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Let {A} = a;<a,<... be a sequence of positive integers. Put A(n) =
= ¥ 1.Denote by f,.(n) the smallest integer so that every sequence A satisfying

ST . ; i o ;
A(n) = f(n) contains a subsequence of & terms which are pairwise relatively

prime. [t is easy to see that fu(n) = l%1+1 and it seems likely that

(1) Sy = 1+y3—4(7)

where (1) denotes the number of integers not exceeding n which are multi-
ples of at least one of the first k— 1 primes 2,3, ..., p,—;. Clearly (1) if true is
best possible. (1) is easy to show for k = 3, but we have not been able to prove
it in general. On the other hand we prove in a sharper and more general form
several conjectures stated in [1]. First we introduce some notations. Ag, .
denotes the integers a,€ A, a; = u(mod m) (A, () denotes the number of
terms of the sequence A, .,). A, respectively A, ,, we will denote by
A, respectively A,. ¢(n) denotes Euler’s ¢ function.

H(A k)= > 1

aj=n

(a;,k)=1

®(A) denotes the number of pairs (a;, a;) = 1, a,=a;=n. Put
F(n) = min max ¢(A, a;)

a}-GA
where the minimum is to be taken over all sequences A satisfying A(n) = %I—I— 1
For simplicity we will henceforth assume that r is even, all our results could
easily be extended for odd n. ¢, ¢, ... denote suitable positive absolute
constants.

Let A(n)= |L;|+ 1. P. ErDOs proved that for n=n, @(A)=¢n/log log

q*
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and in fact the minimum of @(A) is assumed if A consists of the even numbers
and u, where

Byt Fe 8y vrnny floy BoanPpZ AR Praye
He also conjectured that
(2) lim F(n) = .

We now prove (2). In fact we prove the following sharper
THEOREM 1.
F(n)y=c,njlog log n.
We first prove two other theorems which will easily imply Theorem 1.

THEOREM 2. Let A salisfy

(3) A(n) = s, l=s5<¢gn,
(4) A(n) = %
Then for n=1n,
(%) max g(A, a;)=cnflog ]ogﬂ
aG;EA 8
and
©) D(A)=czsnjlog log .
s

We need the following known

LEmMA 1. The number of integers 1=k =n satisfying o(k)/k <1/t is less than
(exp 2 = €) nexp (—exp cgl), uniformly in t=1.

Choose
(7) t= 1z log log 2-”

e 5

We obtain from Lemma [ that the number of integers 1 =k=n which satisfy
g(k)/k<1]t (where ¢ is defined by (7)) is less that s/2. Thus the number of in-
tegers a,€ A, for which ¢(a,)/a;=1/t is by (3) greater than s/2. Denote now by
by<...<b,=n, r=s/2 the integers in A, satisfying ¢(b;)/b,=1/f. Clearly the

number of integers 2u=n satisfying (2u, b,)=1 is greater than %%tp(bf)/bi}

> nf4t. Thus (in 2" a; runs through the numbers of A,)

(8) 3 1= A ——+,
(bf'ajJ}:l Z 4t

or by (8) and (7) for sufficiently small ¢, and ¢, we obtain by a simple compu-
tation for sufficiently large n
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nwooon noonoon n
9 (A, b)= A,(n)——+—=An)—A,(n) ——+ — = — —s=c,nfloglog—,
(9)  ¢(A, b) = Ay(n) 7 g (n)—Ay(n) T >4/bgs

which proves (3).
To prove (6) observe that (9) holds for every 1=i=r and r:»%, hence
from (9)
o n
B(A) =—= snfloglog —,
2 s

which proves (6) and hence the proof of Theorem 2 is complete.

THeorREM 3. To every ¢y there is a ¢, = cm(c,,)(fm is bounded in terms of

l so that if A(n) = s=cyn and A(n)::-% then for n=n,
¢
' DAY= .

For s<¢;n Theorem 3 would follow from Theorem 2, but for the large va-
lues of s we need a separate proof.
Denote by P, the product of the primes not exceeding r. We first prove

LEmma 2. To every ¢=0 and 6=0 there is an r=r(e, 8) so that if n>

=1y, 8, r) then for all but g integers k satisfying

r

I=k=n, k=u(mod P,)
we have

"
z(k):g[}r(l —?}}*l—a,

The Lemma is very easy to prove and we only outline it. We evidently
have (in [[" k=u(mod P,), 1=k=n)

/ £ ] 1ip

i T
7=t

r<p<n

(10)  ['atiy= 1T (l—l]”%H}H

1]}
rep=n o p<n p

2= (1o )1E

where 5. can be chosen as small as we wish if r is sufficiently large. (10) implies
Lemma 2 by a simple argument.
Now we prove Theorem 3. We evidently have

lp

() 3 (A, sl 4 A, en(1) + Acp,, 260 (1)) = Ag(n) +2A,(n) =
i=1

= A(n)+s = I—;+s.
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Hence by (11) there is an i, for which

n+2s

(12) A(P,,, 2:‘0—1)(11) < A(g . 2i ,)(-'I) Py, zfrH)(H) =

r

Clearly for every u ;—‘1(pr‘u)(n)<:§+l. Thus we obtain from (12) that

there are two integers u; and u,, 4, odd, (1, —u, = 1 or 2 satisfying
I ;

(13) Ap, up(n) = —(— -1 (=12).

Denote now by af=...<a} the sequence of integers for which

(14) ke Aw, u,) and 1][1--_|:~!—c9;10

plk
p=r

1
From Lemma 2 and (13) we have for r=r, ¢= 5 Cq (S=1cqM)

_ el 2 s &n
(15) t=Ap n—— = — — —— = 3P,
( r_u.)( P, 3 P, 3 9
Now we estimate from below the number of solutions of
(16) (a,*, GJ) = l, UJG A(Pi_.u_).

Assume p|(a*, b), b=uy(mod P,). As |u,—u,|=2 and u, is odd, we have
p=r. Denote by B(P,, u,) the number of integers b=n, b=uwu,(mod P,) for
which (b, a¥) = 1. We have by a simple argument

(17) B(P, w = 11 |! ~i”{2wﬂm< 92 tog nilog og n
p

Fplag*
p=r

since it is well known (and follows from the prime number theorem or a more
elementary theorem) that for m=n  V(m)<2 log njlog log n.
Thus from (14) and (17) for sufficiently large n

(18) By(P,, 1) = (1 —¢y/T)n/P,.

From (18) and (13) we obtain that the number of solutions of (16) is greater
than (s=c4n)

(19) X . 1| —-confdP, = con/2P
9 _Pr ’ 94 r 9 a"l Lok
From (15) and (19) wo evidently have
D (A)=c3n%/6P}

where r is bounded in terms of 1/e¢, which proves Theorem 3.
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It is now easy to prove Theorem 1. Let A be any sequence satisfying

A(II)E—E— + 1. We distinguish two cases. Assume first Ay(n)<=¢n. In this case

(5) and the definition of F(n) implies Theorem 1. Assume next A(n)=cyn.
Then from Theorem 3 we have

max @(A, a;) = D(A)in = ¢ (c)n

which completes the proof of Theorem 1.
We outline the following sharpening of Theorem 1.

TreorEM 4. Lef n=n, The only class of sequences A* for which F(n) is
assumed Is defined as follows: A*= A7 U A¥, where A¥ consists of all odd multiples
not exceeding n of u, (3...p,=n=<3...p,p, , u,=3...p,) and A¥ consists of
the set of even numbers (not exceeding n) from which A¥(n)—1 even numbers
relatively prime fo u, have been omitted.

Theorem 4 clearly implies that
1
(20) F = g3 —| 2 |+ 52 |
u, 2u,

where ¢‘2(u,) denotes the number of even integers not exceeding n which are
relatively prime to u,.

We only outline the proof of Theorem 4. Let A [A(n)z: % + l) be any sequ-

+ 1

ence which contains an odd number u which is not a multiple of u,. A simple
argument shows (see [1]) that

PD(u) =2 u,) + ¢y (log ny.

" ]+I
2u, |

But then from (5) and Theorem 3

Thus if

ﬂAwﬂﬁqﬁhm—[£J+

r

44

(log n)®

we must have A;(n)=s=c¢y,

we have
max ¢(A, a;) = ¢,nflog log log n = ¢@(u,)
£A

which proves Theorem 4. Theorem 4 implies by a well known theorem of Mertens
that (C is Euler’s constant)

F(n) = (14+o(1))e-“n/log log n.
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