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1. INTRODUCTION

The following problem is due to Paul Erdés [1]. Color the
edges of a complete graph Kn on n vertices red and blue. What

is the largest t such that we may always find a complete subgraph
in which |# red edges — # blue edgesl > t?
We need a more precise and more general formulation. For
any set V, define
k
vi={w:wcv, |w| =k} (1)

Note that V2 is the complete graph generated by V. Vk is called

the complete k-graph generated by V. The elements of Vk are
called k-edges. We color the k-edges. A coloring of a set A,
lAI = n, is given by a map

gk : Ak > {+1, -1}. (2)

The values +1, -1 may be thought of as Red and Blue. The sub-
script k indicates a function on k-edges and will be dropped
when there is no confusion. The function 9 induces another

function, also denoted by gk, on the subsets of A given by

g. (B) = ) g (W (3)
k cH k
|w]=x
Set [ 1
{n) = min max |qg, (B) (4)
He . BoA K
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where A = {1, ..., n} and Iy ranges over all functions satis-
fying (2). Clearly Hz(n) is the t required in the opening para-
graph. Erdds [1] showed -}f_[—lz(n) < cn3/2. We prove
Theorem: For k > 1, and n sufficiently large
n(k+1)/2 (k+1)/2

!
Ch < H(n) < Cpmn

where the Ck, 0;2 are positive absolute constants.

(5)

2. THE PROOF

The case k = 1 is trivial, Hl(n) = {%}. We sketch the

proof of the upper bound.
Fix BC A, |B| = b. Letting g, be random, g, (B) is the

sum of (i) values gk(W) . The values gk (W) are +1 with proba-

bility %, -1 with probability %and independent. Thus the

distribution of gk(B) may be approximated by a normal curve of

1/2
2
mean 0 and ¢ = (E) /2 ﬁ_nk/ . Thus

2
(k+1}/2] i'e-c n/2- 6)

Prob [|gk(B)I > cn

n i
As there are 2 choices of B

2
+ HE
Prob [max [gk(B)T Z_cn{k 1)/2] E-2n o ¢ n/2 N
BCA
For ¢ = V2 log 2 the right hand side of (7) is less than unity
+ 2
so there does exist Iy such that max |qk(B)| i‘cn(k L)/ . A
more careful proof, using that fact that most |B| - —gwill show
the upper bound of (5) for
e vlog 2 (8)

a a at
9 (B, B, " ...B_ ") = ) g, (W) (9)
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where the sum is over all WC A, ]WI = n, [W(’\ Bif = a; for
1 <i< t. This shall only be defined when the B, are disjoint
> i
and ) a, = k.
=1
Now we give a quick proof of the lower bound (5) for k = 2.
Applying the methods of [3] we find sets Bl, B2 C A with
3/2
9, (Ble} > cn (10)
for some absolute constant c. But
gz(Bl) * gz(le + gz(BlBZ} = gz(Bl LJBZ) (11)
so
c 3/2
> - = s
]gz{v}[ >2gn for V Bl' B2. or B1 LJB2 (12)

Now we prove our theorem for all k > 2.

Lemma 1: Fix k > 2. Then there exists dl’ & s d?{ 5
such that for t >t and A, pairvise disjoint, ‘Ajl =&,
1 <J < k we have

2 1/2 ti
(8,5 «.., B,) BiC Az lgy(By -ov B 2 77} 2 d;2

(13)
for all gz 1 <1<k

We shall first require

Lemma 2: PFix e, > 0. There exists cy > o, to, such that t > to

implies that for any choice of real % 25 1<J <t, satisfying

|xJ.| 1 for < ey, wve have
|} x.| >Vt (14)
JeV J
for at least cz2t ehoices of V< {1, ..., t}.
Proof: For VC {1, ..., t} set (V) = Z Xgo V) =V N{j :1
<3 <egth, vV, =V -V,. Then o(V) = cp:é\i:) + (V) so

(14) does not hold if p(V)) ¢ [p(V,) - Vt, o(V,) + Ytl. By a
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theorem of Erdds [2] for Vz fixed this holds for at most

[e. t]
) ety < (1 - c)2 (15)
c. t ) oy

lr - =—| < /&

values of V,, where ¢, is a positive constant dependent only on

1 2

c.. Summing over all V

1 yvields Lemma 2. Q.E.D.

2
Proof of Lemma 1: We use induction on i. For i = 1 set xj =

gl({j}) and apply Lemma 2. Now assume Lemma 1 holds for i - 1.

Any point a € A generates, with any g,r @ coloring giﬁi on
A - {a}. The coloring is given by
(a) _
qi_l(W) = gi(WlJ ta}is
Set
v={(By, «.., By ), @) : ByC Ay, a e By,
(a) (i-1)/2
9;1(By =-- By ) 2t 5
We double count
|v| = g |[{®B, «oev B, ) = (B, --oy By ), a) & VI (16)
o ) ] Ha = (B, «uy By )y ) eV}, (17)
17 7t Pima
: ; : ; 5 t(i-1)
By induction the inner summation (16) is at least di-lz .
Thus ’V’ z_tdi‘12t(1-l). The sum (17) has 2t(l_l) addends, each
t{i-1)

bounded by t. Thus for at least (di_1/2)2 choices of

(B, «.., B, ;) we have [{a : ((Bj, ..., B, ;) @) e V}| >

ceny Bi ). Set

di_lt/2. Fix such a (B i

ll
g, By ... B, {aD)

Xa = t(l-l)/z ’ a e Bj_--

By assumption |xa|.1 1 for at least d; ,t/2 of the a. By Lemma

2 there exists 02 such that




IMBALANCES IN k-COLORATIONS 383

Ig(Bl e Bi_lBi)l = |aZB 9By -.. Bi_l{a})]
i

i-1)/2
=2 ]
aeBi

3_tl/2

for C22t choices of B,. As this is true for at least
t(i-1)
(di_l/2)2

di = di_lc2/2, completing the induction. Q.E.D.

choices of (Bl, Vs Bi—l) we may show (15) for

Now let g = gk be any coloring on A, 1A| = n. For t = [%ﬂ

find disjoint Al, nap Akg; A, |Ai| = t. From the proof of

Lemma 1 we find, and fix B and § > 0 such that

17 07 B

(k-1) /2

|{a : |g(Bl <ee By {ah| > ¢ H o> 2st. (18)

(k-1)/2

Either §t a's have g{Bl - Bk—l - {ab) > t or 8§t a's

-t(k-l}/z. By symmetry (between

o+ {ab

have g(B1 §H Bk-l - {ah) <

g and -g) assume the former. Set B = {a : g(By ..

Bk
n(k-l)/z}. Then

>

g(B, ... B ! g ...B - {ah

aeB
k

> 8 t(k+l)/2

o i ELLAR (19)

where g ~ G/k{k+1)/2 > 0, independent of n.

To prove our result we first need a result in polynomial
approximations. If G is a polynomial in, say, s variables we
set |G| = the maximum absolute value of a coefficient of G and
l|e]| = max {6(x;, «ovop x)) 2 0<%, <1 forl < i¢ al.

Lemma 3: There exists ¢ = e(s) > 0 such that if G is a poly-
nomial in s variables with degree at most s then

lle|] > e || (20)
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Proof: set T ={G : |G| = 1}. with the
i|-| is continuous, non zero, so there exists g, |G| = 1 =>

lloll > . Bokany = o] 6,0 & & v 50 |]ol] = [a] [[&]l >
e |g|.

It should be noted that by other methods explicit bounds
on £(s) may be found.

1

Proof of Theorem: We need transfer the imbalance (19) of a
product into the imbalance of a set. For 1< i < k let Wi range

over all subsets of B_, |W.| [x.|B.|], where 0 < x, < 1 will
i i itvi -

be determined later.

oy %

g™ oW (21)

g, U ..o UW)

where the summation ranges over all nonnegative integers a;

k

z a, = k. Fix the a.. Set
, i i

i=1

u(vl, &% B vk, Wl, S wk) =1if vig W, for 1 < i<k
0 otherwise.
Then from (9) the expected wvalue
i %k

Elg(W,” ... )1 =E[} gV, U...UVIV(Vy, cuny ¥y, W

k 1’

(the summation over all V., CB., |V.| = a,)
B e B 1 1

=) gV, Ut UVIEWV, weey Viy Wpy woey W)

=7 gV, U--- UV IProb[v,C W, 1 < i< k|Vi < B, |vi| = a,]

a,
1
= I x; Y9, UL uv)
i=1
(an approximation valid as k is fixed and n sufficiently large)
a k a
i % i
= q(Bl o Bk ) .H xi (22)
i=1

metric, T is compact,

S Wk}]
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Setting
a
c =g, " ... B:k}/n(k+l)/2
aj.--ay
we have, using (22) in (21)
B! %k
E(g(WIlJ = LJWH)} _ n(k+1)/2 X o Xy ee X

ape-eay
where by (19), Ic1 ll > €. By Lemma 3 we find, and fix,

x ..+, X, so that
" Tk

ll'
(k+1) /2
0

1|€(k) > ¢ e(k) which depends only on k.

E(g(Wl U...UW)) =e¢

where |81| 2_|01.

By the definition of expected value we find, and fix,

Wi, W, (u| o= [xilBill, such that

(k+1) /2
] T

lgw; U...u W] > [Blgw U.ccuw )| > en
proving our theorem.
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