w,”. Then we may write
8= 808 u... uS, (<)
where tp S, = @™ and y, < y; < ... €9, < 7. By (2.4) there is a partition

of §,,
S,= U 4w

V<o

with tpA,, < 0" (v < @;;n < ). For v < w,, there is a mapping f, of
{n:n < o}onto{y: u < v}, andforeach u < vthereis aninteger n = n(y, v)
such that p = f,(n). Now consider the partition W; x § = K, u K in which

KD(J“') - U U Avn (6~2)

pEv<wmy A<nlg,v)

for p < w;.
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By (2.2), tp (Ko(p) 0 S,) < 0,"®" < @, if 4 < v < w,. Therefore, since
Ko()nS, =0 (v < p < w,), we have

tp Ko(p) < o, (6.3)

Let N e [W, 1. Then N contains an increasing sequence of ordinals y; (i < w).
Let
A= lim g,

i<m

For v = A, the integers n (p;, v) (i < w) are all distinct and therefore, by (6.2),

S, = U Ko(ud (A <v<my).

i<w

Therefore
() K () © S By 8

ueN

and
tp[ ) K.(ﬂ)] Lo (6.4)

The theorem follows from (6.3) and (6.4).
We now establish a much stronger result than (6.1) by using the continuum
hypothesis. Note that (6.5) implies (4.13).

(*) THEOREM 7. If 0 + 1 < y < @, and co(w') = w,, then

@, 1 2 @ @
+> v v s : (6.5)
@, 0"+l 0° 1 W,

Proof. Let tp S = w,". In order to prove (6.5) it is enough to construct sets
F, = S (p < »,) such that

() tpF, < 0" (1< wy),
@) tp(FynF)) <o, (k<<
(i) {¢ < @, : xeF,} is finite for each x € §, aud

(iv) tp (S -y F“) < w,’ whenever N e [W,]%.

peN

Let S = SouU S, U ... U8, (<), where tp S, = @,” < @,". By Lemma 5,
for each v < w, there aresets 4,, = S, (n < w) such that
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tp4,, < o (n < w), (6.6)
{n<w:xeAd,,}isfinitefor xe S,, 6.7
tp (S, - U A,,,) < (6.8)

no << H<w

By the continuum hypothesis, [W; 1 = {M,, M4, ..., M,, }+. For v < o,
let {Mo, My, ..., M}, = {Ny, Ny, ..., Ny} (the sets N, (n < ) are not
necessarily different). By Lemma 6, there is a partition of [W,]? into ¥, sets,

[ = B By i g

such that each graph T; = (W}, E)) (i < o) is a forest. By Lemma 7, there are
disjoint sets K,, (n < ) such that

Kqu[NvOU"‘Uan]S\n‘*l: (6‘9)
K\m n ij # 2 (j < n)’ (610)
[Kwl?nE; =@  (j<n). (6.11)

We shall define the sets F,(z < w,) by describing the intersections F, N S,
(1, v < @,). Let g, v < w; be fixed. Since the sets K,, (n < @) are mutually
disjoint, there is at most one integer » such that pe K,,. If pe K,,, then we
define F, n S, = A,,. If, on the other hand,

)u' ¢ nl.zjm KUH’
then we put F, n S, = @. This defines the sets F, (4 < ®,) and we have to
verify that (i)-(iv) hold.

Clearly (i) holds since tp(F,nS,) < ®,” (1, v < wy). Let g < 1 < w,.
There is a unique integer / such that {g, A} . is an edge of 77, i.e. such that
{u, A} € E,. Therefore, by (6.11),if v < @, and < n < o, then p and A are not
both elements of K,,. It follows from this and the way F,n S,and F; n S,
are defined, that

F.oFen 8 dguis iy

for all v < w,. Therefore, tp (F,n F, n S,) < w;' by (6.6) and (2.2). Thus,
tp (F, N Fy) < 0"*! < »,*and (i) holds.

If x €S, then there is a unique v < w, such that xe S,. By (6.7), there is a
finite set of integers N(x) such that x ¢ A, if # ¢ N(x). From the definition of
the sets F, N S,, it follows that x ¢ F, unless

pe U K,,.

nsN(x}

This proves that (iii) holds since the sets K,,, are finite.
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Finally, let N e [W,]%. Then N = M, for some ¢ < ;. Let ¢ < v < w;.
Then there is an integer j(o,v) such that N = N, ;, ;. By (6.10) there is an
element

meK,, AN

v.i(a,v)

for j(o,v) < n < w. Therefore, by the definition of F,, ,
Ap<F, = UF, (jlo,v)<n<o)
HeN
Therefore, by (6.8),

tp(S,—U Fﬂ)<w1‘” (e <v<aw)

ueN

It follows that
tp (S - U Fn) < Y o/ + o0 <o

peN v<g

This proves (iv) and completes the proof of Theorem 7.
We proved in (1, Theorem 10.14) with the continuum hypothesis that

w 1 [0} w
™) [ ] - { Vo ] (6.12)
,t wlca 1 wlm-z

holds for all 4 < ,. This result is best possible in the sense that none of the
entries on the right side of (6.12) can be decreased (see §7). We shall use (6.12)
to establish an analogous result for (w,, A)-systems.

(*) THEOREM 8. IfA < w,, then

@, 1 @ w
[ ] +> v i " (6.13)
a2 wlmz 1 wlw-f-!

Proof. Itis enough to prove (6.13) for the case when 1 = 0%, 7 < w,.

For y < @ + 2, the result is immediately obvious. We shall, therefore,
assume thaty > o + 2 and use induction on 5.

Lettp S = w,’. We shall construct sets F, = S (¢t < ;) such that

D tpF,<0f"? (u<oy),
(i) {p<wy:xeF}l <N, (xe8),
and (i) tp (S - U Fp) < 0*? whenever N e [W;]*.

ueN
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Case 1. co(y) = . Inthiscase S = Sy U ... §,(<), wheretp S, = @," < w,’.
By the induction hypothesis, there are sets F,, = S, (u< o,;n < ®) such
that, forn < o,

tpFy <o (1<),

l{p <o, :xeF,}| <N, (xeS,),
tp (S,, - U F,,,,) < w*? for Ne[W,]%.
HeN

It is easy to verify that the sets F, = | F,, satisfy all the conditions (i), (ii)
and (iii). n<e
The next case is less trivial.

Case 2. co(w,) = w,.
In this case,

S={) S,(<),

<y

where tp S, = w,"” < w," (v < ®,). Therefore, by the induction hypothesis,
there are sets F), = S, (1 < @ ;v < w;) such that

tpFl, <0 (nv <o), (6.14)

He<wp:xeFl}l <Ry, (xeS,;v<ay), (6.15)

tp (s, - U F:,‘) <of*?  (Ne[W,1%;v < o). (6.16)
ueN

By the continuum hypothesis, [W;]¥° = {N,, Ny, ..., N, },. From Lemma
5it follows that for each v < @, , thereare Ny sets F}, = S, (peNyu ... UN))
such that

tpFL <w® (peNouU..UN,;v <), (6.17)
{peNouU...UN,:xeFL} <R, (x€8,iv <o), (6.18)
tp (Sv - U Ff,,) < wf (p<v<w). (6.19)

reNp

By (6.12)t, there are sets FY, = S, (4 < v < ®,) such that

tpFl, <o (u<v < wy), (6.20)

He<v:ixeFLH <N, (xeS,;v < w,), (6.21)

tp (S, - U F?,”) <ot (Ne[{0,1, ..., v}]%; v < o). (6.22)
HEN

1 Note that we can only properly apply (6.12) when » < v < ;. However, for v < o, if
weput F?,, = @ (u < v), then (6.20), (6.21) and (6.22) are all satisfied, the last vacuously.
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Now define the sets F,, (4 < w,) by putting

R=UFRo(U U Flo | F
v<p vy geNouv... Ny HEV<wmy
We shall verify that (i), (ii) and (iii) hold.
By (6.14) and (6.17) we have that

w+2

tP(FﬂmSv)<ml (v{#)’

and by (6.17) and (6.20)

tp(F,nS) <o (u <.

This implies that tp F,, < 0+ (¢ < @,),i.e. (i) holds.

Let x € S. Then there is a unique v < w, such that xe S,. By (6.15), (6.18)
and (6.21) it follows that x is a member of only finitely many of the sets
F?,(p = 1,2 or 3) and hence (ii) holds.

Let N e [W,1%. Then thereis p < @, suchthat N, = {ug, s, ..., fo}< = N.
Let A = lim p,. If v < 4, then N’ = {y, : n < @;v < y,} is infinite and there-

n<wo

fore, by (6.16),

tp (s, - | F#) <tp (Sv = ) F&u) wigppt3, (6.23)
peN’

neN

If p < v < wy, then by (6.19),

tp (S, - U Fﬂ) <tp (S, - U F‘,’R) <o (6.24)
ueN peN,y
Also,if L < v < p,thenN,e[{0,1,2,...,v}]" and
tp (Sv - U FH) <tp (S, - U Fi‘“) Lpnta (6.25)
ueN #eNg

by (6.22). Let = = max {4, p}. Then (6.23), (6.24) and (6.25) show that

tp (S, - U F,,) <wft?  (u<mn)

pueN

and
tp (S, - U F,,) < (r<v <o)
neN
Thus (iii) holds.
Theorem 8 now follows by induction on y.
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7. Conclusion

We conclude by showing that w,°*? in (6.13) cannot be replaced by any-

thing smaller, i.e.
©, 1 4} (0}
] — v " ] .1
[@1" oy 1 ¢

holds if ¢ < w°*? < w,” < w,. We remark that the situation is rather dif-
ferent with regard to the relation (6.12). For we have proved (1, Theorem

10.13) that
w 1 w ]
{ } - { v . ] (7.2)
o, w,’ 1 ¢

holds for ¢ < w,°*? € w,’ < w, provided that
co(y) # w and co(y — 1) # . (7.3)

Herey—1=9"ify=9"+1and y — 1 =y if y is a limit ordinal. If (7.3)
holds, then (7.2) is stronger than (7.1). However, if (7.3) is false, then (7.2) is
also false (see Theorems 10.11 and 10.12 of (1)).

Proof of (7.1). In view of the remarks above, we can assume that (7.3) is false,
i.e. either co(y) = worco(y — 1) = .

Let tpS = w,” and let W; x S = Ky u K; be a partition such that (i)
tp (Ko()) < @,(p < ;) and (i) tp (Ko(x)) < o for x € S. We have to show
that there are sets A = W, and B = § such that tpA > w, tpB > & and
Ax BckK,.

Case 1. co(y) = w. In this case we may write § = Sy U S; U ... U S,(<),
where tp S, = @,"*? and o <y <y; < .. <%, <?%. For each pu < w,
there is an integer n(y) such that

tp (Ko(1) N Spy) < @m0 +2,

There is M = W, such that tp M = w and n(y) = n (u€ M). Since (7.2) holds
with y replaced by y, + 2, it follows that there are 4 « M and B < §,,, such
thattpA = w,tpB=¢and 4 x B c K.

Case 2. y=y + 1 and co(y’) = w. We may write S = S, U ... U S, (<),
where tp S, = 0,"(v < w,). Let y,(n < ) be a sequence of ordinals such that

DY <P <. <Py <y =limy,.

n<w
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For y < o, there are n(i) < @ and v(i) < w, such that
tp(F,nS) <o/ (v(p) <v < ).

There is M = W, such thattp M = @ and n(y) = n (ue M). Choose vy < @,
so that v(¢) < v, (€ M) and let S’ be a subset of S, of order type w,"*2. As
in Case 1, there are A =« M and B = §’ such that tpA4A = w, tpB =& and
Ax BcK,.
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