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AN EXTREMAL GRAPH PROBLEM

By
P. ERDOS, member of the Academy, and M. SIMONOVITS (Budapest)

Throughout this paper graphs are supposed not to contain loops and multiple
edges. G" denotes a graph of » vertices but only if # is an upper index. e(G) denotes
the number of edges, v(G) denotes the number of vertices, y{G) denotes the chromatic

d
number of G. G, XX G, or X G; denotes the product of the G’s, i.e. the graph
i=1
obtained from the graphs G, ..., G, by joining any two vertices belonging to different
G;'s. Here the graphs G, ..., G, are supposed to be vertex-independent. K, (ry, ..., ry)
denotes the complete d-chromatic graph with r; vertices of the /** colour, i.e.
d

Kfr . ....ry)= X G; where e(G))=0, v(G)=r;. If Eis any set, |E denotes the num-
=1

ber of its elements.

Introduction

=1
P. TURAN proved in 1941 [I] that if K"=p)( G" where n; = —”—] or n; =

i=1 p—1
= [-—q—] F1, and e(G")=0 then K" does not contain a complete p-graph and if
p—
G" is an arbitrary other graph not containing a complete p-graph, then e(G")=
=e(K").
This is the source of the following problems:

ProBLEM I. Let G,..... G, be given graphs. What is the maximum number
of edges a graph can have if it does not contain any G, as a subgraph?
Putting

(1 Fi1; G @Y = Max LG G, E G, 1S Ly vany )
the problem can be rephrased:
Determine the function f(n; G,, ..., G;) for given graphs G,. .... G,.

PrOBLEM 2, The graphs attaining the maximum in (I) are called extremal
graphs. Determine the structure of the extremal graphs for given G, .... G, and n.

The answer for these problems is fairly similar to the answer for TURAN'S original
problem:
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276 P. ERDOS AND M. SIMONOVITS

I. We have proved [2] that

@ ;G e, G) = [;][1—§+o(1)]
(3) where d+1 = min x(G).
1=i=l

(2) and (3) express that f(n; G,, ..., G,) depends very loosely on the structure of the
graphs G,. ..., G,. its order of magnitude is already determined by the minimal
chromatic number.

II. Later we proved independently [3], [4] that the structure of the extremal
graphs is also fairly independent of the G;’s, OQur most interesting results connected
with Problem 2 can be summarized as follows:

Let Gy, ..., G, be given graphs, K" be an extremal graph for G,, ..., G, and »n
be large enough. Then there exists an integer »=0 (depending on some colouring
properties of G;’s) such that

d L
A) K" can be obtained from a graph-product X N; by omitting 0[:12 ’]
i=1
1
edges from and adding O [n2 _7] new edges to it. Here
d+1 = min z(G)).

B) The components of the product are of almost equal size:

1
= v(N) = ;—I—O [nl_"-]
1
C) Each vertex x¢€ K" has valency greater than %(d-l)—clnl-T where ¢,

is a suitable constant.

D) Let £=0 be fixed. There is a constant X, such that the number of vertices
of N, joined to at least en; vertices of N, is less than K.

These assertions have asymptotic character. They illustrate that the extremal
graphs are very similar to that one in TURAN’s original theorem. They are the best
possible in a certain way. The theorem we prove in this paper has “exact character”
but the graphs G; are more special.

Here we have to remark, that this theorem is the first one, which describes the
structure of rather complicated extremal graphs fairly well.

THEOREM. Let 1y =1, 2 or 3 1 =ry,=--=r;,, be given integers. If n is large
enough, then each extremal graph K" for K. (r,, ..., rgy,) is a graph product:
d
K'= XN,
i=1
where
1) m = o(N) = 7 +o(n):

2) N, is an extremal graph for K,(ry,r):
3) Ny. oo Ny are extremal graphs for K, (1, ry).
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Conversely, if Ny, ..., N, are given graphs such that
d
4) there exists an extremal graph Y N; satisfying 1), 2), 3) such that

i=1
U(Ni)zv_(fvi);
5) Ny is an extremal graph for K,(r., 1);
6) N; is an extremal graph for K,(1,r), K,(2,2), Ky(1, 1, 1) (@i=1),

d
then K"= N, is an extremal graph for K, (r;, ..., 74s)).
i=1
Remark 1. Our theorem does not characterize the extremal graphs for
Kyii(ryy oo rgs ) completely. First of all, we do not know the extremal graphs for
K,(ry, ry) sufficiently well. Further, just because of this lack of knowledge about
the extremal graphs we do not know the exact values of »; for given n. The extremal
graphs are those among the described ones which have the maximum number of
edges. As far as we know this can occur for many different choices of the n,.

REMARK 2. For r; =1 [4] proves the statement. We shall prove it only for », =3.
The case r, =2 can be treated similarly.

REMARK 3.

4) flr; Ky (ry—1, 1)) = o(f(n; Ky(ry, ?‘2))) if ri=n

probably always holds, but we do not know it for r, =4. This is why we can prove
the theorem only for r, =4. (4) can be proved for r, =2 as follows: T. K&vary, V., T.
Sés and P. TUurRAN [5] and independently P. ERDGS (unpublished) proved that

5)

1

S(n: Ky (p, q)) = O[nZ_F] if p=gq.

P. Ernls, A. REnyL and V. T. Sés proved for p=2, BROWN for p=2, 3 that (5) can
not be improved [6], [7]:

(5a) S(n:K5(2,2) = %n352+0(n3f’2)
and
(5b) umf(n; K, (3, 3));’?15”} 0 if n—oo,

Now, (5a). (5b) and (5) imply (4) if r,=3.
Trivially (5b) gives a lower estimation for f(n; K, (4, 4)). We do not know any
better lower estimation for it.

ReMARK 4. In a forthcoming paper M. SIMONOVITS is going to prove some
generalizations, based on Remark 3.
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278 P, ERDOS AND M. SIMONOVITS

Proofs

First we prove two lemmas.

LemMa 1. Let G, be a graph not containing K,(ry, r,), let G; (i=2,...,d) be

graphs not eontaining K, (1, ), K,(2, 2), K5(1, 1, 1), where r,=r,=---=r,,, are given
d

positive integers. Then Y G; does not contain Ky, (ry, ..., Fai1)-
i=1

Proor. It is sufficient to consider only the case r,=r;=---=r;.,. We prove,
that if G, does not contain any of K, (ry, #;), K,(2,2), K5(1, 1,1) and G does not contain
any K,(r,, 13, s, ..., 15), then G X G, does neither contain any K, (r;, 73, Fas ooy 1)
From this the lemma follows immediately by mathematical induction.

First we remark, that K,,,(r, r,, ..., r,) has the following property: If we
omit some vertices x,, X5, ..., x; from it and either all these vertices belong to the
same class or x,, X5; ..., X, belong to the same class and A<r,, then the remaining
graph contains a K,;(r,, r,, ..., r,). This assertion is trivial if all the vertices belong
to the same class. In the other case let us denote by U, ..., Uy, the classes of
K;iy(ry, 15, ..., 15) and suppose that x, €U;, x,, ..., x;€U,. Let V be the empty
set if Uy={x,,...,x;} and a set containing exactly one vertex of U,—{x,, ..., x;}
otherwise. Then one can easily show that the classes U, (i, k) and U; J ¥V —{x}
span a graph containing K,(r,, 7y, ..., F2).

Let us consider now G X G, and suppose that it contains a K;.;(ry, 5, ... iy)
the classes of which are U, U,, ..., Uy, . We show, that either G, contains only
vertices of one U; or it contains one vertex from a U; and at most r,—1 vertices.
belonging to another U,.

Indeed, if there were x, y, z€ G, belonging to different U;’s then they would
determine a K;(1, 1, 1) £ G, contradicting our assumptions. Thus G, (1 U; is empty
for all but at most two values of j. If there existed u,,u, €U; 1 G,, vy, 0, €U NGy
then they would determine a K, (2, 2)< G, contradicting our assumptions, Thus,
G,MNKyq1(ry, 15, ..., 1) contains vertices, belonging to the same U; or a vertex
x € Ugand at most r, — | other vertices belonging to the same U; indeed. (|U;NG,| = r,
since G, does not contain a K, (1, r,).) Because of this there is a K;(ry, ..., rp) deter-
mined by the other vertices of K, (r,, ..., r,) which is contained by G X G,— G, = G.
This contradiction proves Lemma 1.

Lemma 2. Let G, r be given, r=3. There exists a constant cs ,=>0 depending
only on & and r such that if G is a graph not containing K, (3,r) and x< G" is a vertex
of valency greater than Ov in it then

© e(G") = f(v; Ky (3, 1)) = 5, v*F

ProoF. Let C be a subclass of vertices of G¥ consisting of == dv vertices, each of
which is joined to x. Then for no p,., ..., p,€ C, u,v € G* — {x} the set of these vertices
determines a K, (2, r) the first class of which is {u, v}; otherwise {x,u,v}and {p,, ....p,}
would determine a K,(3, r)S G". Therefore the graph determined by the edges
both endpoints of which beleng to C, does not contain a K,(2, r). Similarly the
bipartite graph, determined by the edges one endpoint of which belongs to C, the
other to G*— C— {x}, does neither contain a K,(2, r) the second class of which is
in C. Therefore the number of these edges is O(v¥'?). (The proof in [3] also gives
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this.) The remaining edges of G have both their endpoints in G*— C, thus the number
of these edges is at most f((1—8)v; K,(3, r)). Thus

e(G") = f((1-8)v; K, (3, 1)+ 0(3).

Since the disjoint union of two extremal graphs for X,(3, ) does not contain a
K,(3,r) either,

) FO1+v25 K3, ) = f(vis K, B, 1)+ (v25 K2 (3. 1))
Thus
8) e(G) = f(v: K, (3, 1))+ O(n**) —f(6v; K,(3, 1))

Since f((dv; K5(3. r))=c,(6v)*"3, (8) implies (6).

ProoF oF THEOREM. Let K" be an extremal graph for K,. (r, ...,7;4) and
colour it by  colours so that the number of edges, having endpoints of the same
colour be minimal. Then there exist an integer r and graphs N, ..., N; so that
A), B), C). D) hold (see Introduction and [4], [3]). We shall use them only in the
following weaker form:

i

d
B) All the vertices have valency greater than %(d— —o(n).

@) C; denotes the class of vertices of N, |C)| = n, = —+o(n).

1) Let é=0 be a small constant (fixed only later). Let us denote the class of
vertices of C;, joined to at most en vertices of the same C; by C;. Then there exists
a constant X, depending only on ¢ and r, ..., Fyy, such that |C;—C;| < K,. The
vertices of C,—C; will be called exceptional vertices, and y) expresses that their
number is bounded. Clearly, if x£C;, then x is joined to at most en vertices of
C; but if n=n,(e) it is joined to at least |C;|—2en vertices of C; because of a) and
B) (i#)).

I. Let E= 3 mn;. Trivially, E is the number of pairs of vertices in K"

1=i=j=d
belonging to different classes.

Lemma | implies that

©) f(".-' Ky (rys ----"d+l)) = e(K") = E+f(n,; K, (3, "2))+J=Z':f(”s§ K, (1, "2))-

Indeed, if G™: is an extremal graph for K, (r,, r,), G", ..., G"s are extremal graphs for
d
{K, (1, 1), K,(2.2), K5(1, 1, 1)}, then G"=X G" does not contain a K;,  (ry, ..., 744 1)s

i=1

thus e(K")=e(G"). It is easy to see that the extremal graphs for {K,(1,r,) K,(2,2).
K;(1, 1, 1)} are also extremal graphs for K, (1, ry), if n is large enough. If n,(r, —1)
is even, the extremal graphs for X, (1, r,) are regular graphs of degree r, — 1. If n;(r, — 1)
is odd, such graphs do not exist, the extremal graphs have n, —1 vertices of valency
¥, —1 and one vertex of valency r, —2. If m; is large enough, among these graphs
there exist graphs not containing either K,(2,2) or K;(1, 1, 1). This and

f(”.l K, (1, ?'2)) :Ef(ni Ky(1, ). K5(2,2), K5(1, 1, 1))
prove that

f(”; K,(1, -"z)) =f(-'7; K, (1, ry), K3(2, 2), K5(1, 1, l))
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for large values of n;. This implies, that each extremal graph for {K,(1, i), K3(2, 2)-
K;(1,1,1)} is also an extremal graphs for K, (1, r,). Therefore, the right hand side of
(9) equals to e(G”)=e(K"). Thus (9) holds.

II. First we remark, that C; does not contain a K, (3, r,); for if it contained a
K,(3,r,), we could find a K;_,(r3, ..., 744+,) in the graph spanned by the other
classes so that K5(3, 1) X Ky_ (13, coos fgry) = Ky 1 (3515, .o, rg4y) would be con-
tained by K",

Now we prove that if C{ contains a K,(2, r,), then for i=2, C; does not contain
a K,(1, ry). Let us denote by B, (j=2, ..., d) the class of vertices of C; (j=2, ..., d)
joined- ’[0 all vertices of the fixed KZ(Z r,)ECi. If there were a u<B; and

vy, ..., b, € B; joined to u (j=2), then these 75+ 1 vertices and the fixed K (2, rz} Ci
and r4, ..., Py suitable vertices of B, ..., B, (if d=3) would determine a
K4 B, rz_ , Fagq) in K7 if ¢ is small enough (The expression ‘‘suitable”™ means:

the other vcrtices must determine a K;_;(r4, ..., ry+ 1) €ach vertex of which is joined
toeach vertex of the fixed K, (2, r;)and tou, vy, ..., vy, )Therel‘ore the set {ir, v, ..., U, }
can not exist. Thus B; contains O(n) edges. Let us consider the j class, j=2. The
number of edges in C —B;is O(m3’3), where

= [C;—Bj| = 2+7r;)-2en.

The remaining edges of K* in C; join C;—B; to B;. Their number is O(nm}?).!
Let us divide B; into classes of =m; vertlces Each of these classes together
with C;— B; detcrmmes a graph of ~2m; vertloes not contammg K,(3,r,). There-

fore each of them has O(m3;'?) edges and their number is ~ d . Thus Cj contains
i

O(n)+ O (mI3) + O(nm2!?) = 23. 0 (n3/3)

edges and the same bound holds for C;. Thus C,, ..., C, contain &*/3 . O (1*'3) edges.

Let us suppose now that C; contains a K, (1, r,) and let 4, denote the set of
vertices of C; joined to this K, (1, r,). Clearly, 4, does not contain any K,(2,r;),
otherwise C5J A, would contain a K,(2, r3)XK,(1,r,) 2 K5(3, 75, r;) and taking
suitable vertices from the other classes we could complete this K;3(3.r,, ;) into a

Kyi 13, ras 13y ooy Fao 1) S K™ Therefore, the method used above gives that Cj con-
tains only &%30(n*?) edges. The same bound is valid for C,, thus
(10) e(K") = E+e*20(n%"3).

Now we fix ¢ so that (10) should contradict (9). Thus C3 does not contain K, (1, r,)
and generally, C; ( j=2) also does not contain it.
In general it could happen that C did not contain K, (2, r,). But if no Cj con-

tained a K,(2,r;), then
e(K") = E+d-0(m*?)+0(n)

would hold contradicting (9). Thus we may assume that C; does contain a K, (2, r,)
and C3, ..., C; do not contain any K,(1, r,).

1 This can also be derived directly from the proof of [5].
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II1. Now we show that if n is sufficiently large, then there exist no exceptional
vertices: C;=C;. Actually we prove that if &' = }r;,,-d-& and n is sufficiently
large, then K" contains no vertices joined to at least ¢"n vertices of each class. Since
¢ is an arbitrarily small positive number, this gives that the maximal valency in
N, is o(n). This, of course, implies that C;=C; for n=n,.

Let us suppose that x € K" is joined to at least ¢'n vertices of each class. Then
the graph G* spanned by x and C; can not contain a K,(3,r;). Indeed, since C;
does not contain a K, (3, ry), if G* does, then x must be a vertex of this K, (3, r,).
Since each non-exceptional vertex is joined to all the vertices of the other classes
but at most e, we may select succesively ry, ..., ¥, vertices of C3, ..., C; so that
the selected vertices span a K;_,(ry, ..., 7z+4) and are joined to each vertex of the
fixed K, (3, r,). Thus K" containsa K, ; (3. 75, ..., ¥4+ ;). This contradiction proves that
G* can not contain any K,(3,r;). Thus C; (and C; as well) contain f(n,; K5(3,7,))—
—en®!3 edges (Lemma 2) where ¢=0. Since C; (i=2) does not contain any K, (1, r,),

(12) e(K") = E+f(ny; K53, ry))—en®3 + 0 ().

But (12) contradicts (9). This proves that K" has no exceptional vertices: C; =C;.
Thus C, does not contain K,(3, r;), C,, ..., C; do not contain K,(1,r,) and con-
sequently

(13 oK) = E+f(n; Ko Bur) + 3 S0 KoL)
(13) and (9) proves that .
(14) e(K) = E+f(ny, KGy 1) + 3 f(n, Ko (L),

Since C, does not contain K, (3, r,), the graph spanned by it must be an extremal
graph for K, (3, r,), otherwise the “equal” of (14) would be “definitely less”, Similarly,
the graphs spanned by C,, ..., C, are extremal graphs for K, (1, r,) and if they are

d

denoted by N, N,, ..., N, then K" = X N,, i.e. every two vertices are joined, if
i=1

they belong to different C;'s. .
The second part of the Theorem is trivial now: If N; satisfies our conditions,

d

K" = X N, has the same number of edges as K" and according to Lemma 1 it
i=1

does not contain a K, ,(r;, ..., ¥4 ;). Therefore it is an extremal graph for it. This

completes our proof.

REMARK 5. An easy discussion shows that if =2, r,=3, {K,(1,r,), K;(2, 2),
Ky(1, 1, 1)} can be replaced by {K,(1,r,), K;(2,2)} but it cannot be replaced by
K,(1,r).

{ Received 22 April 1969)
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