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Abstract. Denote by GU)(n; k) an r-graph of n vertices and k r-tuples. Turén’s classical problem
states: Determine the smallest integer f(n;#, {) so that every G (r)(n;f(n 3k, 1)) contains a K (’)(I)‘
Turdn determined f(n;7, 1) for r = 2, but nothing is known for r > 2. Put lim,_, f(z2; r, 1]{(’:) =
€1 The values of ¢, ; are not known for r > 2.

I prove that to every ¢ > 0 and integer ¢ there is an ng = ng(z, €) so that every
G [(c,. 1+ €) (D)) has e vertices x”, 1 <i <1, 1<j <1, so that all the r-tuples

{X?ll), TS Xg")}, 1<i <t 15j; <.. </, <l occur in our G, Several unsolved problems
are posed.

By an r-graph G (r > 2) we shall mean a graph whose basic ele-
ments are its vertices and r-tuples; for » = 2 we obtain the ordinary
graphs.

GP(n) denotes an r-graph of n vertices.

G (n: m) denotes an r-graph of n vertices and m r-tuples.

K®(n) will denote GP(n; (*)), the complete r-graph of n vertices.

K{(ny, ..., n;) will denote the r-graph of .., n; vertices x{/?,
1<j<Il, 1<i<mn;,and the r-tuples of our graph are all the r-tuples
G, PN LS L e Ry S VS Sy L S ES

K7ty will denote K7(t, ..., ).

e(G™) denotes the number of r-tuples in G, Thus e(K7(ny, ..., n)))
equals the rth elementary symmetric function formed from ny, ..., 1.

f(n; GP(u;v)) is the smallest integer for which every
G (n; f(n; GP(u; ) contains G(u; v) as a subgraph. Put

Fa KOO =000,  fu; KO0 =P D=120).

In other words £ () is the smallest integer for which every
GO (n; £ (n)) contains a K (7).
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The function f(n: G®(u;v)) was extensively studied in several recent
papers [2, 4, 11]. Turdn ([13], see also [12]), who started these investi-
gations, determined ﬁ(z)(n) for every / and »n (e.g. fgfz)(n) = [%n?]+1).

He proved

1) lim Q@@= 1 - —-
n—re !“'l
The values of £,*?(n) are unknown for every » > 3 and I > r, though
Turan made many years ago several plausible conjectures. He conjec-

tured, among others, that

@) =3nG)+n*+1, Ben)=n*r-1+1.
It is known and easy to see that
(2) lim f{7 (/) = ¢y,

exists, in fact it is shown in [9] that £ (n)/(?) is a nonincreasing se-
quence. The values of ¢,; are not known forr> 2,7/> r.

Stone and I [7] proved that for every ¢t > 1 and !> 2,
1

3) lim P (n;0)/(3) =1 I

Let G® be an ordinary graph of chromatic number /. Simonovits and
I [6] proved

@ Gy =1 -

-1
(4) is an easy consequence of (3), since every /-chromatic graph G is a
subgraph of some K2 (¢).
Very little is known about f(n; G®) for r > 2. I proved [3] that for
everyr=>2andt > 1,

(5) fOm )< en’ ot

For r = 2 this is a result of Kovari and the Turans [ 10], who proved that
€3, < 1/t. It seems likely that €, , = 1/¢, but this is known only for
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t=2and r=3([1], see also [8]). The best possible values for ¢, , are
not known forr > 2.

Let
1 1 1 1
> (1‘;_2)“55 (“m)-

(3) immediately implies that every G)(#n; [an?]) contains a subgraph
of m = m(n) (m - = as n - =) vertices which has at least %m?(1—1/(I—1))
edges (it suffices to take the subgraph K{?(2)). It is easy to see that

(1 —1/(I—1)) cannot be replaced by a larger number.

Let G (n) be any graph having the vertices Hi s Ko
G(”(xl-l, o X ) is the subgraph spanned by the vertices Xip> eees Xgp
probabilistic methods [ 5], the following result can be proved:

Let 0 < a < % and let n » «. Then there is a G®)(n; [an?]) so that
for every (m/log n) = = every subgraph Gm(xﬁ, o x!-m) spanned by m
vertices has (a + 0o(1))m? edges. In other words, the edges are in a cer-
tain sense uniformly distributed over all large subgraphs. It can be shown
that this result is also best possible in the following sense: Let 0 < a < V2
and G@ (n; [an?)) any graph. Then to every ¢ there is an € so that our

graph has a spanned subgraph G(z’(x,-l, o Xp ), m > ¢ log n for which

. By

(a—eym?® < e(GP(x;, ..., X; ) < (a +e)m?
is not satisfied. We do not discuss the proof of these results in this paper.

(5) clearly implies that every G (n; [en’]) contains a subgraph of m
vertices (m = m(n), m — o as n - =) which has at least (m" /r") r-tuples.
(To see this, it suffices to consider the subgraph K" (¢) the existence of
which is guaranteed by (5).) Unfortunately, this is the only result of
this type which I can prove for r > 2. [ am certain that the following
result is true:

There is an absolute constant ¢ > 1/r" so that every
G (n; [(W/r") (1 +€)]) contains a subgraph G (m; [cm” 1) where
m=m(n), m—> o asn— o=,

I cannot even prove this conjecture for r = 3. On the other hand I can
generalise (3) for r-graphs. In fact, I can prove the following:

Theorem. Forevery r2> 2,12 randt> 1,

lim P 0/ =c,, .
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The only blemish is that we do not know the value of ¢,; for r > 2.
To prove the Theorem we have to show that forevery r > 2,1 > 1
and € > 0, GP(n; [(c,;+€) ()] always contains a K (¢) if
n> ng(r, t, 1, €). First we prove the following

Lemma. For every G?(n; [(c,; + € ()]) and every m 2 r there is a suf-
ficiently small n = n(e) > 0 so that for at least n(};) m-tuples Xips oo X s

(6) e(G(r)(xf. s ey X ) > e+ Y2e) (T)

Proof of the Lemma. We evidently have (the summation is extended over
all the (}) m-tuples of n)
(7 27 (GO (x,

10 s Xy N=(2"") (Cr_{ te) (?) s
since each r-tuple of our G® (n; (¢, ; +€)(})) occurs in exactly (;;, ",
m-tuples.

On the other hand, if our Lemma would not be true then for all but
n(2y of the r-tuples, the r-graph G (x; 4 -+ Xj,,) has at most
(c,; +Y%:€) () r-tuples and the remaining (%) graphs G® By 5 ¥y )
can of course each have at most (}) 7-tuples. Thus we would have

(8) 226GV, . ..o x, ) < (W) (7Y (epy +Y06) + () ()
< () (P) (e, +%e)

for sufficiently small n = n(€). (8) clearly contradicts (7) since () (7) =
(7~") (7). This contradiction proves the Lemma.

Now we are ready to prove the Theorem. An /-tuple (I > r) of our
G is called good if all its r-tuples occur in G

Proof of the Theorem. Let GV (x, , ..., x; ) be any of the n(};) subgraphs
of GP(n; [(c,; +€) ()]) which satisfy (6). By the definition of ¢, this
graph contains a K®(7) if m > my(e), i.e. an I-tuple all whose r-tuples
occur in the graph, in other words a good /-tuple. Thus there are at least
n(%) I-tuples all whose r-tuples occur in G. These good I-tuples are not,
of course, all distinct, but the same /-tuple can occur in at most (,’j,‘_";)
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m-tuples. Hence for m > m our graph contains at least

(%) () > ()

good /-tuples. The good /-tuples define a GO (n) which, by (9) and (5),
contain a K}”(z) for every ¢ if n is sufficiently large. By the definition of
good I-tuples, the K(’)(r) having the same vertices as K D(#) occurs in

G (n; [(c,; +€) ()] (i.e. all its r-tuples occur in G'(’)) and this completes
the proof of the Theorem.

By the same method we can prove the following slightly more general
result:

Let G? be any r-graph whose vertices are X1, ..., X,,. G (¢) is defined
as follows: Its vertices are x), 1 <i<n, 1 <j<t; anr-tuple
(ff‘),.,,’),1<z< LLEn 15j,<t,5= 1, ..., r, belongs to
G (¢) if and only if (x;,, .-, X; ) belongs to G". We then have for every
t<1,

lim f(2; GO/ = lim f(n; GOWD/(G) =GV (e).
ok
Unfortunately, G (c) is known only if G ig a subgraph of K}’)(t)
for some ¢, in which case G®(¢) = 0. However, we can give a lower bound
for GW(c) as follows:
G® defines an ordinary graph G®(G™) by: G¥(G?) has the same
vertices as G®; two vertices of G are joined in G?X(G™) if and only
if they belong to the same r-tuple of G®. Let / be the chromatic number
of GA(GD). 1f I = r, then G is a subgraph of some K (¢) and
G (c)= 0. In general, it is easy to see that

(10) GO > H (1 —m) .

In general, (10) is certainly not best possible.

Perhaps the following result holds: Every G®)(3n; n3+1) contains
either a G®)(4, 3) (the structure of this graph is unique) or a graph of
5 vertices X, ..., X5 and four triples (x, x5, x3), (x1, X5, %4),

(xy, x5, X5), (x3, x4, X5), Or a graph of 5 vertices and five triples
(g, X5, X3), (xy, X5, Xq), (X1, X3, X5), (X3, Xy, X5), (X3, X4, X5).
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