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A graph G is said to be even if its vertices can be put into two dis-
tinct classes 4 and B so that no two vertices of the same class are
joined by an edge. If in addition each class contains exactly »
representatives, G is said to be of type (n, n). In what follows all our
graphs will be of this form. Letevery vertex in 4 be joined to every
vertex in B. Then we say that G is saturated.

A matching of G is a set of edges covering every vertex just once.
It was shown recently [1] that if G has more than (1/24c)n* edges,
¢ > 0, then it cannot have a unique matching. The method of proof
depended upon a result of Znam. This result allowed one to find
disjoint saturated subgraphs G; of G which were of type (r, r) with
r > c¢'log n and such that every matching of ZG; could be extended to
a matching of G. In the present note we show that it suffices to find
a subgraph of G whose edges are distributed with some regularity,
further we obtain a better estimate for the number of matchings.

THEOREM 1. Let G be an even graph of type (n,n) and suppose that
G has at least (1/2+c)n® edges, and has at least one matching. Then
G has at least

(1 ¥ p)
distinct matchings, where
) p = [1/2 m], m>an, «=1—(1-2c)"

and m is an integer.
In particular, if c is fixed and n large, the number of distinct match-
ings exceeds

(n!)%
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where ¢, > 0 depends only upon c. .
Proor. Let the vertices of G beay, ..., a,and by, ..., by, and
let the given matching be that which associates &, with b for i =
Lisiarwgifis
Let p (a;) denote the number of b’s joined to a: and let o (b)) de=
note the number of a's joined to ;. Plainly

Ez_ | Gla) + o () > (1426

since the sum on the left is twice the number of edges of G.
Let N denote the number of values of i for which p(a;)) + o(b)
2 (14+a)n. Then since p(a;) < n and o(b;) < n the sum is at most

2nN - (1+=jn (n—N).
It follows that
N = n(2¢e—a) | (1—a) = an,

the last equation being a consequence of the definition of = in (2).
We can therefore suppose that

pla)) + o(by) 2 (1+a)n,

fori =1, ..., m where m is the least integer > « n.

For given i, let N, denote the number of j (1<j<n), distinct from
i, for which there is no edge a,b; or big; ; let N, denote the number for.
which there is one such edge ; and let N; denote the number for which
there are two such edges. Then

Nﬂ.+N§+N"=H_1
Ny + 2N, 2 (1+a)n — 1,

It follows on subtraction that N; > « n, whence N, = m.
Thus, foreach i = 1, . ... m there exist

1) 14
¥y Ty s
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such that a; is joined to each b, and b, is joined to each a, for the
above values of r. This enables us to construct a variety of distinct
matchings of G, as follows.

We replace the edges a,b, and a,b, by the edges a,b, and a,b, for

(8] (1)
o

r=r; .,r%). This is possible in m ways. When any such choice

has been made, we consider the least i different from 1 and r (thus

i = 2 or 3), and we replace the edges a;b; and a,b, by a:b, and a,b; for

=r" ..., r" provided s 1 or r. This is possible in at least

m—2 ways. Next we consider the least j which is different from 1,7, i, s
(thus j<5) and make a similar replacement, which is possible in at
least m—4 ways, and so on.

The number of distinct matchings so obtained is at least

(m—2r).
osr<im

Since m > 2m, this is at least 2% g |, as stated.
The final clause is an immediate deduction, for if ¢ is fixed, then

so is « and ¢ > (nh)*
Whilst giving a non-trmal result for any ¢ > 0, as ¢ approaches

1/2 ¢;, does not approach 1 as one would expect. For larger values of
c the following result is perhaps therefore of interest.

THEOREM 2. Let G satisfy the hypotheses of Theorem 1 with 2¢ >
N3—1. Then G has at least m! distinct matchings where m is an
integer satisfying

m+ 12 n(2¢—(2—4c)*?).

Proor. We use the notation of the previous theorem. It is plain ;
that we can find a value of 7 so that

p(a) + o (b)) 2 (14+2¢) n. ot
Without loss of generalitytwe can takei = 1, Let k Be the least

integer satisfying &k > 2cn. Then arguing as in the proof of the pre-
vious theorem we see that we may assume that '3

aib, and q',b; G=1...,k
are all edges of G,
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For any # satisfying 0 < 8 < 1, let N 4 denote the number of values
of i so that p (a)) > #n. We obtain the estimates

nNﬂ +ad, (n—N,) > Z p (&) = (1/2+4¢) n*,

s0 that
N’} n(lj24+c¢c—8)] (1-9).

Hence choosing 8 = | — (1/2—¢)'”* and putting ¥ for the least inte-
ger not less than &, we see that Ny > V. Of these values of 7 at least

fo 4 ¥V — n satisfy § < k and by relabelling, il necessary, we can there-
fore assume that

pla) 2 V =1 ...,k +V—mn)

Moreover for any such i the number of edges ab; with f <k + V —n
is at least

(64V—=n) + V —n =k + 2V — 2n.

Consider now the subgraph G' with wvertices a;, b,;1,j=1,...,
«e.y k+ V¥V —n. By addition of edges of the typeab, k + V —n
< 5 < n we can clearly extend any matching of G’ toone of G. We
now derive matchings of G' by constructing distinct cycles all of which
have an edge in common.

Defining ¢’ (a,) and &’ (b in analogy with the definitions in Theo-
rem 1 we sec that

fla)2k+2F—2n, (=1,...,k+V—n)
and
fla)=c(B)=k+V—n

We construct cycles all containing the edge a,b1. First choose a value
of j satisfying 1 < j € k + ¥V — n so that a;b; is an edge of G'. This is
clearly possible in ¢’ (@,) — 1 ways. Let this value be j;. Now aj, by
is an edge of G’ and we choose j, 7= |, f, so that a;;, b, is an edge of
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G'. This is possible in ¢’ (a;;) — 2 ways. Then a;, bj;, is an edge of
G’ and so on until after k¥ + 2V — 2n — 1 choices we reach the edge
a,b, where s % 1. We now complete our cycle with the edge a.b, since
a:b, is an edge for any a; in G'.

In this manner the number of cycles and therefore the number of
matchings of G’ is at least

k+42V—2n
I @ (@)~ > k+2V=2n—1) |

Noting that the restriction 2¢ > 43 — 1 guarantees k + 2V — 2n ex-
ceeds a positive multiple of n we see that the proof is complete.

By a simple modification of the argument in Theorem 1 it is easily
seen that G cannot have a unique matching if it has more than 1/2 n
(n+1) edges. Ina certain sense this result is best possible as can be
seen on considering the graph with edges a;b; for 1 <i < j < n. This
clearly has 1/2n (n+1) edges and just one matching.

Finally we noted that the value of ¢; in theorem 1 cannot exceed
(2¢)*2. Consider the graph G with edges a:b; for i, j satisfying
1<i<j<nin— V2 <i<n and i<j<n Then G has
more than (1/2+4c) n* edges (taking of course 0 < ¢ < 1/2), but only
exp (140 (1) ) ¥2cn logn) matchings. Indeed it seems likely that this
upper bound is more nearly the value of ¢, to be expected.
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