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DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH DIAMETER TWO

JURAT BOSAK, Bratislava, PAL ERDOS, Budapest (Hungary)
and ALEXANDER ROSA, Hamilton (Canada)

In the present paper the question is studied from three points of view
whether to any natural number & > 2 there exists a complete graph decom-
posable into L factors with diameters two. The affirmative answer to this
(uestion is given and some estimations for the minimal possible number
of vertices of such a complete graph are deduced. As a corollary it follows that
given k diameters dy, ds, ..., dy (wherek > 3andd; > 2fori=1,2,3,.... L),
there always exists a finite complete graph decomposable into £ factors with
diameters dy, da, ..., dr. Thus Problem 1 from [1] is solved.

In this paper we deal only with nonoriented graphs. By a factor of a graph ¢
we mean any subgraph of & containing all the vertices of . By a diameter
of ¢ we understand the supremum of the set of all distances between the
pairs of vertices of & (e. g. a disconnected graph has the diameter oo). The
svmbol ¢n> denotes the complete graph with »n vertices.

Let £ be a natural number. By a decomposition of a graph & into k factors
we mean a finite system {g1, g2, ..., ¢z} of factors of & such that every edge
of ¢ bhelongs to exactly one of the factors gi,¢a, ..., gx. The symbol
Frldy, da, ..., dy) denotes the smallest natural number »# such that the complete
graph (n> can be decomposed into k factors with diameters dy, do, ..., dg;
if such an » does not exists, we put ¥i(dy, ds, ..., dy) = c0. Further, put
Jeld) = Fr(d, d. ..., d). The main aim of the present paper is to find estimations
for fi(2). From [1] it follows that fa(2) = 5, 12 < f5(2) < 13.

Theorem 1. For any tnteger b > 3 we have:

th— 1< fu(2 bk =7
. g\ % S .
LSS PP
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Proof. To prove the upper estimation it suffices to decompose the graph

| )

into k factors with diameters two. The vertices of &' can be represented by
(2k — 2)-tuples formed from elements 1,2,3,...,6k — 7. The ith factor
(¢ =1,2,.... k) consists of all edges joining (2k — 2)-tuples with just i — 1
common elements. The remaining edges can be added to any factor. It is
easy to prove that all the factors have diameter two.

Suppose that for some k& > 4 we have fi(2) < 4k — 2. Then, according
to Theorem 1 of [1], (4k — 2> is decomposable into k factors ¢, g2, ..., gx
with diameter two. Put n = 4k — 2. None of the factors ¢; (i = 1, 2, ..., k)
may have a vertex of degree n — 1 (otherwise the other factors are not con-
nected), therefore, by [4], ¢; has at least 2n — 5 edges. The number of all
edges of (n) is

whence it follows that
(1) n2 4+ 10k = 4kn -+ n.

But
n2 4+ 10k = 1642 — 6k 4 4,

4kn +n = 16k2 — 4k — 2,

thus for & > 4 we have 2 — 10k << 4kn + n, which contradicts (1). For
k = 3 our assertion follows from [1], Theorem 7.

Remark. The upper estimation given in Theorem 1 is too high. Therefore
we later present some methods enabling to improve it, namely for a ,,small
in the second part of this article, and for a ,,great” & in the third part.

Iemma 1. Let k=2 2, 2=dy <do<ds < ... <dp < oo. We have:
Frldi,do, ... di) < Je(2) + dy + ds + ... di — 2k.

Proof. From Theorem 1 it follows that f.(2) is a natural number. If d; =
=ds = ... = dp = 2, the assertion of the lemma is evident. Thus we can
suppose that there exists an integer i (1 < ¢+ < k — 1) such that d; = ds =
=...=d; =2 < dy1 < ... <di. Let us construct a decomposition of the
graph

G={fr(2)+dr+do + ... + di — 2k

into k factors with diameters dy, ds, ..., dy.



The vertex set of & consists (as we may suppose) of vertices uy, us,

g, ..., U, and of vertices wj1, 252,058, ..., 0.0 (0 -+ 1 <j < k). Ob-
viously, the total number of vertices is fu(2) +diy +do + ... =~ dp — 2L.
The complete subgraph of & generated by the vertices wu,, us, ug, .. s Uy

according to the definition of fx(2) can be decomposed into k factors P15 §2s -ees
@r with diameter two. Define a decomposition of G into factors ¢, (m =
— 1,2, .... k) thus: Into ¢, there belong (i) all the edges of ¢, ; (ii) all the
edges uase (1 <s < fx(2), 1 +1<j<k 1<t<d;— 2) such that the
edge w51 be]ongs to g and j # m; (iii) all the edges of the path wivpatme...
v, 4.5 (if m = i + 1). All the remaining edges are placed into ¢;.

it

I1, is easyv to show that qc:,a has diameter d;; (m = 1, 2, ..., k). The lemma
follows.

Lemma 2. Let £t =2 3, 2 <dy <ds € ... € dp < oco. Then we have:

6k — 7

Fildi,da, ....dp) €
i(dh k) (%_2

) +dy - de 4 ... dy — 2k

Proof. Distinguish two cases:
1. di = 2. Then the assertion follows from Lemma 1 and Theorem 1,
11. dy > 2. By [1], Theorem 4, we have:

Fildi,da, ....dg) < dy —da+ ... dp — L.
Since for any b = 2 we have
6k — 7
= ’
2k — 2
the lemma follows.
Corollary. Let k = 3,2 < dy € ds € ... < dp < co. Then Fy(dy, da, ..., dy;)

s a natural number.

Proof. If d; < co, our assertion follows from Lemma 2. If d> = oo, the
assertion follows from [1], Theorem 3. Therefore we may suppose that da < oo,
dp = co, 1. e. there is an integer 7 (2 < i < bk — 1) such that 2 < d; < ds <
£ .. €di<ow=dy1=di2a=... = dy.

If ¢ > 3, according to Lemma 2, Fi(dy, d>, ..., d;) is a natural number.
Therefore the finite complete graph

G = (Fidy,da, ..., d;)>

is decomposable into i factors with diameters d;.dz, ..., d;. If we add £k — ¢
null factors (i.e., factors without edges), we obtain a decomposition of
into k factors with diameters dy,ds, .... d;, dio1, ..., di.

16



If i = 2, then according to Theorem 8 of [1] Fa(d:, d2, dg = oc) is a natural
number. Since

Fr(di,do,d3 = oo, ...,dy = o0) < F3(d1, da, d3 = c0),

then Fy(dy, ds, ..., dg) is also a natural number. The corollary follows.
Remark. As the supposition di € d2 < ... < di is not essential, the
preceding corollary completely solves Problem 1 from [1], p. 53.

Let a natural number » and a set 4 = {1, 2, ..., n} be given. 4 is called
an Sy-set if each x € {1. 2, ..., n}, v ¢ 4 can be written in at least one of the
following forms

x=a +b,
x=a—b,

x=2n+1— (a + b),
where a,.be 4.
Let k& be a natural number. Denote by g(k) the least natural number ! such
that the set {1, 2, ..., I} can be partitioned into [ disjoint S;-sets. (If such
a natural number I does not exist, put g(k) = oo.)

Lemma 3. fx(2) < 2¢(k) + 1 for any inleger k > 2.

Proof. Let natural numbers m and n be given. We ghall call a finite graph
(without loops or multiple edges) with m labelled vertices vi, s, ..., vy cyclic,
if it contains with each edge vw; (i,je {1, 2, ..., m}) the edge »_12;.1 (the
indices taken modulo m) as well. By the length of an edge v;2; we mean the
number

min {|t — j', m — [ — j|}.

Evidently, a cyclic graph containg either every or no edge of length 7 for
each i e{l, 2, ..., [m/2]}.

Agsign to a given Sy-set 4 a cyclic graph with 2n -~ 1 vertices containing
edges of length ¢ if and only if ie 4 (i = 1,2,..., n). It is clear that thus
a one-to-one correspondence between cyclic graphs with 2» 4 1 labelled
vertices with diameter two and S,-sets is defined. Further, it is obvious that
to different [disjoint] S,-sets different [edge-digjoint, respectively] ecyelic
factors with diameter two of (2n + 1> are assigned. Therefore the assertion
of the lemma follows immediately from the definitions of fx(2) and g(£&).

Let natural numbers =, ¢, integers ¢, d and a set 4 = {1, 2, ..., n} be given.
Denote by red,e the (uniquely determined) integer + such that
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¢ (mod 2n + 1),

-

= n.
Further, put
) = |red,r|,
e o d = |redyed|,

coAd=1{c-d; de A}.
Evidently, we always have
(%) 0<end<n,
ced={0,1,2, ..., nh
Lemma 4. If n and r are such natural numbers that the grealest common divisor
(2n -~ 1,7r) =1 and A is an S,-set, then r = A is an Sy-set as well.

Proof. Choose re{l,2,...,n}. It suffices to prove that either xecr - 4
or there exist a, b € 4 such that one of the equalities

r=roeag—+rosh,
X =¢F=ad —Fc b,
r=2n+1)—(rea-r-b),
holds.
It is easy to see that there is a y € {1, 2. ..., n} such that r° y = x. In fact,
as (r, 2n -+ 1) = 1, the congruence
rz = a (mod 2n — 1)
has a solution ze {1,2,...,2n}. If 1 < 2 < n,weput y =z, andifn +- 1 <
£z 2n, wepat y=2n+4+1—z
Since 4 is an S,-set, either y € A or there exist a, b € A such that one of
the following cases occurs:

y=a-—b,
y=a-+b,

If ye A, then evidently # = reyero 4. Let us analyze the other cases
{all the following congruences are related to the modul 2n -+ 1).

(I) y=a —b. Obviously L vroy=ry=ra—rb, where ra= + r<a,
th= L robh,
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By examining all 8 possibilities for choice of signs we find that one of the
following 4 cases occurs (we use inequality (*)):

x=roy= r°a- rob, hence x =roa -+ rob,
r=roy= roa—rob hence &t =roa — rob,
r=rey=—roa-+-rob, hence x =rebh —reoa,
x=roy= —roea—rob=_2n-L1)—rca—reh,

_ sox=2n-+1— (roa -+ rob).
(I1) y = a 4 b. Evidently
thoy=ky=1hka -kb= +hkoa+kob,

where we again have 8 possibilities for choice of the signs. Further procedure
is the same as in case (I).

(I1T) y = 2n 4+ 1 — (a -+ b). We have: +key = hky=k(2n -+ 1) — ka —
— kb= —ka — kb= ThkoaFhkeb Further we proceed as in case (I).
The lemma follows.

Lemma 5. Lel », n and k be such natural numbers that

(1) 2n 4 1 is a prime nuinber,

(2) & divides n,

(3) 1 is a primitive rool of 2n 4 1, (1)

(4) A = {10, 52D 580, = 1} is an Sy-set.

Then g(k) < n.

Proof. From (1) and (3) it follows that (», 2n -}- 1) = 1 and that the numbers
¥, 72, Lo, L., r20 represent all non-zero residue classes modulo 2n = 1.
From this fact it can be easily deduced that {¥, »@,  ##} = {1,2 ... n}
From (2) and (4) it follows that the sets A.r04, 2o 4, ... 1t 1c 4 are
mutually disjoint. They are S,-sets, as it follows from (4) and Lemma 4.
Therefore the set {1,2,..., %} can be decomposed into k disjoint S,-sets.
consequently g(k) < n.

Lemma 6. We have: g(1) < 1, ¢(2) < 2, g(3) < 6, g(4) < 20, g(5) < 35,
g(6) < 78, g(7) < 98, g(8) < 96, g(9) < 189, g(10) < 260.

Proof. We use the method from Lemma 5: we look for such a multiple =
of & that (1) is valid and the least primitive root » of 2n — 1 satisfies (4).
With the help of tables of the least primitive roots of primes (see, e. g. [5])
we can construct the following S, -sets A4 :

(*) A natural number » is ealled a primitive root of a prime number p if the numbers
#, #%, 18, ..., 71 = 1 represent all non-zero residue classes modulo p.
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& =l a="1 =2, 4 =41}

k=2 n= 2 r=2 A={1}.

L=3, 2= 6, r=2, A={1,5}.

=4, n=20 r=3 4 ={1,64,10, 16, 18}.

=35 n=235r=17 4 =1{1, 2023 26, 30, 32, 34}.

F=6, n="18 r=5 A=1{1,4,14, 16, 27, 39, 46, 49, 56, 58 G4, 67, 75}.

¥ =7 =258 r— 2 A:{lbl41020333(’686‘) 7, 83, 84,
87. 93}.

=8, n=06 r=25 4=1{1,7,9,12 16, 43, 49, 55, 63, 81, 84, 85}

F=09 n=189, r=2 A = (1,5, 25, 39, 51, 52, 57, 68, 76, 86, 91, 93, 94,
119, 124, 125, 133, 138, 162, 163, 184}.

=10, n = 260, r = 3, A = {1, 10, 18, 29, 32, 42, 52, 55, 62, 74, 98,
100, 101, 106, 114, 176, 180, 197, 201, 219, 226, 231, 235, 237, 255}.

To check that they are S,-sets is a matter of routine. The rest of the proof
follows from Lemma 5.

Remark. It can be easily found that even g(1) = 1, g(2) = 2, ¢(3) = 6.
By a systematic examination we can also establish that g(4) = 20, but. on
the other hand, ¢(5) = 30. (The inequality g(5) < 30 follows from the fact
tlwt A={1,5611,14,29}, 34, 324, 334 and 3%c 4 are disjoint

Si-sets.)

Theorem 2. We have: f>(2) < 5, f3(2) < 13, f4(2) < 41, f5(2) < 61, f4(2) < 157,
f2(2) < 193, fo(2) < 193, fo(2) < 379, fo(2) < 521.

Proof. Fork £ 5, k + 7 the upper estimation of f;(2) follows from Lemmas 3
and 6. For k = 5 it suffices to apply Lemma 3 and the preceding remark.
For & = 7 we proceed thus: Evidently f7(2) < fa(2), because from a decom-
position of a complete graph into 8 factors with diameter two we obtain
a decomposition into 7 factors with diameter two by unifving edges of any
two of the 8 given factors leaving the other 6 factors without any change.
Since f3(2) < 193, we have f7(2) < 193 as well.

Lemma 7. There exists a natural number N such that for all naturals n > N
we have: The number A, of all factors of <n)> with t = [l-"f3?23 log ] edges and
with a diameter greater than two is less than

n t

Proof uses methods similar to those used in [2].
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(I) Pick a vertex « of {n>. Let ¢ be an integer for which
0<e <t
holds. Denote by a; the number of factors of (n) with ¢ edges, in which the

degree of x is i. Evidently, we have:

%

(),

t—1
(IT) Put I = [l'. 3n log;]. Prove that there is a number N; such that for
i =0,1,2, ..., 1 and for every natural n > N; we have
o 1

€<
oy n3

It is easy to see that for any natural » the inequalities

nl < t,
A<t

are valid. Now, we have:

i+ 1)@+ 2)...20
= — — X
(n—i—1)n—i—2)...(n—2])

(2 )= ("2 2 —1) ("2 ) e+

“ ¢ —20 )t —2A+2)... (—i) "
n2\ 20—t
_ (- +2)..2 - (_é_) - -
—i— 1) —i—2)..(n—20) (f— 20+ 1)t—20+2)...(f— i)
L GEDE+2) .2 [\ n2i-i )
N 2214 (T) BT — R
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210 (t+ 1)@ +2)...2
< — ¥

f— ) (2nz-i

(t— 20— 1) — 21+ 2)...(t— i)

n 20— t 2 41 312 21 n 2
> - = o e ] = bt
21 21 21 n— 21

n— ol t— 201

1

sl <G (-

5 15\1n 1
= L
4 \16 n3

for every natural » > Ny, if Ny is a sufficiently large constant.
(ITI) Let us prove that the number B,(x) of the factors of (n> with f edges,
in which the degree of x does not exceed [, is less than

)

rng

IO.||—'

for every sufficiently large ».
Obviously. according to (II) for n» > N'; we have:

L, +a+ ...+

n?Bp(x)
- =" <
n n
2 (2
t t
g+ a1+ ... +a ap | ax a
< n? =n|l—T — + ... <
az azy as azy

1 /anlogn] + 1
<n(l+1)— = [1 gnl .
ns

n
Evidently. the last expression tends to zero for » — co. Therefore

[1/331 logn]+ 1 1
A . - M 0 L A < —_—
n 2



for i = N>, where X is a sufficiently large constant so that

n2By(x) 1

i.e.

By —
(x) < 5

'n_?

for n > max {&¥;, Ns}.
(IV) We prove now that the number B, of the factors of (n> with f edges
containing a vertex of degree < [, is less than

1 n
—\2
2n ¢
for n > max {N, N»}.

Evidently, we have

B'.'? g Z Bﬂ(:r)"

where # runs through the vertex set of (n). Therefore, using (I11) we obtain

N 1 1 ﬂ-) 1 7
By < ZBH(-‘-'] <n——|(\2)]=—[\2
2 n? f 2n {

Fa
for n > max {N. N>}.

(V) Fix now two different vertices x and y of (n) and two integers 7 and j
satisfving the relations | < i <<n, Il < j << n.

Denote by Dy(x, ¥, 1, j) the number of factors of {(n) with f edges in which x
has degree i, ¥ has degree j, and z is not joined with y by an edge. We have:

: . n—2
veain= (79059 ().
t—i—j

Further, denote by E,(x. y. i. j) the number of factors of (»> with ¢ edges
in which a has degree i, y has degree j, and the distance of x and y is greater
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than two. Evidently,
@ A n-—2)
Eua v i) = ("7 7) Nl ‘) ( 2
J b
We shall find a natural number N3 such that for every n > N3 we have:
Enlz, y.1,)) 1
Dn('t:s y) i;j) .n3
Obviously, we have:

Eux,y,,j) n—1i—2 n—i—3 n—i—j—1

Dy(x, y.1.7) n—2 n—3  a —Jj—1

n—i—2\ n—3—1\i+
Z ] g l—= G
n—2 n — 2

It is easy to see that there exists a natural number N3 such that for all
i > N3 we have

n—2

l+1

>1.

Evidently, it suffices to prove that for every n > N3 we have:

n—2 \il
= > nd.
n—3—1

But for n > N3 we have:

1 n=2
14 I+1
n — 2_ 1 > e.
[ -1
It follows that
n—2 141 1 v:_—-l'-: 1y
——a————— e 14— - n-2 =
n—3— !) T n—2
—1
l+1
(1+1)® (Faniogn)?*
Seni e 7 — n3



(VI) Let (', be the number of factors of (n) with ¢ edges in which all the
vertices have degrees greater than [ and with diameters greater than two.
From (V) it follows that for every » > N3 we have:

Cu = Z z En(.l-', ;f)'» i»,}) <
() (i,3)

Dra(3’-'e Y, i, ) 1 B
ettt = Dalz, y, i, ) <
nw

) e

gy W,4) .y 0
n
2 2
t # t
< _— ({: ) T ]
n3 2 n3 2n

(x,u)

where (x, y) runs through the set of all unordered pairs of different vertices
of ¢n) (i,j) runs through the set of all ordered pairs of integers such that
Il<i<<mn l<j<n
(VII) Put N = max {N;, Na, N3}. Then, according to (IV) and (VI) for
every natural number n > N we have:
n n
2 (2
t

Gl) (G

2n 2n "

Ay < B, + Cp <

The lemma follows.

Lemma 8. 4 natural number M exists such that for every integer n > 1l

we have: (n) contains
n— 2
12 log »

edge-disjoinl factors with diameter tio.

Proof. According to Lemma 7 there exists a positive integer N such that
for every integer n > N we have:

(2
1
A 7 £ = ?
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Put

u =

0]

Evidently there is a natural number N, such that for every n > Ny we have
w << n. Put M = max {N, Ng}. Obviously for » > 2 we have:

n(n — 1) n(n — 1)
Wiess |—mpm——————= ; —_— | =
[2[].-’ 3n3 log nj] [ 2 V3n3 log n ]

/?&2——2n+1 n:— 2n n—2
_— —— ; —_ = = _— i
12n log n 12n log n 12 log =

Therefore it suffices to prove that for n > M the graph {(a) contains % edge-
disjoint factors with diameter two.
If we assume the contrary, then each of the

u-1 ’?1- N
| | (2) 8
; t

systems S consisting of u edge-disjoint factors of <n), each with ¢ edges,
contains at least one factor with diameter greater than two. Any such factor
with ¢ edges and with diameter greater than two occurs just in

u-1 I .
| | o) — U
t

L

(u-——_J}!

gystems §. Therefore the number of factors of (n» with ¢t edges and with a dia-
meter greater than two is at least

1 ((3) ! (3)

g u t n\ t

?

which contradicts Lemma 7. Thus Lemma 8 follows.

Theorem 3. There exists a positive integer K such that for any integer b > K
we have:
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49
fe(2) < ( ).{Zlogk

Proof. Pick a natural number K; such that for every & > K; we have

49\2
[(—) k2 log k] =M,
10

where M is the constant from Lemma 8.
Pick a natural number Ky in such a way that for any £k > K,

I2log I > 750,

and, consequently.

— 3= — k?log k.

250

Further, pick a natural number K3 such that for every integer Lk > Kj

we have:
49\2 1
— log k < Jz2000,
10

Put K = max {K;, K», K3}. Pick an integer k > K. Put

hid kloghk — 1 2 9 gk"l k—3
ogk — 1] — —| kloghk —:
n— 2 . 10 &
= = o=
log n 49\2
k" log k 2log k + log o log %
1

2 log & -+ log (kawv)

n— 2
k< |,
12 log n

It follows that

LE]
-3



where n > M. From Lemma 8 it follows that {(n> can be decomposed into
I edge-disjoint factors with diameter two (the remaining edges may be added
to any factor). Consequently,

49\2
H2) s n << |—) Elogk.
(2) T g

The theorem follows.
Remark. It can be proved that there exist positive constants €5 and (>
such that

Cik? < glk) < ok log k

for every sufficiently large k: the left inequality is obvious; the right one can
be obtained using similar methods as in our Theorem 3 and in [3]; this re-
mains true even if we do not allow representations of the form 2n + 1 —
— (a - b). Now, using Lemma 3 we can again obtain that fa(k) << Ck2log k
for certain constant ' and all sufficiently large .

Problem 1. Is g(k)//2 bounded?

©(2)
Problem 2. Determine Iim f .
fn‘—bco l:
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