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ON SOME PROBLEMS OF A STATISTICAL GROUP THEORY V

by
F. ERDOS (Budapest) and P. TURAN {Budapest)

To the memory of CarHErINg BNy

1. In the secomd paper of this series (see [2]) we dealt with statistical
theorems concerning the arithmetienl structure of O(F) the order of the
element P in symmetrie group &, of » letters. If w(x) # = with & arbitrarily
slowly and assigning to the phrase “for almost all P's" the meaning “for all
but a(n!) P’s” the theorems in guestion run as follows.

TrroreM A. For almost all P's the order O(P) is divisible by all prime
poters not erceeding

(1.1)

log n {1 4 log log log n @ (n)
log log % log log n log loga|

The theorem ir best possible in the strong sense that the number of s
whose order O(P) is divisible by all primes not exceeding

(1.2) log n !1 + Ellog log log w n e (1) .
log log n log log log log n
i= only e{n!).
TarorEM B. The mazimal prime factor of (WP) is for almost all P's
Between

(1.3 . T P . ) k- i e
) vexp (— w(n) logn) and wexp[ s | 1{}&,1]‘

Though these theorems reveal surprisingly simple statistical laws, they
still leave a big playground for the prime factors of O(P). We have found that
tormulating the problem in a different form the guantity in (1.1) can be re-
placed by a much bigger one and those in (1.3) by & much smaller one. Obsery-
g namely that the P ‘e in a fixed conjugacy class H of 8, have the same
order OfH) it is plansible to consider the order rather as a function of the
conjugacy class than that of the single P's. Bince the total number of con-
jugany classes in 8, iz p(a), the number of partitions of », it is plansible to
mean by the phrase “for almost all classes H'' the one “for all but o p(n))
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elasses I, Then we are going to prove in this paper the following analogon r
of Theorem B.
TarorEm. Denoting by olH) the maximal prime factor of O(H) the ine-
quality
(1.4) (H) — EF_
; ¢ 2n

i

| < ],-'r;i. e (1)
holds for almost all clagses H if only w(x) & - with = arbitrarily slowly.!

This is indeed much smaller than the guantity in (L1.3). In the next
paper of this series we are going to prove that O(H) s for almost all olasses
divisible by all prime powers not exceeding

; ”
(1.5} 2n l ]J—EIDH logn  w(n)

l 6 logn| log n log »

with the same convention for win) and this is again best possible in the sense
of (1.2). The proof of (1.5) is rather deep. The quantities in (1.4) resp. (1.5} are |
surprisingly close to each other.

2. Next we turn to the proof of our theoremn. First we have to investigate
pgln), the number of such partitions of » where no summand is divisible by
the fixed ¢. Since for y = 0 we have

S ppm e = [ — q,y—ﬂ — - (1) =

=i qte w=1
(2.1) . = -
Ep{-m}e I — &)
e Jiem |

and owing to the "Pentagonalzahlsatz” of EvLer—LEceENpRE

(2.2) IO —en= 3 (—1fexp —3—‘{’1;‘* r)
pe=l = —a
{2.1) gives at once
(2.3) Py (n) = el 1% ¢ ['.rt 5-{-2‘—-!&-'(;] -
Btk _m
5 g

Denoting by ry(n) the number of partitions of n such that at least one sum-
mand is divisible by ¢ we get from (2.3)

(2.4) M= 3 (= l:“*-lp[u- —

Ik K
T R0
) 5 i .

LY Ry
2 g]'

!'We assume throughout this paper o(c) = o (log log ).

T
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We shall use that eclassical formula due to Harpy and Bamamvsaw

(see [1])
(2.5) pin) = (1+ a{l}}

l.""' 1."ﬂ

Let now ¢ be an arbiteary prime divisor of O(H), If
(2.6) b i O R T

liﬂi*ﬂiﬂg{ '--Fnk{i“}

then a= is well known the conjugacy clagses of S, are In one to one corre-
spondence with the partitions in (2.6) and

£2.7) OH) = [ny, B - oo 1ie],
Henee
7g=m.
Let first
(2.8) 100 Vnlogn <<g ==

Sinee evidently

rolm) < 4 |fl ':-:-:.!?(ﬂ- =)
we get using (2.4)°

S % p—————— —
5.5} roln) -::_'_'sll." 393:13 (ig I m— 100 |'n Iu;__:;n. =
< ¢l nexp ﬁ—i; Vn { o M ]-a“' £ pln)n—5
and henoes
(2.10) 3 nm)=o(pn).
25 A
Next let
(2.11) Wy Vrlogn =g < 100 Y logn,

Ay positive, to be determined later. First we remark that the contribution of
k's with |k | = logn to rgn) in (2.4) is, as before, < ep(n}n~5 and hence

(212) X ro<Ze(pw) + ¥ 3> pln Ky

= 4
- — = 1 A LI B log
iy Vrins |51,?mgni =ik|=<logn

The e's withont indices mean unspecified positive constants.
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Using (2.5) the second sum in (2.12) is

s i T

hﬁ-J—~Elmlis|£|ﬂEnﬂ.

! } ) gy
"f:"‘“‘|ﬁ'"l 2 2 =mlps
L —%  ci0igin)glegn
I niogen
o x g
= cpin) = uxp( ~—_-—_]
gz Yo imn /6 1’
The last sum is
- n oz ] x x oz
— —ldx(x)= Pt
I - Iutn' el _J le Vo inllogz
By Fm logm LT mlgn
3 n A A
+ J axp[ ----- F._Id{::{a:} Liw) <en?® V9 (logn)
A | nilogn
which — O if

x logn logn

6 |Bloglogn o)
=

Hence the number of conjugney classes A for which O(H) s divisible by o
prime
loglogn | w(n)
logn | loga
& o(pin)) indeed. This proves the first part of the theorem,

3. Next we turn to the less easy proof of the second part of the theorem
which asserts that putting

o (3 gy abthsn ot

logz m logn

(3.1}
W V6.~ [ loglogn o (n)
4-"."3 -E;yﬂ]l}gﬂll 2--1“'[:“ m

for almost all conjugacy classes H the number O(H) has at loast one prime
actor between M, and M,. In order to prove it let

) M << ... <=M,
be all primes between M, and M, and we define the “elass function™ &(H) by

T

(3.3) E{H) 1
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empty sum being 0. Let

(3.4) B e TN
S Skt

Then we need the

Lesmyva L With wiu) in (3.1} we have

= Lot

. le,
Sy = (1 +oth))2—

4. (3.4)(3.3)—-(3.2) give at once
(4.1 gt 4 >
1) ; b 1.
: ﬂ{n} 751 oo mba g
The mner sumn 1= obviously the number of such partitions of » in which at
least one summand is divisible by ¢ and thus = ry(n); hence

1 8
IQ.I ' r lﬂ?
P em s
and using (2.3)
1 I Sk
(4.2) 8 = % % (- Jp ‘.,. _3F+E J
. pin) 7= égﬂ e a 9
SR +E_n
2 =t 4
Ag in 2, the contribution of I's with | k| > logn ic o(1) and hence
.
(4.3) == 3 (e [n L st rr;]-
Pin) 135 1518 stesn 2
Next we consider the contribution of £ = —1. Denoting it by 8, we

have using (2. -1)

g Vm) -

1
8 ._a—\_:u{ — g = ({1 +o(1)) ¥ X
pln) 7= : ].f- ?_i V
! ¢
" ]
=] Sty _._=._—1' 1 e N ——,_-“_h,d_
(1 + nf Uji"_' pr[ ol J (3 -+ of J)ﬂ:) Ingmtx[;l 7% T @

(4.4) K

AL
"N

logn

My

from which using (3.1)

(4.5) 8 = (1 + ol 1}2]‘?& exp !% @) I:'H]).
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Finally the contribution of the remaining terms in (4.3) cannot exceod
abaolutely

lug %

; plin— 2q,) < h}ﬁn%m I,_{b"n Vm)<
{clﬂgué"expl Tols ]{ Bognﬂ"l‘ nxpl Fi_n'd.'rz
]T::‘ ] a(1).

This, (4.8) and (4.5) prove Lemma T,
S. Next we are going to investigate

(5.1) S,——— EHYE.
I j = ()
Az to this we state the

Lessaa 11, With the above win) we have

6 1 !
8 = {1 + r::lgl[l}) [ 2}?“3}1 [--E—w{n}l] ;
For the proof we observe first that

1
S P
T = = =)
1
(5.2) i AL
el
2

- N 1.
! pin) rsa;?rst qﬁiﬂ;
6. Let at fixed u » v si(n) stand for the number of partitions of »

with the property no summunds being divisible neither by g, nor by ¢,. Then
we have obviously putting for v >0

(6.1) o =17

wo= I
the mlation

(6.2, ™ e (njers = 7 1 _fwfeusn)
: 1{1” n%u Ti H'ﬂ-}ﬂ {{fﬂi ] — ,ﬂT‘, ylﬂq. )
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Next let »{n) be the number of partitions of » with the property that
a) either no summand is divisible by ¢,

b) or no summand is divisible by q,.

Then we have, using also (6.2), for y =0

i m—1 1 — fl:ﬂ"j ﬁy}
P s r (mje—" = 2L S
= o | fa.w)  fla,w)
(6.3) S fau o, )

fa,. mflg.w)

Finally let #)(n) stand for the number of partitions of n with the pro-
perty that at least one summand is divisible by ¢, and at least one by g,.
Then we have, using (6.3), for y =0

F® S mpem - flg - S0 J0)

(t.d) 3 n;u A Na, vy Ra.w)
LJfa.g )
fg, m flg, w)

7. Returning to (5.2) we gee at once (owing to (2.7)) that
w%}%;” 1= rfﬂ (n) = cootfae™™ in
(1 1 1, Seaw }ﬂﬂ_
Aoy flow)  Na,afg.m)

Sinee for #» =e¢ we have owing to (3.1)

Gutfy = N
(7.1) gives also
| 1
(7.2} e 1 =coeffs e in f{y) [l - - } (I - ]
m‘%ﬁ?f} fa, ) e, v)

and henee from (5.2)

2 i 1 1
S, =8 +—— ' ecoefise=™ in ﬂy}ll ] ll — ——I =
1 pln) I.séu-se ﬂfh. ) fla. v
2 ' 1 - 1
= 8, + —— eoeffs e ™ in fiy) ' ll - ] [1 — ) =
{7.8) ol '5;%'5! fag,m fig, w)
= 8, + : goefls e in

pln)
& ; 2
Bi)) l[|§%5rI] _ﬂﬁ'i?ﬂ' )] - 155‘ |l _.ﬂq:.y}l ]
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Now we have to investigate the power series expansion of the funetion
in the curly bracket. Using the Pentagonalzahlzatz in (2.2) we have

1 ] | dm? 4 m
> = = N N [ ])m*lexp [— st T
1S M, ) Jffn'si gt 2 ¥

and its square

2 - I
\.'1 = T = {— l}m"_ml IT:'.‘XP|— [m—_'—_ﬂﬁ T, +.3._1.H..2 ll m’é";-*]ﬂflr

1SS! 1Sh sl meD meD 2 2
further
> "1 =
1Snst Ng.w)
= = = i 3l tmy  SmE+om,
= > 3 (1t esp [_ ( = 7,401
]szp.sr o RO 2 2 :
These give together with (7.3)
S,=28+
2 ~ O (—dpmdm, plﬂ__ﬂ-mf-l-ﬂ_il 1 _3m\§_|_.mgwl.
{ﬂ}tﬂm{n,ﬁr m.a“.!l m':;u 2 ; L

From this we can finish the proof of Lemma IT quickly. The contribu-
tion of the terms apart from the one corresponding to my, = m, = —1 i8
o(1} as before. The remaining term results owing to (2.5)

L]

-

2 P — g ) =
lu{'n'l:l ].1!‘1."' e

={1+efl))2 F exp [ (Vo — G — @ — l-q]'}=
- THEE TV o |

=(1+4o1) X uxpl_u | l_] ”
1SS! ¥ I8

o S otlh;l%;«" esp | 1_{ ¥ n”

LT

which proves Lemma 11 owing to {4.5) .
8. The proof of the theorem follows now l:‘:lﬁil}’ from the mvestigation of

{B.l_:l ZEL(“{ {I }_-['”} {u““‘f}l -|."u T_!_J —*— f.u .Fi'.]]l

1
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Lemma 1 and II give at onee that
(8.2) 4 = o(1) exp ain).

If k(H) = 0 would be for more than xp(n) classes (x positive constant) then
we had

L= L o pln) 4 itutpm (1)
pin) F

o

which contradicts to (8.2). Hence the theorem is proved.
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