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$1. Introduction 

We shall prove first (in $2) the new law of large numbers for the simplest 

special case, that is for independent repetitions of a fair game. For this special 

case the theorem can be stated as follows: if the game is played N times, the 

maximal average gain of a player over [Clog, N] consecutive games* (C 2 l), 

tends with probability one to the limit CI, where a is the only solution in the 

interval 0 < a 5 1 of the equation 

g= l- (T)log, (+-)-(~)lop, (&). 

In $3 we generalize this result to an arbitrary sequence un (M = i,2, ‘.a) of 

independent, identically distributed random variables with expectation 0, the 

common distribution of which satisfies the condition, that its moment- 
generating function +(I) = E(eqnt) exists in an open interval around the origin. 

We prove that for every a in a certain interval 0 < CI < txO one has 

(1.1) P max rn+1 -I- %I+2 + ... + Yn+[CIogN] 

WgNl 
=cx =l, 

06n5N-[Clo_eN] > 

where C = C(R) is defined by the equation 

(1.2) e-u/c~ = min $(t) f? . 

* Here and in what follows [x] denotes the integral part of x. 
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In §4 we discuss the special case of Gaussian random variables, in which 

case our result is essential y equivalent to a previous result of Paul L&y 

about the Brownian movement process. 

In 4 5 we give as an application of the result of 53, a new proof of the 

theorem of P. Bdrtfui on the “stochastic geyser problem”, using the fact that 

the functional dependence between C and a in (1.1) determines the distribution 

of the variables uniquely (Theorem 3). The result of 52 can also be applied 

in probabilistic number theory; as a matter of fact it was such an application 

which led the first named author to raise the problem which is soIved in the 

present paper. 

$2. The maximal average gain of a player over a short period. 

Let li, L s-.,t,, .s. be a sequence of independent random variables, each 

taking on the values -t 1 with probability l/2. We may interpret 5, as the gain 

of one of the players in the nth repetition of a fair game. Let tls put S, = 0, 

and 

(2.2) 6(N, K) = max 
OSn-SN-K 

“+k- “. 
-- 

Let us introduce the notation 

(2.3) h(x) = xlog, ; + (1 - X)10&& for O<x< 1; 

i.e. h(x) is the entropy of the probability distribution (x, 1 - x). We shall prove 

the folIowing 

Theorem 1. For every Jixed c 2 1 we have* 

(2.4) P( lim 6(N, [clog, N]) = E) = 1, 
N++co 

* Here and what follows P( . . . .) denotes the probability of the event in the brackets. 
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where CI = E(C) is the only solution with 0 -c (x 2 1 of the equation 

(2.5) 

Remark. It is easy to see that a(c) is a decreasing function of c, further 

a(1) = 1 and lim M(C) = 0. 
c+frn 

Proof of Theorem 1. We shall use the following estimates, which 

follow immediately from Stirling’s formula: If 3 5 y < 1 

(2.6) Al * n -l/2 . y(h(Yk-l)g -n x n 

0 

-l/Z . 2rwl)‘ll 
R.$SK”n 

K =<B,.n 

where A, and B, are positive constants, depending only on y. Let c 2 1 be 

fixed, and let G( be the unique solution of the equation (2.5) with 0 < c( 5 1. 

Let E be an arbitrary small positive number and put E’ = x + E. It follows 

from (2.6) that 

(2.7) P(&‘V, [clog,N]) 2 cd) 4 B@’ 

where 6, is a positive number, depending only on CI and E. Thus the series 

(2.8) &(8(2(j+l~~c - 1, j) 2 a’) 
j=i 

is convergent, and therefore by the Borel-Cantelli lemma one has 

(2.9) a(2 
U+l)/c - 1,j) <a 

with probability 1 for all but a finite number of values of j. As however 

(2.10) @(N, [clog,N]) 5 6(2(j+‘)‘“- 1,j) for 2j”j N 5 2(j+‘)“- 1, 

it follows that with probability one, for all but a finite number of values of N 

one has 

6(N, [clog, N]) < a’ . 
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As E > 0 is arbitrary, we obtain 

(2.12) P(lim sup 6 (N, [clog, N]) 2 a) = I . 
N-tfm 

Now let again E be an arbitrary small positive number, 0 < E < dl and put 

uN = u - E. As 

(2.13) 
N 

P(?qN, K) s Ix”) 5 P ju”,O<vl -- - - K 1 

and because of the independence of the random variables Str+ ijK - S,, 

(r = 0, 1, ah*) it follows that 

where A, and 6, are positive constants. Thus the series 

(2.15) ; P(ti(N, [clog, N]) 5 a”) 
N=l 

is convergent and using again the Borel-Cantelli lemma we get 

(2.16) P lim inf #(N, [clog, N]) 2 CX) = 1. 
*N-r+23 

As (2.12) and (2.16) impIy (2.4), Theorem 1 is proved. 

It should be remarked, that the same argument as that used to prove (2.12) 

can be used to show that if K(N) is an integer-valued function of N such that 

KO-9 
IogN 

--f + cm we have 

(2.17) P lim 6(N, K(N)) = 0 = 1). 

This result can be interpreted as follows: if K(N) grows faster than logN, 

then the ordinary law of large numbers applies, On the other hand if 

K(N) I clog, N with 0 < c < 1 then with probability 1 for all except for a 
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finite number of values of N there exists at least one n 5 N - K(N) such that 

t II+1 = Lt+2 = ‘a* = t nfR(NI = 1, which of course implies 6(N,K(N)) = 1. 

Thus the case of real interest is just when K(N) m clog, N with c 2 1, and 

Theorem 1 gives an answer to the question what happens in this case. 

$3. The general case. 

We shall prove now the following 

Theorem 2. Let y1,y2, e.=,qn, .a., be a sequence of independent, identi- 

cally distributed nondegenerate random variables. We suppose that the 

moment generating function 

(3.1) qqt) = IQ?“) 

of the common distribution of the ye,, exists” for t EI where I is an open 

interval** containirzg t = 0. Let us suppose that 

(3.2) Eh) = 0. 

Let u be any positive number such that the function #(t)e-” takes on its 

minimum in some point in the open interval I and let us put 

(3.3) min +(t)e-“’ = #(r)e-“’ z ewciicJ . 
TEI 

Then C > 0 and putting So = 0, 

(3.4) 

and 

s,=q, -l-qz-t-~~.+Yn 

(3.5) 6(N, K) = max 
S n+K - stl 

OSnsN-K 
K 

- - 

we have*** 

for nil 

(1 5 K 5 N), 

(3.6) P lim 8(N, [ClogN]) = E) = 1. 
N-+03 

* E(.... ) denotes the expectation of the random variable in the brackets. 
** We suppose that Z is the largest open interval in which $(t) exists. 

*** In this and the following $0 log N denotes the natural logarithm of N. 
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Proof of Theorem 2. Let us notice first that 1+5(t) = $(t)e-” is a strictly 

convex function: thus z in (3.3) is determined uniquely. As clearly $(O) = 1 

and in view of (3.2) $‘(O) = - CI < 0 it follows that z > 0 and e(t) c 1 and 

thus C > 0. Let us mention that the condition that $(t) takes on its minimum 

in the interval I is satisfied if for instance P(y, > a) > 0 because in this case 
$(t) tends to + cc if t tends to the upper endpoint of I (which may be the 

point -I- a). We have evidently 

The proof of Theorem 2 follows exactly that of Theorem 1, only instead of 

(2.6) we have to use the following result, which under some restrictions is due 

to H. Cmm~r (see [l]), and in the form needed for our purpose is due to 

R. R. Bahudur and R. Ranga Rao (see [2], Theorem 1): 

(3.7) 
e- (n/C) 

P(S” > ml) = - 4, - (1 + o(l)) 
\F 

where b, is a sequence of positive numbers such that 0 < b 5 b, =< 3; if the 
r,, are not lattice variables, b, does not depend on II. 

Remark. In the special case when P(Q, = + 1) = l/2, we have 

4(t)=+(e’+e-‘) therefore if O<a<l r=$logE and 4 = Tlog(l+cc 

+ l-a 
Tlog(l - cc). Passing to logarithms with base 2 it is easily seen that 

e-wc)= 2wl+~)/2)-1 =2-I11r) i.e. c = Clog 2. Thus the statement of Theorem 1 
for c > 1 is contained as a special case in Theorem 2. 

$4. The Gaussian case. 

Let us consider the special case in which the random variables have a normal 

distribution with mean 0 and variance 1. (In this case of course S, is also 

normally distributed and we do not even need the result (3.7).) As regards the 

connection between C and CI this can be explicitly determined in this special 
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case : we have evidently for every CI r 0 C = -$, and thus we get from (3.6) 

(4.1) P( lim @IV, [Clog N] = 
J 

T 
c = 1 for every C > 0. 

N*+CiI 

From (4.1) one can deduce the following remarkable theorem, due to P. L&y 

(see [3]): Let x(t) b e a Brownian movement process, then 

jx(t+h)-x(t)l<A 
J 

2hlog+forO~tc(l-h 
lif A>1 

Oifl<l. 

Notice that if the variance of the random variables Y,, is equal to 1 then we have 

in general for ~13 0 C N 2/cx2; as a matter of fact we have for t + 0 #I’(L) N t 

and thus for a -+ 0 we get z N cc and therefore C N 2/c?. Thus for very small 

values of a the relation between c! and C in Theorem 2 becomes in the limit 

independent from the distribution of the variables r,; however for a fixed not 

too small value of a the functional relation between a and C depends essentially 

on the distribution of the random variables qn. Clearly the reason why the 

relation between CI and C in Theorem 2 depends on the distribution of the 

variables r,, is that Theorem 2 is a theorem about big deviations, while the 

reason for the disappearance of this dependence in the limit if c( --f 0 is that if 

a is decreasing we approach the domain of validity of the central limit 

theorem. 

$5. An application. 

Let Q, (n = 1,2, +..) be a sequence of independent and identically distributed 
random variables and let I;(x) denote their common distribution function. Let 

us put 

(5.1) En = $I + r, 

where S, is defined by (3.4) and r, (n = 1,2, e’s) is an arbitrary sequence of 
bounded random variables such that 

(5.2) jr,] SRR, where R, = o (log n) 
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(Nothing is supposed concerning the dependence between: the:.variables S,, 
and r,). P. B~‘Ptfai has proved (see [4]) that if the moment generating function 

(5.3) (b(t) = 7 PdF(x) 

-CC 

of the variables Q, exists in a neighbourhood of t = 0, then given the values 
5, (n = 1,2, -..) the distribution function F(X) is thereby uniquely determined 

with probability one. A new proof of this result of Bdrtfai can be obtained 

from Theorem 2 as follows: We may suppose without restricting the generality 

that E(q,,) = 0; in this case all conditions of Theorem 2 are satisfied and thus it 

follows that for 0 < CI -C a where a is a sufficiently small positive number 

we have (in view of (5.2)) with probability one 

(5.4) 
r 

Thus knowing the sequence 5, we can determine the functional dependence 

between a and c. 

To prove Bdrtfai’s theorem we shafl need the following 

Theorem 3. The functional dependence between E and c = c(a) in 

Theorem 2 determines the distribution of the random variables ys uniquely. 

Proof. If the function c = C(E) is given for 0 < a < a, we can determine 

the function 

(5.5) 
ACE) = e -(UcW 

and thus also the function 

(5.6) 

As clearly z = -r(a) is an increasing function of CI, its inverse function CI = X(Z) 
can also be determined. This means however that we can determine the function 
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(5.7) 

in some interval 0 5 r 5 rO. As it is well known that the moment-generating 

function 4(t) determines the distribution function F(x) uniquely, (even if 

#(t) is given only in some interval, it being an analytic function if it exists), 

the statement of Theorem 3 follows. 
It follows from Theorem 3 that in the stochastic geyser problem if we know 

a single realization of the sequence [,, (n = 1,2, -m-j vve can determine the distri- 
bution function F(x) with probability one; this proves Bcirtfai’s theorem. 
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