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1. In our fourth paper on statistical group theory (see [271) we needed
and proved that “almost all” sums of different prime powers not exceeding
@ consist essentially of

(1.1) {1++:;--:1}I—10g2

1 @
summands. Further needs of this theory make it necessary to find general

theorems in this direction, i.e. when the snmmands are taken from a given
860 11e00H

(1.2) A: 0 <dy <4y <...

of integers. The only result we know in this direction refers to the case
when A i8 the sequence of all positive integers. In this case Erdos and
Lehner (gee [1]) proved even the stronger result that almost all “unequal”
partitions of n (i.e. with exception of at most o(g(n)) partitions of n into
unequal parts) consist of

(1.3) (14 0{1”5“”_::1%5‘,—

summands; here g(n) stands for the number of unequal partitions of n
for which aecording to Hardy and R@mnujan (see [3]) the relation

_.! it
(1.4) g(n) = + f]}' ‘¥ 5

holds. Now we have found that having only asymptotical requirement
on {he counting fonction

(1.5) @, (@) = é’ 1

we can prove general theorems. More exactly we assert
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ToaroreyM 1. If with an 0 <<« = 1 and real 7 the relation
lim®, (e)r "log’e = A
E—=D0

holds then for almost afl systems

{l.ﬁ} "H'I: _;_j"i -+"++.--'-..'_: Jl.‘!r_u 1- l:l {ig"iiz{-..,
the nwumber of swmmands is

(1.7) (14 0(1) 0, N/t log=P VN, @, = (y(a, §, A)
for N — oo,

The explicit valne of €, is

I'{a-4 ]}(1 — f}) *{fl]l{u }- l}’i'r‘"'l'l}
(1.8) gMaty

R

lj \
for a =1 (1— ) {a) means log 2. “Almost all” means in this case

that (1.7) holds with exception of 6(g(N)) selutions of (1.6) at most where
gin) stands for the total nnmber of solutions of (1.6).

The proof will follow wwtatis mutandis from that of

Turoreys IT. If for & — + oo

" 1
1.9 & () = T
(1.9) al@) 1 o { (]DE;'JJ }‘
then for almost all solutions of (1.6) the number of summands is
{1.10) ¢, NV g M0 N L] o O (log— Y4 HD ML

Maoreover we remiark that the number of solutions of {1.6) not satistying
(1.10) cannot excesd

HxIl- {’*l:ji_rqr.'{n :.L}lug - {1+ lrbr{ == f.-leﬂg_ 1/ {242} .\l'}}
where 'y = (4la, f, A) =0 and
(111) Oy = a1 4 ) HNHERIA (12 [ (a4 1) F(a-1) 02N

For the sake of orientation we remark that in our case (1.4%) the total
nwnber of solutions of (1.6) is

(1.13)  exp [(, N og P D N (14 O (log ' Nloglog N))] .
2., In the proof of Theorem 1I the fact that the 2's are integers

will not be used; it holds for real i’s. Applying it with 4, = log(vr-|- 1),
¥ =1,2,... and N =logY we gel the
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CoroLLARY T. Almost all factorizations
Ty naes By Masm o gy e
in different factors consist of

2V 3log2
-P --{!g Vlog ¥ {1+ O (loglog ¥)~'/

factors.

3. Though i 5 not concerned with statistical group theory,
Erdos-Lehmer’s theorem rvaises the natural question whether or not
a general theorem analogous to Theorem 1T exists for the unequal A-parti-
tions of » (of course the i's are positive integers again). Denoting by
po(n) the number of these partitions the easy combination of Theorem IT
and (1.12) we get

Traeorem ITL If beside the limes velation (1.9) the inequality (O, in
(1.11))

(3.1) logp,(n) = Oynoltetigg M=ty (1 1gg— 122y Noglogn) Y
holds then the number of summands 1%
(3.2) O e 0 pg= ety 01 4 O (log— 14t g))

i every “unequal” A-partition of n with o(p(n)) exceplions al most.

As (1.4) showe (3.1} is in the case when A consistzs of all natural
integers, amply satisfied; hence for almost all nnequal partitions of »
the number of summands i3

(3.3) ﬂﬁf’ggr {1+ 0(log~""n)}.

Erdés—Lehner's prool gives the stronger estimation

L Vol -+ n o (n)}

5
if only w(n) oo arbitrarily slowly; we got however (3.3) from a general
iheorem and used (1.4) very weakly. As shown by Imgham (see [5],
- 1086) the inequality (3.1) is smply satisfied for the /-sequence

15, 8% ..., k=1, integer.
In this case we have
T RN |, YRS g

(3.4) pirad ] FOALR (=2 (k) e
ad A= {{]-Jrk}{l—E'IIR}E{1+1J{E}}HW+I]

== (3

hence we got the
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Cororrary 1L Almest all partitions of n with different h-th powers
of positive integers consists of

(3.5) O M1 £ . O (Jog R+ 1)) o

swmmands (k= 1).

As to the requirement (3.1) in Theorem III this can be probably
weakened. However some additional restriction on the sequence beyond
(1.9} is necessary; (1.9) alone cannol assure even the existence of a single

unequal A-partition of =.
i

4. It is again natural to ask the corresponding questions for ym:tl-
tions permitting repetition of the same summand, too. In the 3paq,.la-1
ease when /A consists of all natural numbers, Erdos-Lehner le. found
that almost all snch partitions consist of

{1+ﬂ (3{1‘1]} s
logan gt
simmmands if only w(x) oo arbitrarily slowly. For general A-sequ&nﬁéé
however — in contrast to Theorem II — asymptotical formmlae -Mle
(1.9) are no more sufficient to assure a similar statistical law for the
number of summands, We shall return to these seemingly more delicate

problems as well as to finer laws of the distribution of summands inJdater
]'lﬂ.-}lﬁ‘.l.‘ﬁ of this series.

. As told it is enough to prove Theorem I {(with i;'s not necaaaa-nl‘i*
mtegﬂl g}, Let DM{y) monotonically increasing so that TR

(5.1) fla) = [e™aD(y) ¢ i
[

+ . Lalks
exista for & = 0. Then we sltate the

LEvma L. Suppose that with an 0 <o, < 1, 4, =0 and veal §,, the
relation

log f(a) =

LG (lﬂglﬂg{lfﬂ})}

M,
a"log™ (1w }{ log(1/x) st
Kolds: for: @ —= 0. Then we have for 4 — oo Gl

log Dly) = Oyt log-Altady (1 4 0 (log 1+ Vyloglogy))
with e,
0y = AVPTUNT 4 gy) Rl ol gradlintn),

Without remainder term thisis due to Hardy and Ramanujan (see [4 ).
A detailed proof for the cage a; = f; = 1 can be found in our paper [27;
the present more general case follows mutatis mutandis.

SV



Geweral problems in the thoory of partitions, I BT

6. Noxt let Q(N) stand for the mumber of solutions of (1.6) and

(6.1) Fola) = [ edQ(w).
L]
Then we have evidently
(6.2) Fgla) = ”{1+a""'"j.
]
Let further with a positive integer m
(6.3) Q= 3 1
1‘1”'"‘1"'"""
ycin iy
and
(6.4) Fo, (@) = [ e aQu(y).
Putting for » >0
(6.5) Golw, ) = 1+ Zu""ﬂ;._{x}
L |

we have evidently

(6.6) Gl 1) = [ [ (14 024).

7. We shall need the
Lesma 11, (1.9) implies for # — +0

10 logFy(e) = Cyarlog - 140 togt L togrog 7]
a i i
wilh
(7.2) O, =A (1— -E-—} I'ia+1){(a+1).
H B. W

For the proof we remark that representation (6.2) gives at once

F )

-]
log Fy(a) = | log(L-+e)deuly) = o | =" dy.
i ]

(1.9) gives from this
-

o - F- ﬂ#
(7.3) lngj"q{m: Y 1Y [ e ———"
,J log’(y+2) 1467

. B
H””’-}J log iy +2) 14¢¥




hs P, Erdis and P. Tardn

The contribution of the range y < o 'log=""(1/r) to hoth integrals
is (ronghly)

) i
(7.4) G(m)'

The same holds as is easy to see, for y = 102 'log{l/@). The remaining
part of the second term in (7.3) is evidently

L8 p By
(7.0) U(Egﬁ-;-l“_’fm}-) :!J 1 —_F dy = m,ﬂlugﬁl 1{1 I})

Replacing in the remaining part of the first term in (7.3) log®(y+2) by
log®(1/e) the error is

1 loglog (1 /@)
('BT .lﬂF'{lfrﬂj)

A further easy reasoning gives — with the same error termi — for the
nin term

& A~
log” (1 /r) ,ul 1o lﬂg"’{ll.'.r} ] —

=l
= Car " log™" =
indeed (€ in (7.2)).
Combining Lemunag T and 1T we obtain
(7.6) logQ(N) = ¢ NNt gy o=l N 61 L O(log—" " Nloglog N )}
indeed (7, in (L11}).
8. Let further

51
(8.1) Riz) = ZN—H
=1

Wa shall need the
Ly 111, For @& —= -0 the velation

e (e L~ CL)
v S il i L i
holds wilh
2
(8.3) ¢, = Al(a+1) (1‘.}_“).;{&}_

The proof of this lenuma follows that of Lemma IT mufatiz mutandis;
ingtead of the integral formula

——d = i,
Af g
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we need
y'e’
{1-e¥)®

dy — r-?b"

9. Now we may turn to the proof of Theorem I11. Let
(9.1 M = M(N) o oa, ro = #,(N) %00, ay = o, (N) O
to be determined later and we start from (6.5). This gives

el T‘ Fy, (@e)e™™"0 < Gy, o)

|q.m=::.ﬁ-t

and a fortior

(9.2) 3 Fy (@) < Gglag, ro)e™
M

Bince for each fixed m (6.4) gives
5

N
qu{.'nn} = J p Tﬂ#d{?m{y} = 3—,\-'31‘1], J' d@m LI” = 6—_\.'3",‘#““{}‘,-}.
“ 0
we get from (9.2)
93) Y Qul) < Cylirg, ro) M0 — By (ag) | 20010

’ ﬂa'lfru-l-a‘r'a'ﬂ s
med ‘U' Q ': mﬂ}

The expression in curly bracket is

.1-—_11 .l:_-lf;rn":*?= ”{1 “;i":};l:r”‘n}

F=1

{EXPI“E r"_”z M+1}{“P{ ( )R““}}

From this and Lemma 111 we obtain from (9.3)

Y QulN) < Folwg)e™ax

m
T e i( (I_UEEE__.EL )l)
HaXp (rﬂ {M (l 2){}‘% log ’*'f'u_.l-'_ Tog(1)2,) ) [

Applying Lemma IT this gives

(9.4) mé:%,{ﬂ}qa@ (Nm.]—F i E""ﬁ}’mnl 140 lﬂli:‘{gli‘:"})},f.
b= 3 ) st i )
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10. Now we ehoose with a constant £ to be determined later
1

(10.1) = ANV ggflite) 7
iy
Then

s ﬂ-_.“__
-'!?“lug”flfm }

f lnglug.h*))[

= NEla)pp— M a1y a it
N log N+ —H”l (1+a) (l I—ﬂ( oz 11"

We want to determine 4 so that

1 i 1
(10.2) I -+ {}"3 ,‘(,‘-"{14_ u}ﬂ =, = ﬂ~~=|'[n+1}u+ ﬂ}l—rﬁ.{lﬂj ﬂ%‘“' a)
(using (7.2) and (1.11)). This ¢an however be written in the form

= o 48 afya
Hﬂyﬂ"'”fl—l— ﬂ}s"l'*ﬂ&”{:{ﬂ}} +{m;“l+ J{1+ ﬂ}lﬂlrl:l }ﬂ_”{H- }} = ﬂ—I—l,

which means that
B = jﬁ'}!{lq.n}{l_l_ u]m‘{l+4} Mi1+a)
satisfios the equation

2 paf = g4l
o

which is satisfied with o = 1. Thus choosing
(10.3) A = QA (5 | g)-Altel g-tit+e)
and using (10.1), (9.4) ean be written as

\? ( a1}y o Bl +1) (lﬂﬂlﬂgf)}
hﬁ,’@mm*e@cw log Nil+0 Tog &

e —11— Yo " A yraf{e+1) ] qp— Mo+ 1 ( (lﬂglug N )}”
+:u{1f (1 5 )Gﬁi (L4 a)f N log NliL0 _logN .
Taking (7.6) into aceount this takes the form

(10.4) 2 Uu(N) < @(N)exp (.gu,vnnum1ﬂ§hw+1m-.+nﬂluglugm+

w1

+“=H__ (1_?).9 el g Allatn) ‘-.?(i + G(~ e N ))})

owing to (8.3), (10.8), (7.2) and (1.8). Choosing
{10.5) Ty = lug—l,r:au-rq_ﬁr
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and
{10.6) M = M, = 0, Nt Dog—Plet) N (1—2log—Het9) )
{10.4) takes the form

(10.7) D Qu(N) < Q(N)exp{—eN e jog—(HHilei1) 7y
M-!E.'.lfﬁ

with an unspecified positive constant e¢. Thiz proves the first half of
the Theorexa II, concerning the solutions of (1.6) with “few” summands.

11. Now we have to dispose with the solution of (1.6) with *too
many” summands. The form of Gg(x,r) in (6.6) shows that G,(x,r)
{with the %, in (10.1)) iz an entire function of + and hence if

(11.1) }>r =r ()N 0

to be determined later, then Canchy’s coefficient estimation ean be applied
to the segment

{11.2) Rer = —r;, 0<Imyr<2x.
This gives for each integer m

ﬂmlrllfrqm':wu} = Ggl®; —11)
and henee a3 in Section 9

(11.3) @l N) < eV ™G (w5, —1y).
If
(11.4) M, = M\(N) n o
to be determined later then summation with respect to m = M, gives
S AL T 1
{11.5) 2 Q[ N) < 6V MG (@qy _rl}m
mz=My 9
-‘%r—GNS'_H'-rlGO{;I!u, — 1}
1
The representations (6.2) and (6.6) give
Y g . e = 14 en W)
o= e Afyr
AL6) 3 Qu(N) < o (Folano™ e [ | L
ma Ay -1
2 -] N —Myr i i gi—1
= :]‘{j'ﬂl:mn:'ﬂ b {ﬂ X lﬂ (1—r m}}
2
= v {Foimn}"ﬁzﬁ}ﬁxP{_‘Mlﬂ—F{ﬂr'_l}R[m-”
1

2 .
= =y {Fy ) 3‘“‘"} exp(r, {— M, (1+ ry) (@)}
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Repeating the reasoning in Section 10 we can derive from (11.6)

2 i
(11.7) 2 G (N) < —Q(N)exp (0(N*0" Dlog— Mo+ N loglog N) -+
=My !
+1'1‘_-;'H1+{1 +1'1}ﬂlﬂﬂ"u+”1{lgIN{MII}N(]_—F ﬂ(lw))})
los N
Now choosing

M, = G, N Fllgg-?let) v (] 4 2lpg— W9 ]y,

(11.8) el b

(11.7) gives
Z Q. N) < Q{N}MPE_ Yl H'].'l'!-g_ (A1) "“J'_"r"}

T = ..i-fI

with an unspecified positive ¢. This completes the proof.
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