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l . In our fourth paper on statistical group theory (see [2]) we needed
and proved that "almost all" sums of different prime powers not exceeding
x consist essentially of

(1 .1)

	

(1+0(1))
2I/6,

log22	 x
7r

	

I/ logx

summands. Further needs of this theory make it necessary to find general
theorems in this direction, i .e . when the summands are taken from a given
sequence

(1 .2)

	

A: 0<2 <íl 2 < . . .

of integers. The only result we know in this direction refers to the case
when A is the sequence of all positive integers . In this case Erdös and
Lehner (see [1]) proved even the stronger result that almost all "unequal"
partitions of n (i .e . with exception of at most o (q (n)) partitions of n into
unequal parts) consist of

21 31og2 -(1.3)

	

(1+o(1)~	v7C
summands ; here q(n) stands for the number of unequal partitions of n
for which according to Hardy and Ramanujan (see [3]) the relation

1+0(1)

	

a ds ~n(1.4)

	

q(n) =	
4 j/

4
3

_	 n e

holds. Now we have found that having only asymptotical requirement
on the counting function

(1.5)

	

OA(x) =
av<x

we can prove general theorems . More exactly we assert
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THEOREM 1. If with an 0 < a 1 and real (3 the relation

lim 0A101 1 ° logs = A

holds theca for almost all systems

(1 .6)

	

2; +íl 2 + . . .

	

N,

	

1

	

i, 1 < i 2 < i 3 < . . .,

the number of summands is

(1 .7)

	

(1 } o(1)}CiNal(a+1)1~

	

N,

	

C, = C, (a, (3 , A)

for N -> oo .

The explicit value of C, is

r(a+l)(1-2 )~(a)(a+I)3j(a+1)a
(l .s)

	

Ai / ( a+ i)

	

2 --1}

	

- '
' a(1-

1
2a)~(a+1-) a/(a}I

2
for a = 1 1--

a
) ~(a) means log 2 . "Almost all" means in this case

that (1.7) holds with exception of o(g(N)) solutions of (1.6) at most where
g(n) stands for the total number of solutions of (1 .6) .

The proof will follow mautatis mutandis from that of
THEOREM II. If for X + Co

X
a

L
(1.9)

	

0 1_ (
x) = A log,,

:L+O
logx

then for almost all solar-dons of (1.6) the number of summands is

(1.10)

	

C,Nay ( a+1) log -9/ ( a+1) NIL+0(log-'/''(a+') N)} .

1NIoreo v er we remark that the mmiher of solutions of (1 . (i ) not satisfying
(1.10) cannot exceed

OX14IC2-
a** '

l}loon'- /(a+1)-A7(L _ Cg lOg -1/(2a -2} 1V )j

where C3 = C3 (a, ~, A) > 0 and

(1 .1-1) C2 = a-al(a+i)(l+a)1+s1(a+1){A(1-2-a)~(a { 1)1 (a 1)}'I( i+ a)

For the sake of orientation we remarl~ that in our case (1 .9) the total
number of solutions of (1. .6) i s

(112)

	

exp jC 2 -Y" (a+ i) log- si ( a +1) N(I+0(log-1,1(a+i) NloglogN))} .

2 . In the proof of Theorem II the fact that the 2, .'s are integers
will, not be used ; it holds for real

	

Applying it with ~w = log(v-}-1),
v = 1, 2, . . . and N = log Y we get the
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COROLLARY L Almost all factorizations

xlx2x3 . . . < Y,

	

2 C xi < x2

	

. . .
in different factors consist of

2 Y31og2
1/log Y {1 + 0 (log log Y)-1/3}

7L

factors .

3. Though it is not concerned with statistical group theory,
Erdös-Lehner's theorem raises the natural question whether or not
a general theorem analogous to Theorem II exists for the unequal A-parti-
tions of n (of course the ),, I s are positive integers again). Denoting by
p, (n) the number of these partitions the easy combination of Theorem II
and (112) we get

THEORE-AT III . If beside the limes , - elation (1.9) the inequality (C2 in
(1.11))

(3.1)

	

lo9PA(n) > C 2 na/ (ad-1) 109-RI(a+l)n(l-l.og -1/(2a{-2) n(loglogn) -1 )

holds theca the number of summands is

(3.2)

	

Czna /(a+i) log-131("+1)n f]_+O(log-1/(4a+4)n)}

iv, every "unequal" A-partition of n with o(pA (n)) exceptions at most .
As (1 .4) shows (3.1) is in the case when A consists of all natural

integers, amply satisfied ; hence for almost all unequall partitions of n
the number of summands is

(3

	

2131og2 -
.3)	 inn{1-F-0(log -l/a n)} .

r

Erdös-Lehner's proof gives the stronger estimation

21r31og2

	

1 /4
	 Y7a{l+~ti w(n)}

7C
if only e) (n) 17r oo arbitrarily slotivly ; we got however (3.3) from a general
theorem and used (L4) very weakly . As shown by Ingham (see [5],
p. 1086) the inequality (3.1) is amply satisfied for the A-sequence

1k, 2 k , . . .,

	

k >, 1, integer .
In this case we have

A =1 , a = Ilk, f =0 ,

(3.4)

	

I (1+Ilk)(1-21-1'k)~(llk) 	defCi

	

C
{(llk)(1 - 2-1)k)~(1 + 1/k)}1)(k+i) = l ;

hence we got the
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COROLLARY II . Almost all partitions of n with different k-th powers
of positive integers consists of

(3.5)

	

Clni/(k+i) 11+0(log-kl(4k+4) n)j

summands (k > 1) .
As to the requirement (3 .1) in Theorem, III this can be probably

weakened. However some additional restriction on the sequence beyond
(1.9) is necessary ; (1.9) alone cannot assure even the existence of a single
unequal A-partition of n .

4 . It is again natural to ask the corresponding questions for paid
dons permitting repetition of the same summand, too . In the spec'i'al
case when A consists of all natural numbers, Erdbs-Lehner I .e. found
that almostt all such partitions consist of

27r Vnlogn 11+0
( io (gnn )1

summands if only o (x) / oo arbitrarily slowly . For general A-sequences
however - in contrast to Theorem II - asymptotical formulae xike
(1 .9) are no more sufficient to assure a similar statistical law for ,the
number of summands. We shall return to these seemingly more delicate
problems as well as to finer laws of the distribution of summands in .l.ater
papers of this series .

5. As told it is enough to prove Theorem II (with 21's not necessvil~
integers) . Let D(y) monotonically increasing so that

ro
(5.1)

	

f(x) = f e"dD(y)
0

exists for x > 0. Then we state the
LEbZMA 1 . :Suppose that with an 0 < a, > 1, A, > 0 and real

	

the
relation

A i

	

loglog(I/x)
log f(x) = x«ilogfli(I/x) ~1+ ~

	

log(I/x)

holds for x , +0 . Then we have for y -~ + oo

	

)'

logD('u) = C o y«il («i+i)log- ail (i+ «i ) y{1+0(log- i ((« i +i)yloglogM
with

C4 = Ai/(i+ ai)(I+ a1 "O"(' "')ai «i)(«i+ i) .

Without remainder term this is due to Hardy and Ram .anujan (see [4J),
A detailed proof for the case a, I can be found in our paper [2] ;
the present more general ease follows mutatis mutandis .

	

.
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(6 .1)

(6.5)

Putting for r > 0

(1.9) gives from this
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6 . Next let Q(N) stand for the number of solutions of (1.6) and

0

Then we have evidentl -

Let further with a positive integer ma

(6.3)

	

Q.(y) _

	

1
A2 1 -í- x2 2 + . . . <y

o

CO

(6.1)

	

FQ (x) = f e-xYdQ(y) .

00
(6.2)

	

FQ (x) = II (1+e AX ) .
v=1

il<22< . . .<im

00

FQ.(x) = f e-xydQm(y) .
o

00

co

( Q (x, r) = 1 + G e-"FQm (x)
7n=1

we have evidently
CO

(6.6)

	

( Q(x, r) = 11 (l+e-r-Avx) .
V=1

7. We shall need the
LEIInA 11 . (1.9) implies for x ->. +0

(7 .1)

	

logFQ (x) = C,x alog - P {1+0 (log- ' loglogx

	

I

	

~~

with
t

h

(7.2)

	

CS =A(1- Q)F(a+1)á(a+l) .

For the proof we remark that representation (6.2) gives at once

logFQ (x) _ ( log (1+e-xv)dOA (y) = xJ
	 +(e) dy .

ő

	

o

(7 .3) logl'Q(x) = Ax~
lo

	
~ü+2 . 1+e

	 +
g fi (J

	

)

	

x7~

+ 0 (x)
00

	 ya	dyf logP+1 (y+ 2) 1 + exvo



:)8

(7 .4)

Ax

(8.1)

	

R (x) _
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The contribution of the range y < x- s log-1 I a (1/x) to both integrals
is (roughly)

1
0	

~x'logfl+I (I / ,,,v»

The same holds as is easy to see, for y > lOx-1 1og(1/x). The remaining
part of the second term in (7.3) is evidently

y"

	

1
(7 .5)

	

0(log1 +X, (1/x)

	

1 e
	 d~

	

C (x"log sT l (1/x))
0

Replacing in the remaining part of the first term in (7.3) logy (y+2) by
logO(1/x) the error is

1 loglog(1/x)

0 (x" log#11 ( 1-/x) )
A further easy reasoning gives - with the same error term

	

for the
main term

CIO

	

00

y"

	

Ax- "

	

y"

	

1
	 dy =

	

dy = C, x-"log, - ~ -
1+eT '

	

l°° í3 (1/x)

	

7+eY

	

x

indeed (C s in (7.2)) .
Combining Lemmas I and II we obtain

(7.6) logQ(N) = C2 ílra ("+')log-fir(" i~N{1 { 0(log-3 " -~~~NloglogN)}

indeed (C 2 in (1.11)) .

8 . Let further
CO

1

V=1
e

A . +1 .

We shall need the
Lm,uuA III . For x -~ +0 the relation

(g

	

(	Il(8 .2)

	

R(x) = Cgx-"log--0 ~ 1-~ 0
lollog /

xx
)

g( /X)
holds with

(8 .3)

	

C6 = AF(a+1) (1-Z)~(a) .

The proof of this lemma follows that of Lemma II mutati8 muta'Adzs ;
instead of the integral formula

00
	 Y"A f 1	 +e- dy = CS

0
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uev
Af

(1+ e")2
dy = C66

o

9. Now we may turn to the proof of Theorem It . Let

(9.1)

	

ihI = M(N) /' °O, ro = ro(N) 0, xo = xo(N)"k 0

to be determined later and we start from (6.5) . This gives

1+

		

(xo)e-"v'o <
Go (xo, ro)

I<n <M
and a fortiori

(9 .2)

	

FQ,n(xo) < GQ(xo, r,
na<M

Since for each fixed m (6.4) gives

N

	

N

TQ,,,(xo) i f e-xolldQ.(y) > e Nxof dQna(y) = e-"'xo Qnz(3T),

o

	

o
we get from (9.2)

( 9 3 )

	

Qm(N) < GQ(xo, ro)enlre+Nxo - FQ(xo)
GQ(xo, ro) eMro+Nxo

na<Ar

	

Gq (xo)

The expression in curly bracket is

00

]01+e-ro-4xo

m

1 e-1,xo
r-1

	

v=1

< exp 1(e-ro-1) ~
: eAvo0x+1 ( < exp I-ro (1-

From this and Lemma III we obtain from (9 .3)

Q.(N) < FQ(xo)eNxo x
m<M

xexp (ro {11I- (1-
r

C6x0 `~10g-~

	

(1+0 ( loglog(I/xo) ))l) .
tt

	

o

	

g ( / o )

Applying Lemma II this gives

	

C5

	

f(9 .4)

	

Y Q.(N) exp (Nxo {- xól0g (1/xo) ll
i 0

(

l

og(1 /x ) o) )I +
r,	C6	 i+o loglog(1/xo)
2 xologI(1/xo) (

	

( log(1/xo) »~) .

m<M

(1- e-''o) e- a„xo
j1-	
t

	

1-f- e- .Z
Y xo

-i- ro 1-11 - (1

i9
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10. Now we choose with a constant 2 to be determined later

,_y1/(1+a)log"1+a)N .
x o

Then
Cs

Nx„ }-
xolog ,' ( 1 /xo)

= Nal(1+a)log-dl(a+')N j1 +C52a(:L+a)R (1+0(
loglogN ~)l

l R

	

log N

We want to determine 2 so that

(10.2 )

	

1
+Gl ; 24 (1 + a)G = C2 = aal(a+') (1

	

'+fll('+a) Cs 'I('+«)+~

	

-- a)

(using (7 .2) and (1.11)) . This can however be written in the form

a	+12C11('+a) (I+a)01('+a)a'1('+a)}a = a .-F-1
(ílCSI (` a ) (1 .+ a)II('+«)all('+«))

	

s

which means that

satisfies the equation
a
--f-xa = a+1
x

which 's satisfied with x = 1 . Thus choosing

(10.3)

	

2 = CS'l('+a) (1+ a)-RI(1+a) a-'l('+a)

and using (10.1), (9 .4) can be written as

x = ~G5/(1 +«) (1+ a)0l(1+a) a'1('+«)

T

	

(

	

al(«+')

	

R1(a+')

	

(loglogN)1QM (~ ) egp C2N

	

log-

	

N11+0	 J }
m~ítit

	

IOgN

+r, X-(1-

	

C62a(I+a)fNal(a+')log-Rl(a+')N(1+0
loglo

t

	

2)
g )) 1)

Taking (7.6) into account this takes the form

(10.4)

	

QM(N) Q(N)eXP (0(Nal(a+' )log-(d+' ) I («+' ) Nloglog N)+
na~N!

+r, {M- 11- )C,Nal (a+')log- Pl (a +') N (1+0 (
toof

N ))~)t

	

\

	

g
N

owing to (8 .3), (10 .3), (7 .2) and (1.8) . Choosing

(10.5)

	

ro = log-'1(4a+4)ár
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and

(10.6)

	

31 = Mo
aet

,1Naj(a+1)log-01(a+1)N(I-2log- 1/(4a+4) N)

(10.4) takes the form

Q,,,(N) < Q(N)exp{-cNa (a+1)log-(~+§)I(a+1)N}

m<MO
with an unspecified positive constant c. This proves the first half of
the Theorem, II, concerning the solutions of (1.6) with "few" summands .

11. Now we have to dispose with the solution of (1.6) with "too
many" summands. The form of GQ (x, r) in (6 .6) shows that GQ (x(,, r)
(with the x o in (10 .1)) is an entire function of r and hence if

(11 .1)

	

z > rl = r, (N) 0
to be determined later, then Cauchy's coefficient estimation can be applied
to the segment

(11.2)

	

Rer = -rl , 0 < Imr < 27z .

This gives for each integer m

em l r,JFQ.(x o ) < GQ(xo, - rl)
and hence as in Section 9

(11.3)

	

Qm(N) < e`vxo --mIr1 IGrQ(xo, -

If
(11.4)

	

M l = M l (N) Jr o0

to be determined later then summation with respect to m > M l gives

(11.5)

	

Qm(N) < eNxo-M1r1G x

	

r	1 1Q (o~ - 1) 1-e r
m>M1

2 eNxo-Mlr1GQ(xo, - r l ) .
r l

The representations (6.2) and (6 .6) give

2 J

	

/((

	

00
1-{- 6ri- ~ vxo ,'

Qm (N) C M LFQ (x0) eNxo} {8-M1r1

	

1 + e-A°x0 1m>Ml

	

1

	

-1

/

	

rl-
_

	

{FQ(xo) eNxo} e-Mlr1

	

I I+
exrxo+1)}r,

	

1

	

U(
< 2 {FQ (xo)eNxo}exp {-Ml r1+(erl-1)R(xo)}

1
2

<

	

{FQ(xo)eNxo}exp(r,, {- M,+(1+r,)R(xo) }) .
1
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Repeating the reasoning in Section 10 we can derive from (11 .6)

oiv choosing

(11.8)

(11.7) gives

Q,»z(N) 6

	

Q(.N)egp(C(Nal(a
;-1)log-(~+i)l(d+1)-yJoglogllr)

M 131 1 z

-[-

	

1

	

loglogN
ri -i,Vh-[-(1-+-r1)CxN

	

l,og-

	

N -~-0
( logx

	

) .

Mi = CiNxl(a -i)log-~l(a+i)~r(1+L10g-il(4a+4)N) ,

r, = log-11(4.+4>A

Q, (N)

	

Q (N) egp (- cN,Il(u+l)1og-(#+I)I(,t : ') -Y)
,nom nr,

with an unspecified positive c . This completes the proof .
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