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SOME APPLICATIONS OF GRAPH THEORY TO NUMBER THEORY 

Paul Erdas, Hungarian Academy of Science 

The problems which we will discuss in this paper deal with se- 
quences of integers: they are all of a combinatorial nature and graph 
theoretic results can be applied to some of them. 

First we define the concept of an r-graph (for r=2 we obtain 
the ordinary graphs). The elements of the r-graph are its vertices 
some of whose r-tuples belong to our r-graph. Gr(n, t) denotes an 

r-graph of n vertices and t r-tuples. Gr(n; (F)) denotes the 

complete r-graph Kr(n) and Kr(pl, . . . . P,) denotes the r-graph of 

(p, + . . . + p,) vertices with pi vertices of the i-th class where 

each r-tuple all whose vertices are in different classes belongs to 
our Kr(pl, .-., p,). Throughout this paper, "graph" will indicate a 

2-graph. We will denote 2-graphs by G (i.e., in G2 the index 2 
will be omitted). 

It is well known and easy to see that if ap i . . . c: ak < n and 

no a# Also if we 1 divides any other a. 
7 

then max k = t-1. 

assume that no ai divides the product of ail the other a. s we 
J 

can easily show that max k = n(n). The same result holds if we as- 
k 

sume that all the products i7 a.cui 
i=l ' 

are distinct (the ai's being 

non-negative integers). 

Let us now assume that our sequence has the property that no ai 

divides the product of two other a.'~. I proved [3] that in this 
case 7 

(1) II(x) + Cl x 2'3/(log x)2 < max k < n(x) + c2 x 2'3/(log x) 2. 

We outline the proof of the upper bound of (1). A simple lemma 
states that every integer msx can be written in the form u - v 

where u is either a prime or is less than x 2/3 and v is less 

than x 2/3 . Corresponding to the sequence al < . . . < ak we form a 

graph as follows: The vertices of our graph are the integers < x 2/3 

and the primes p, x 213 <pl:x. Put ai = uivi by our lemma and 

let ai correspond to the edge joining the vertices ui and v. 1' 
Our graph contains no path of length three (since no ai divides the 

product of two other a.'~); 
7 

thus our graph is a tree and thus has 

fewer edges than vertices or k < II(x) + x2'3. The inequality 
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k < II(x) + c2 x 2i3/ ( log x) 2 can be obtained by an improvement of the 

lemma (not all the integers < x 2/3 are needed in the representation 
m = uv). 

The lower bound in (1) uses Steiner triples. It would be inter- 
esting to sharpen (1) and prove that for a certain absolute 
constant c 

(2) 2/3 2/3 
max k = II(X) + c x /(log xl2 + of x 

(log xl 
2) 

I have not been able to prove (2), 

A genesalization of the method which we used in the proof of (1) 
leads to the following more general result: Let al < . . . < ak s x 

be a sequence of integers where no ai divides the product of r 

other ai's. Then 

(3) n(X) J+ Cir) X2’(r+1)/(log x) 2 C max k < n(x) + cir) x~/(~+‘)/ 

(log x)2. 

Assume now that our sequence al < .._ < ak % x is such that 

the products a-a. are all distinct. Then [3] [4] 

(4) n(x) + c4 x /(log x) 3/2 < max k < i?(x) + c3 x 314 /(log x)3'2. 

The proof of (4) again uses the lemma used in the proof of (1) 
and the graph theoretic representation of the sequence al < . . . < ak. 

The fact that the products a.a. 
17 

are all distinct implies that the 

graph corresponding to the sequence al < . . . < ak contains no 4- 

cycle. The upper bound in (4) follows from the fact that every Gb; 

Lcs n3'21) contains a rectangle. The lower bound is due to Miss E. 

Klein and myself and is easy to obtain using finite geometries [3]. 

Here I would like to mention a problem in graph theory which is 
not yet completely solved. Denote by f(n) the smallest integer for 
which every G(n; f(n)) contains a 4-cycle. W. Brown and V.T, Sos, 
Re'nyi and I ([2], [5]) proved that 

(5) f(n) = (l/2 + o(l))n3'2. 

We are unable to give an exact formula for f (n) and are far 
from being able to determine the structure of the extremal graphs, 
i.e. we do not know the structure of the graphs G(n: f(n) - 1) 
which do not contain a rectangle. 

Let al < . . . < ak s x and assume that the product of any rails 

are different (or that the product of any r or fewer ai's are dif- 

ferent). I am not able to give a very satisfactory estimation for 
maxk- n(x) if r > 2. Perhaps the answer depends essentially on 
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the fact whether we only require that the product of r or fewer dis- 
tinct ai's are all different or whether we permit repetitions. 

Here we only state one result: Let al 2: ..* < ak 5 x be such that 
k E. 

all products II ail, ~~ = 0 or 1, are distinct. Then [6] 
i=l 

(6) max k < TI(x) + c6 x 1/2/lag x. 

The proof of (6) is not graph theoretical and will not be dis- 
cussed here. Perhaps (6) can be improved to 

(7) max k < n (x) f n (X1’2) + 0 ($&I = II (XI + (2 ' $i'p1'2 * 

The inequality (7), if true, is best possible. To see this, let 
the ai's be the primes and their squares. 

An old and difficult conjecture of Tura'n and myself can be stat- 
ed as follows: Let al < . . . be an infinite sequence of integers 

and denote by E(n) the number of soLntions of n=a i + a.. Then 
7 

f(n) > 0 for n>n 
0 

implies 1Arn sup f(n) = m. A more general con- 

jecture which is perhaps more amenable to attack goes as follows: 

Let ak<ck2, then l,im sup f(n) = a. I could only prove that 

ak 
< c k2 implies that the sums ai + a. 

3 
cannot all be different 

t141. We come to very interesting problems if we restrict ourselves 
to finite sequences. Let A(n, r) be the largest integer so that 
there is a sequence al < . . . < ak 5 n, k = A(n, r) for which all 

sums of r or fewer a.'s 1 are distinct. It is known that 671 

(8) (1 + o(l))n1'2 < A(n, 2) < n1'2 + nl'* + 1. 

I conjecture that A(n, 2) = n l/2 + O(1). Bose and Ghowla proved [l] 

Ab, r) 2 (1 + o(l))nl'r 

and they conjectured A(n, r) = (1 + 0(1))n"~. 

Let al < . . . < ak S n be a sequence of integers so that all 
k 

the sums C E. a., E. = 0 or 1, are distinct. 
i=l ' ' ' 

An old conjecture 

of mine states that 

max k = m + O(l). 

Moser and I [8] proved 

max k 5 w + 1~~~~ ; + O(1). 

Conway and Guy proved (unpublished) that if n=2 r is sufficiently 
large then max 2r 2 r + 2. 
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These problems perhaps have nothing to do with graph theory, but 
often their multiplicative analogue can be settled by graph theoretic 
methods. In fact I proved the following theorem [9]. Let al < . . . 

be an infinite sequence of integers. Denote by g(n) the number of 
solutions of n = a-a.. 

13 
Then if for n>n 0' g(n) > 0 we have 

lirn sup g(n) = m, and in fact s(n) > (log n) 
c7 for infinitely many 

This latest result cannot be improved very much since it fails to 
Eold if c7 is replaced by a sufficiently large constant cS. 

Denote by up(n) the smallest integer so that if al < . . . < ak 

s n. k = u,(n) , is any sequence of integers then for Some m,g(m) 

2 P. We have for 2 
r-l 

< p s 2r 191, 

(9) up b-d = (1 + o(l)) n(loglog n) r-l/(r-l)! log n 

= (1 + o(l)) n,(n) , 

where n,(n) denotes the number of integers not exceeding n having 

r distinct prime factors. 

For p 7 2 I cannot at present get a result which is as sharp 
as (4). I just want to state without proof a special result in this 
direction, namely 

(10) 
nloqloq n + cg n/(log n12 c u3 In) & 

nloqloq n 
log n log n f cl0 n/(log nj2. 

It is not clear whether (10) can be sharpened. 

The basic lemma needed for the proof of all these theorems is 
the following result on r-graphs: To every k and r there is an 

so that every G,(n; cl1 n 
I-'k,r 

Ek,r ) contains a Xr(k, . . . . k). 

For r = 2, k = 2, (5) shows that ck r = l/2. A result of Kava'ri, 

V.T, S&s and Tura'n t13] shows that Ek ; Z l/k. In fact probably 
I 

Ek,2 = l/k is the best value for %,2' For k = 3 this is a re- 

sult of W. Brown 621, but the cases k 7 3 are still open. For 
r73 the best values of %,r are not known. 

These extremal problems for r-graphs are usually much simpler 
for r=2 (i.e. for the ordinary graphs). To illustrate this dif- 
ficulty denote by f (n, r, s) the smallest integer for which every 
Grb; f(n, r, s)) contains a K$) - Turgn2determined fb, 2, s) 

for every n and s (e.g. fb, 2, 3) = [%I+ 1) and he posed the 

problem for r 7 2 but as far as I know there are only inequalities 
and conjectures for r 7 2. Tura'n conjectured that f(2n, 3, 5) = 

n"(n - 1) f 1. It is easy to show that 

lim f(n, r, s)/nr = br s 
n+m , 

always exists and Tur& proved 
‘fi2,s 

= 1J2 - 1/2s, but the value of 
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6 
r,s 

is unknown for every s>r>2. 

I would like to state one further conjecture for r-graphs: Ev- 

ery G3(3n; n3 + 1) contains either a G3(4;3) or a G3(5;7). 

Now I state a problem in number theory which can be reduced to a 
combinatorial problem: 

Denote by f(r, n) the smallest integer so that if al < . . . < 

ak 5; n, k = f(r, n) then there are r a,'s 
7 

which pairwise have 

the same greatest common divisor. Using a combinatorial result of 
Rado and myself ell], I proved [12] that for every fixed r 

cr log n/loglog n 
e < f(r, n) < n 3/4-f-E . 

It seems that the lower bound in (10) gives the correct order of mag- 
nitude. This would follow (11) from the following conjecture of Rado 

and myself: There is a constant cyr so that if Al> . . . As, s > a;, 

are sets all having k elements, then there axe always r of them, 
A. 

'1' -**' r 
Ai which pairwise have the same intersection. 

Finally, I would like to mention a few problems in combinatorial 
number theory: Let al < . . . be an infinite sequence of integers, 

and assume that if 
q1 92 

(12) II a. = il a. , 
r=l ir r=l 'r 

then ql = q2. 

Is it true that for E, 
>l-&? 

there exists such a sequence of density 
Trivially, the ai's can have density l/4. To see this, 

let the ai's be the integers = 2 (mod 4). Selfridge showed that to 

every E there is a sequence of density > l/e - E 
To see this let A be large and A < pl < . . . < pk 

satisfying (12). 
the sequence of 

consecutive primes satisfying 
k k-cl 
cl/pi<l< c l/p. . 

i=l i=l 1 

The ai's are the integers divisible by precisely one of the pi's, 

lgizk. It is easy to see that for sufficiently large A, the 
a. 1 

's have the required properties. 

We come to non-trivial questions if we restrict ourselves to 
finite sequences. Let al < . . . < ak $ n be a sequence of integers 

satisfying (12). How large can max k be? Is it true that max k = 
n + o(n)? I have no good upper or lower bounds for k. 
max k > n(log 2 - o(l)). To see this, 

Trivially, 
consider the integers not ex- 

ceeding n having a prime factor > &. I can slightly improve the 
constant log 2 but cannot prove max k = n + o(n). 

Let alc...<aksn; bl<...<b 
q 

< n be two sequences of 
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integers and assume that the products a.b. are all distinct. 
17 

Is it 

true that kq < c n2/log n? 

Finally many of these problems can be modified as follows: Let 

a1<"' <ak ti. 
be a sequence of real numbers. Assume that any two of 

the numbers IIail differ by at least one. Is .it true that max k = 

II(n)? 
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