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Let n, < n2 < ..* be an infinite sequence of integers. The necessary and 
sufficient condition that for almost all a: the inequality 1 oi - ai/ni 1 < $ziz 
with (a,, ni) = 1 should have infinitely many solutions is that CT=‘=, #,ni)/nia = co, 

The techniques used in the proof can perhaps be applied to prove an old 
conjecture of Duffin and Schaeffer. 

LetO<ol<l, 
1 a=- 

al + 
I 

a.2 + **. 

be the development of E into a continued fraction (the LI’S are positive 
integers). pp)/&’ (1 < i < co) is the sequence of convergents belonging 
to 01. Let n, < n2 < ..- be any infinite sequence of integers. We are going 
to investigate the necessary and sufficient condition that for almost all a 
infinitely many of the a?) should occur amongst the n’s. S. Hartman and 
P. Sziisz [I] proved that for almost all DI every arithmetic progression 
contains infinitely many qz(*), and P. S&z [2] obtained an asymptotic 
formula for the number of i < n for which 4:“’ lies (for almost all cx) in a 
given arithmetic progression. 

We are going to prove the following 

THEOREM I. The necessary and sujicienl condition that for almost all 
x injiniteiJ> many of the qj”’ are in the sequence n, < n, < ... is that (4(n) 
is Euler’s 4 frmcfion) 

425 
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The proof of the necessity is trivial and was of course well known. If 
p/q is a convergent of 01 then it is well known that (p, q) = 1 and 

Thus the measure of the set in ~1: for which a/na , 1 < c1 ( 12~ , (a, aJ = 1, 
is for some a a convergent of a is less than 245(~)/n,“. Hence by a simple 
and well-known argument (Borel-Cantelli Lemma) if the series (1) con- 
verges then for almost all 01 there are only finitely many 41”’ amongst the 
4 . 

The real difficulty is the proof of the sufficiency. It is well known that if 

then p/q is a convergent of o(. Thus to complete the proof of Theorem I it 
will suffice to prove the following. 

THEOREM II. Let E > 0 and assume that the series (1) ditierges. Then 
for almost all oi the inequality 

has irzfinitely malzy solutions. 

The proof of Theorem II will be long and difficult, and before we start 
it I want to make some remarks. 

The well-known conjecture of Duffin and Schaeffer [3] contains our 
Theorems I and II as special cases. Their conjecture states that if 
n, < n, < ... is a sequence of integers and 6, > 0 then the necessary and 
sufficient that for almost all 01 

lb-:1 <6, 
ni ’ (a, ni) = 1 

should have infinitely many solutions is that 

diverges. Theorem II follows by putting 6% = E/Q . It is very likely that 
our technique will also prove the above conjecture, but the details would 



DISTRIBUTION OF CONVERGENTS 427 

be very much more complicated and so we do not investigate this question 
at present. 

In Theorems I and II one could ask for the number of solutions in 
i < N, Put 

A(N) = 5 $b(ni)/ni”. 
i=l 

Perhaps the following result holds: For almost all z the number of solu- 
tions of (2) for 1 < i < N equals (1 -+- o(l)) 24N). Using a recent 
unpublished result of P. Sziisz one could make an analogous conjecture 
of Theorem I. The proof of these conjectures would in any case be prob- 
ably very laborious and we do not consider them here. 

Now we prove Theorem II, Theorem II will follow easily from the 
following 

LEMMA 1. Let (a, , b,) ai < bj , j = l,..., T be a sequence of disjoint 
intervals in (0, 1). Denote the union of these interoals by S. Put 

Then there is an 7 = v(A) so that if n, < n, < ..* < nk is a sequence of 
suficiently large integers satisfying 

then the measure of the set in a: where 01 E S and for which 

is solvable for some i in 1 < i < k is greater than EQA, 

Let us assume that Lemma 1 has already been proved. We then easily 
deduce Theorem II. If Theorem II would be false there clearly would exist 
a set U of positive measure so that for all cy in U (2) has only a finite number 
of solutions (it is easy to see that t7 is measurable). Hence by a simple 
argument there is an index i0 and a U, C U of positive measure so that for 
the DI in U, , (2) has no solutions with i > i0 . By the Lebesgue density 
theorem there is a sequence of disjoint intervals (aj , b,), 1 < j & T, with 

J$l (bj - a,) = A > &2(U,). 
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(m(UI) denotes the measure of U,), so that 

m[(aj , bj) n u,] > (1 - 7) (bj - aj), (5) 

which implies that U, intersects the union of the T intervals (aj , b,), 
j = l,..., Tin a set of measure greater than A[1 - (q/2)]. 

Now since (1) diverges there are arbitrarily large values of j, and j, so 
that iO < j, -C j, and 

(6) 

Hence by Lemma 1 the measure of the set in 01, ai < 01 < bi , 1 < j ,( T, 
for which 

is solvable forj, < i <j, is greater than qA/2. This contradicts (5) and 
thus Lemma 1 implies Theorem 2. 

To complete our proof we now have to prove Lemma 1. 

Denote by M the measure of the set in a, ai < a: < b5, 1 <:j ,( T, for 
which (4) is savable for some i, 1 < i < k. m(q) denotes the measure of 
the set for which (4) is solvable for ni , and m(q , nj) denotes the measure 
of the set for which (4) is solvable for both ni and n, . We have, by a simple 
sieve process, 

(6’) 

First we estimate m(q) from below. Denote by &rzi ; as, b,) the number 
of integers I satisfying 

ajni < t < bjnz , (t, ni) = 1. 

By a simple sieve process we find, for sufficiently large n, (u(n) denotes 
the number of distinct prime factors of n), 

= (1 + 41)) $h)(bj - ad. (7) 
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From (7) and A = Cj’=, (bj - q) we easily obtain (the length of the 
intervals (4) is 2c/ni2) 

(8) 

Thus from (3), (6), and (8) 

Hence by (9), (3), and (6) to complete the proof of Lemma 1 we only have 
to show that if 7 = q(A) is sufficiently small then (3) implies 

The proof of (10) will be long and difficult. First, for purposes of 
orientation, we remark that if nj is large compared to ni we have 

The proof of (11) is easy. Consider a fixed interval 

( 
t E --- 
ni t +yg> 3- ni2 ni 

(t, NJ = 1. 
z 

(11) 

It follows from (7) that for sufficiently large nj the number of integers 
(t’, nj) = 1 satisfying 

is (1 + o(l)) $(nJ 2~/n,~. Since the number of the intervals (12) which are 
in Sis by (7) (1 + o(l)) A&), and the length of the intervals of m(q) is 
2+tj2 we immediately obtain (11). (To clarify this sketch we remark that 
to get the exact formula for m(ni , nJ one need not only count the t’/nj 
which lie in an interval of W(Q), and on the other hand if P/ni lies in tn(n,) 
sometimes not all of this interval of m(q) is counted in WT(~~, nj). But it 
is clear that the error made by using the present simple counting process 
is negligible.) 

If (11) would be true for all ni and nj then (10) would easily follow 
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from (1 I), (9), and (3), if r) = q(A) is sufficiently small. The difficulty with 
our proof is that (1.1) is certainly not always true; thus to prove (10) we 
have to use very much more complicated arguments. If m(ni , nJ is not 
0 and if ni < rz3- there must exist integers 

1 < tj <?lj, 1 < tj < n, ) 

satisfying 

t, _- 
ni 

or 

Now denote byf,(q , nJ the number of solutions of 

1 < tj < nj, 1 < tj < n7 ) (tj ) Q) = (t, ) nJ = 1 

1 tznj - tini 1 -c 2.5 $- . 
(13) 

2 

Observe that the overlap of the intervals 

is at most 24nj2. Hence clearly 

By the same method which we used to prove (11) we can show that if 
nj/ni is very large then 

but again (15) is not always true. Thus we have to use much more com- 
plicated methods. 

Let n be any integer. Define g(n) as the smallest integer for which 
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where in C’ the summation is over all primes p with p i n, p > g(n). Put 

c Yn(% , nr) = 21 + 22 7 (17) 
l<i<K:k 

where in .X1 the summation is extended over the i and j for which 

mj/ni > d4ftt, where d = (ni , nJ, t = max(g(rr,), g(q)), (18) 

and in & over the i and j which do not satisfy (18). 
First we estimate Z; . We are going to prove that 

(19) 

To prove (19) we first show that if ni and ni satisfy (18) then (the c’s 
are suitable positive absolute constants) 

(20) 

Assume that (20) has already been proved. Then (19) easily follows. 
From (20) and (14) we have 

Thus from (3) 

if q1 = r,(A) is sufficiently small. 
Thus to prove (19) we only have to show (20). Denote by H(U) the 

number of solutions in ti , tj of 

tinj - tini = W 1 < ti < n, , 1 f tj < ni , (ti , ni) = (tj , nj) = 1. 

(21) 
Then it is clear that 

H(u) = 0 if d-t’ u, and H(U) < d if d \ u. (22) 

We shall need stronger results than (22). We may assume that d j U, and 
we write 

M = d d,u, (23) 
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where (ul , d) = 1 and where a, is composed of prime factors of d. This 
representation is clearly unique. 

The notation p” jj n will mean that pa 7 n but pol+l { II, and we put 

4&> = IMP”, pa il du > P G t. (24) 

As usual, n(t) will denote the number of primes not exceeding t. Finally 
we write 

We have 

where in C’, the summands u satisfy ) u ) < 24nj/rzi) and d,(t) < tn(*), 
while in C” they satisfy I u I < 2&~/n,) and d,(t) > P). 

LEMMA 2. H(U) = 0 unZess (or , ylil) = 1. 

Proof. Suppose that (ur , nz3) > 1, and suppose p 1 u1 , p 1 rzi3 . Since 
(u, , d) = 1 we have p -I d; hence either p 1 ni or p / nj . Assume that 
p I n, , p 7 n, . If H(U) were positive, there would be a solution of (21), 
whence p 1 tini . Since p Y ni we have p I ti , which contradicts (ni , ti) = 1. 
This proves the lemma. 

We now estimate the sum C” in (26). By (22) and by Lemma 2 we may 
restrict ourselves to summands u with d 1 u and with u f 0. Since 
d,(t) > tn(f), &(t) must have a prime factor p < t with p” J d,(t) and 
pm > t. If a is even, d,(t) is divisible by a square greater than t. If 01 is odd, 
d,(t) is divisible by the square pa-l > t1-(1/a) 3 t2/3. 

Thus 

By (16), (IQ, and the theorem of Mertens we have 

(27) 
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The inequalities (27) and (28) imply that, for sufficiently large 4, 

C” < c~u$(nJ $(nJ/2n,2. (29) 

Thus by (26), to complete the proof of (20) we only have to show that 

To do this we write 

C’ = c,*: c f&4> (31) 
,4<2-5ln, d,(t)=s 

where the summand s in C* runs through all the divisors s of d which do 
not exceed t”‘Q and all whose prime factors are not greater than t. 

We now need a better estimate for H(U) than (22). Let tir, tj’ be the 
unique solution (if it exists) of 

I ni 
ti d - fj’ L$ = u 

d’ 
(32) 

0 < ti’ c ni[d, 0 < tj’ -c nJd, (ti’, nJd> = (ti’,nj/d) = 1. 

We obtain all the solutions of (21) by considering all the integers of the 
form 

with the integer X satisfying 

( fi’ + x+ ) d) = (tj’+X+,d) = 1, 0 < x < d. (33) 

Then H(U) is not greater than the number of solutions of (33). In fact, 
either H(U) = 0 or H(U) equals the number of solutions of (33). 

Suppose now that 

P I4 p-r 4 > P-Y n,, . 

Then (33) implies that 

X $- + - ti’ (mod p), X-$- + -fj’ (modp). 
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Since p ‘i (q/d) and p Y (q/d), each of these relations exclude a residue 
class mod B for the variable X. The determinant 

by (32), and since p -f uldu , it is - 0 (mod y). Hence two distinct residue 
classes mod p are excluded for X. In general, if p I d but if p 1 dzl or p ) ni3 , 
we can conclude that one residue class is excluded for A’. Hence 

(34) 

Now if p ; nil and p 1 d, , then (32) has no solution. We may therefore 
in the sum z: in (31) restrict ourselves to summands s which are not 
divisible by primes p with p ( nsj . 

We have 

By Lemma 2, the condition H(u) > 0 implies that (ul , n,,) = 1. We 
have 

say. Now (tll , d) = (tl i , irz,,) = 1, and d,/d,(t) is not divisible by a prime 
< t. Hence y is not divisible by any prime p with p < t and p / dn,, . 
Hence the sum on the right hand side of (35) is bounded by 

Thus by the sieve of Eratosthenes it is bounded by 

4 (3 gt (1 -$--j + 2”‘1’). 

qdnij 

By (18), by the formula of Mertens, and since s < P(~), we have 
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and thus the sum on the right hand side of (36) is bounded by 

In view of the definition of t in (18), this is 

435 

Using (35) and the definition of t again we obtain 

(37) 

1 
7 > 

Thus by (31), 

where the sum is over all the divisors s of d with (s, Q,) = 1. We obtain 

Now 
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Thus (38) yields 

c’< 

which proves (30) and hence (20) by virtue of (27), (26) and (29) Thus 
(19) follows. 

Next we prove 

1, < nit-A/4. (39) 

If (39) is proved then (19) and (17) implies (10) which completes the 
proof of Lemma 1 and hence also proves Theorems 1 and 2. The proof of 
(39) is not quite simple. 

By the definition offE(ni , n,) and by (22) we have f,(ni , n,) < 2~n,ln~ , 
and using (14) we obtain 

By (40) we have 

1 
x2 <48X’-, nini 

where in C’ the summation is extended over the ni and nj which do not 
satisfy (18). Thus to complete the proof of (39) we only have to show that 

Let t, = q;l. We have 

where in x1’, t < t, and in x2’, t > t, (t is defined by (18)). The estimation 
of x1’ is trivial. If t < t, we have by the theorem of Mertens and by (16). 

(43) 
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Thus by (3) 

437 

for sufficiently small -qr . 
Thus to prove (41) and (39) we only have to prove that 

(45) 

The proof of (45) will be the main difficulty. Let u and v be integers 
satisfying 

t, = v&l < u < v (46) 

and put 

where in CU., , g(n,) = U, g(nJ = t’ {see (16)). We then have 

We have to estimate A,,, . We remind the reader that in .A,,, ni and nj 
run through the integers of (3) for which g(q) = U, g(q) = u (g(n) is 
defined by (16)) and (18) is not satisfied. 

If g(ni> = u we have as in (43), 

$64 
- > Cl4 & (1 -$, > &. 

n, 

Thus by (3) 

where in XV , n, runs through the integers not satisfying (18) for which 
g(nJ = 2) (since g(nJ > g(q) we have g(q) = u = t)‘ 

Since (18) is not satisfied we have for the nj in z:v 

-EL. < ni < ni do, 
d(4u)” 

(ni , nj) = d. 
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First of all we can improve (51). By (22) H(u) = 0 unless u = 0 (mod d). 
Thus we can assume nj]ni > d or nJnj > d. In other words, instead of 
(51) we may assume that 

< nJ < + or n,d < u < n, d(4v)“, (51) 

and d runs through all divisors of ni . Write 

ni = dni’, n3 = dn3’, (ni’, Mj’) = 1. 

We have 

(52) 

where in XV’ the nj run through all the n’s not satisfying (18) with g(nJ = o 
and for which 

c +<;. 
PlT7,’ 
nzz; 

(53) 

By (53) and the definition of g(nj) = v, we have for the nj in xv’ 

Thus we have 

(55) 

where in C’, d runs through all divisors of ni satisfying (54) and 

nJd2(4zl)” < n,’ < n,/d” or ni < 11,’ < ?2~(4Q)“. (56) 

Now by a simple calculation (I runs through all the integers of the two 
intervals (56)) 

Thus from (56) and (57), 

(57) 

(58) 



DISTRIBUTION OF CONVJZRGENTS 439 

Now we have to estimate C’ l/d. Let q1 < *.* < gn be the prime factors 
of ni , which are greater than u = g(nJ. We have for the din c’ (by (54)) 

It easily follows from the prime-number theorem (or a more elementary 
theorem) that for sufficiently large 21 the integer d has to be divisible by 
more than u of the q’s. 

Writing d = d,d, where d2 is divisible by precisely u of the q’s we obtain 

Now by (16) (as in (43) and (49)). 

By g(nj) >, g(n%) we have 2 114% < 1. Thus from (59), 

2’ f < (Cl6 log u) -$- . 

Inequalities (58) and (61) imply 

(59) 

(61) 

(62) 

for sufficiently large z’. 
Now we estimate Cz l/n, . We prove the following 

LEMMA 3. The number of integers m < x for which 

(63) 

is less than x/v! for suficiently large v. 
We split the integers m < x satisfying (63) into two classes. In the first 

class are the integers m which have at least 2v distinct prime factors in the 
interval (0, .&). The number of integers of the first class is clearly less than 

x ( c $j*‘/@)! < -y c3 log v)2v < - 
(2v) ! 2Z! (64) 

v<P<expa? 

for sufficiently large v. 
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Let p1 < a-* < pzu be the first 20 primes greater than Y. It follows from 
the prime-number theorem (or a more elementary theorem) that for 
sufficiently large u 

Thus from (63) and (65) if m is in the second class we have 

f(m) = c + > $. 
Plrn ll>eXlh2 

(6% 

W) 

We evidently have 

From (66) and (67) the number of integers of the second class is less 
than 

(64) and (68) complete the proof of Lemma 3. 
By the same method, we could prove the following sharpening of 

Lemma 3: denote by N(E, o, x) the number of integers m < x satisfying 

Put log p = 01. For every E and a: there is a u,, = u~(E, a) so that for every 
v > vg 

x/exp S”+s) C N(cy, v, x) < xlexp vB(l-E). 

From Lemma 3 we immediately obtain 

(69) 

where in C’ the summation is extended over the integers x < m < 2x 
which satisfy (63). From (57) and (69) and (60) we obtain by a simple 
calculation (in Cz l/n,’ the N, run through the integers satisfying (63) and 
156)) 
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for sufficiently large t’. Thus from (52), (62), and (70), 

Inequalities (70) and (71) imply that for sufficiently large v 

(71) 

(72) 

which with (48) finally imply that for sufficiently small q(t, = r;l and 
0 -=c Q < 7, by (46) u is large if 7 is small) 

This proves (45), hence (41), and hence (39). Thus Lemma 1 is proved, and 
therefore also Theorems I and II. 
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