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1. INTRODUCTION 

The following problem is due to Paul Erdijs tll. Color the 
edges of a complete graph K on n vertices red and blue. What n 
is the largest t such that we may always find a complete subgraph 
in which I# red edges - # blue edges1 Lt? 

We need a more precise and more general formulation. For 
any set V, define 

Vk = {W :, w&V, Iwl = k). (1) 

Note that V2 is the complete graph generated by V. Vk is called 

the complete k-graph generated by V. The elements of Vk are 
i~ll~dn~-~~~~~enW~yC~l~~pthe k-edges. A coloring of a set A, 

'k 
: Ak -+ (+l, -1). (2) 

The values +l, -1 may be thought of as Red and Blue. The sub- 
script k indicates a function on k-edges and will be dropped 
when there is no confusion. The function g 

k 
induces another 

function, also denoted by gk, on the subsets of A given by 

Set 

gk@) = 1 gk (‘I (3) 

jTk 

Hk(n) = min max lgk(B)I 

'k - - 

Networks, 1: 379-385 
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(4) 
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where A = Cl, . . . . n) and gk ranges over all functions satis- 

fying (2). Clearly HZ(n) is the t required in the opening para- 

graph. Erdijs [ll showed t~ H2(n) < cn 312 . We prove - 

Theorem: For k 2 1, and n sufficiently i!arge 

c ,lk+l)/Z Ck+2)/2 
k 5 Hk(n) 2 CL n (5) 

where the Ck, Ci ure positive absoZute constmts. 

2. THE PROOF 

The case k = 1 is trivial, Hi(n) = 13. We sketch the 

proof of the upper bound. 
Fix B CA, jBI = b. 

sum of {i) values gk(W). 

Letting gk be random, gk(B) is the 

The values gk(W) are +1 with proba- 

bility f, -1 with probability i and independent. Thus the 

distribution of gk(B) may be approximated by a normal curve of 

mean 0 and rs = !:I 
l/2 

/2 < nk'2. Thus - 

Prob [Igk(B) 1 2 cn 
(k+1)/2 

] 2 e-c2n/2* 

As there are 2 
n 

choices of B 

Prob lmax Igk(B) 1 2 cn 
(k+1)/2, < 2n e-c2n/2 

I - 

(6) 

(7) 

For c = &!-&?! the right hand side of (7) is less than unity 

so there does exist gk such that max lgk(B) 1 2 cn (k+1)/2 A . 

more careful proof, using that fact that most IBI 
the upper bound of (5) for 

- : will show 

Let us define 

c; - 
JGFyY- 

2(k+1)/2k,1/2 . 
(8) 

* 

gk(B1 
al a2 

B2 . -. Bt 
at 

1 = 1 g,(W) (9) 
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where the sum is over all WC A, (WI = n, - Iw n Bi/ = ai for 

lLi<t. This shall only be defined when the Bi are disjoint 

and i- aj = k. 
j=l 
Now we give a quick proof of the lower bound (5) for k = 2. 

Applying the methods of 131 we find sets B 
1' 

B2 &A with 

g2 (B1B2) 1 cn 312 (10) 

for some absolute constant c. But 

g2cBl) + g2(B2) + g2(B1B2) = g2(Bl uB2) (11) 

so 

IS,(v) 1 25 n3'2 for V = Bl, B2, or B1 U B2. (12) 

Now we prove our theorem for all k > 2. - 

Lf?mma 1: Fixk.2. Then there exists dl, . . a, d k > 0, toa 
such that for t > t o and Aj pair&se disjoint, lAjl = t, 

2 -c j -c k we have - - 

I{IBl, . . . . Bi) : Bj" Aj, Ig$Bl .+. B.)] > ti'231 > d.zti 2. - - z 
113) 

for al2 giJ 1 2 i 2 k. 
We shall first require 

Lemna2: Fix cl > 0. There exists c2 > 0, t , such that t > t 

impZies that for any choice of reaZ xjJ 1 2 j"z t, 
- 0 

satisfying 

Ixjl B I for I c j 5 clt, we have - - 

ljIv “jl ’ fi 

for at least c2Zt choices of VC Cl, '..J 75). 

(14) 

Proof: For Vc (1, .*., tl set p(v) = 1 xj, vl = v  n{j : 1 
jsV 

c j c clt), V2 = V - Vl. Then SD(V) = cp(Vl) + ~07~) so 

(14) does not hold if q~(Vl) e [rp(V2) - &, (p(V2) + &I. By a 
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theorem of Erdijs [21 for V2 fixed this holds for at most 

c PP') < (1 - c2)2 
rc,t1 

(15) 

Ir -ypF r 

values of V 
1' 

where c 
2 

is a positive constant dependent only on 

c1. 
Summing over all V2 yields Lemma 2. Q.E.D. 

Proof of Lerrima 1: We use induction on i. For i = 1 set x = 
5 

g,((j)) and apply Lemma 2. Now assume Lemma 1 holds for i - 1. 
I 

hy point a E A generates, with any (sit a COhring glal On 
A - {a). The coloring is given by 

g:fi(w, = gi(WU -Cal). 

Set 

V = (((Bl, ‘.., B i-l 1, a) : B.C A,, a E B., 
J- 7 1 

g;?;(B1 . . . Bi& 2 t(i-1)'2]. 

We double count 

1171 = 1 I{(Bl, . . . . BiB1) : ((B1, . . . . Biml), a) E VI] (16 1 
a 

= 
c ({a : ((B1, . . . . Biml), a) E VI]. (17 1 

B1, ***, Bi,1 

By induction the inner summation (16) is at least di 12 
t(i-1) 

. 

Thus 1~1 2 tdim12 
t(i-1) 

. The sum (17) has 2 
t(i-1) 

addends, each 

bounded by t. Thus for at least (d i-l/212t(i-1) choices of 

(B1 I . . . . B i-1) we have ]{a : ((B1, . . . . B i-l) a) E VI\ > - 

d i-lw. Fix such a (Bl, . . . . B ). i-l 
Set 

gi(B1 . . . Bi-,{a)l 
x = , a t(i-1)/2 

a E Bi. 

By assumption Ix,] f 1 for at least di lt/2 of the a. By Lemma 

2 there exists c2 such that 
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Ig(B1 .-. BimlBi)l = 1 1 
aeB 

g(B1 . . . Bi-l(a))l 

i 

= p-w 1 1 xal 
asB 

i 

, tU2 
- 

for C22t choices of Bi. As this is true for at least 

(d i-l/2)2t(i-1) choices of (B 
1' 

. . . . B i-l) we may show (15) for 

di = di-lC2/2' completing the induction. Q.E.D. 

Now let g = gk be any coloring on A, IA/ = n. For t = 13 

find disjoint Al, . . . . Akc A, 1~~1 = t. From the proof of 

Lemma 1 we find, and fix B1, * . . , 
Bk-l 

and 6 > 0 such that 

I{a : Ig(B1 . . . Bkel g {a)) I 1 t(k-1)'2}l L 26t* (18) 

Either 6t a's have g(B1 . . . Bk 1 l {a}) 1_ t (k-1)/2 or 6t a's 

have g(B1 . . . Bkml l {a}) 2 -t (k-1)/2 . By symmetry (between 

g and -9) assume the former. Set Bk = {a : g(B1 . . . Bk-1 l {a)) 

>n (k-1)'2]. Then 

g(B1 . . . Bk) = 1 
asB 

g(B1 . . . BkBl l la)) 

k 

> 6 t(k+1)/2 
- 

> E n(k+1)/2 
- (19) 

where E s 6/k (k+1)/2 > o independent of n. 
To prove our result'we first need a result in polynomial 

approximations. If G is a polynomial in, say, s variables we 
set \G! = the maximum absolute value of a coefficient of G and 
1 IGIl = max {G(xl, . . . . xs) : 0 2 xi2 1 for 11 iL s). 

Lemma 3: There exists E = E(S) > 0 such that if G is a poZy- 
nomial in s variables with degree at most s then 

I PI I L E PI (20) 
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Set T = {G : IGl = 1). With the 1 l 1 metric, T is compact, 
is continuous, non zero, so there exists E, IGl = 1 => 

IlGll LE’ But my G = IGI G1, G1 E T, so IlGII = IGl I]GllI 1 
E I+ 

It should be noted that by other methods explicit bounds 
on E(S) may be found. 

Proof of Theorem: We need transfer the imbalance (19) of a 
product into the imbalance of a set. For 1 < i < k let Wi range 

over all subsets of B i, lwil = rxil~ij~, where 0; xi 2 1 will - 
be determined later. 

g(W1 u l * -  

al ?k uw,, =Cg(W1 . ..Wk) (21) 

where the summation ranges over all nonnegative integers a., 
1 

F ai=k. Fix the a.. Set 
i=l 1 

v w 1' 
. . . . v w 

k' 1' 
. . . . Wk) = 1 if Vi& Wi for 1 < i < k - - 

0 otherwise. 

Then from (9) the expected value 

al 
E[g(W1 % . . . Wk )I = ELI g(V1 U... U Vk)u(V1, . . . . Vk, W1, .a., W,,] 

(the summation over all Vi & Bi, IvJ = ai) 

= 1 g(V1 u . . . u Vk)E[vtV1, . . . . Vk, wl, --a, Wk’ 1 

= c dV1 u-a- LJVk)Prob[ViC Wi, 1~ i 2 klVi& Bi, 1~~1 = ail 

k a. 
= II xi=~g(vlu...uvk) 

i=l 

(an approximation valid as k is fixed and n sufficiently large) 

al ?k i xai = g(B1 . . . Bk ) 
i=l i (22) 



IMBALANCES IN k-COLORATIONS 385 

Setting 

al 
C 

%ak, ,n (k+l) /2 
al...% = g(B1 **I k 

we have, using (22) in (21) 

(k+1)/2 
al ak 

E(g(WlU . . . uwn,, = n 1 c x1 =-* Xk 
al=YC 

where by (191, 1~1 11 2 s- %y Lemma 3 we find, and fix, 
. . . 

X -lI ---I x,- so that 
I 

where 

By the 

Wi ... 

Ig('i 

K 

E(g(W1 U . . . U W )) n = yn(k+1)‘2 

~11 1 [cl 
. . . 

lip 2 E e(k) which depends only on k. 

definition of expected value we find, and fix, 

WA, ]w;I = [xilRil~, such that 

J 
(k+1)/2 . . . u w;)I 1 IE(g(W1 U .--U ~~n))l LEln 

proving our theorem. 
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