ZASBSTOSOWANIA MATEMATYEKI
APPLICATIONES MATHEMATICARE
Hugo Steinheus Jubilee Volume
X (1969)

P. ERDUS and A. RENYI (Budapest)

ON RANDOM ENTIRE FUNCTIONS

This paper deals with random power series, a topic concerning which
the first important results are due to H. Steinhaus [4].

While in [4] power series with a finite radius of convergence were
considered, we study random entire functions.

Let

L=}

1) &) = ) ans"
=0

be an arbitrary entire function; let

(2) M (r) = max|f(z)|

jo) =7
denote the maximum-modulus function of f(z) and

(3) p(r) = max|a,|r"
T

the maximal term of the series (1).

According to Wiman’s well known theorem, for every & > 0 there

. i o : dr
exists a set K, of finite logarithmic measure (i.e. such that JT << 00)
Es

such that if r¢F; one has

(4) M) < pir) logu(f .

The simplest proof of this theorem is the probabilistic proof given
by Rosenbloom [2], which deduces (4) from Chebishev’s inequality.

It is known that the number } in the exponent of logu(r) on the
right hand side of (4) is best possible, as there exist entire functions f(z)
for which there exists a constant ¢ > 0 such that

(IR

M(r) > ew(r)(logu(r))* for all » = 0.
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)
As a matter of fact, if f(2) = ¢, M(r) = ¢ and u(r) =[7r[]T for r >0
where [r] denotes the integral part of »; thus by Stirliug’s formula

M(r)
rsoo (1) (logp (r)"*

The first-named author has stated without proof some years ago —
in a paper [1] which was dedicated to Professor Steinhaus — that if
we give random signs to the terms of the power series of ¢’ then for al-
most all choices of the sequence of signs the exponent } in (4) can be
replaced by } but by no smaller number. In the present paper we con-
sider the same guestion for an arbitrary enfire function. By other words
we consider the class of entire functions obtained by giving random
signs to the terms of the series (1), i.e. we consider the entire funetions

= V2.

(5)

oo
(6) f@ 1) = ) mBa®)2® (0<t<1)
=0
where K,(t) is the n-th Rademacher function, R,(f) = sign sin (2" x¢).

We shall prove that for almost all values of ¢ in the inequality (4)
for f(z,1) the exponent § of logu(r) can be replaced by 1.

We shall prove even more. Rosenbloom in his above mentioned
paper(') (2] has proved the following sharper form of Wiman’s theorem:
for every 6 > 0 there exists a set E, of finite logarithmic measure, such
that if r¢E; one hag

(4% M (r) < p(r)(logp(r)V*(loglog u(r)) .

We shall prove that for almost all values of ¢, in the corresponding
inequality for f(z,?) the exponent 4 of logu(r) can be replaced by }.
Thus we prove the following

THEOREM 1. Let (1) be an arbitrary entire function and let u(r) be
defined by (3). Let the entire function f(z,t) be defined by (6) and put
{(7) M(r, t) =1?ax[f(z,t)| (0 <t<1).

2| =1
Then for every 6 > 0, for almost all values of t there exists a subset Hj(t)
(depending on t) of the half line r = 0 of finite logarithmic measure, such
that for r¢H,(i) one has

(8) Mlr, 1) < plr) log(r)) (loglogu(r)+*.

() The formulation of Theorem 1 in paper [2] contains some misprints: In
formula (2) (p. 327) the integral sign is missing; in row 9 of p. 327 the sign = has
to be replaced by <; in row 10 of p. 327 instead of “inequality (2)” one should read
“inequality (3)”.
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Proof. Let us put

(9) fi2) = D lml 2"

Towm O
We may suppose that a4, = 1, which implies #(0) = 1. As (4*) is valid
for f,(2), there exists for every 6 > 0 a set E; of finite logarithmic measure
such that for r¢ F; the inequality

(10) fulr) < wir) (logu(r))* (loglog p () *°

is valid. We may suppose that the set Fj; is the union of a denumerable
set of disjoint open intervals, the endpoints of which have no finite limit
point. Let us define the sequence r, of nonnegative numbers as follows.
We put 7, = 0; if 7, is already defined for & < n, let , > 7, be defined by

(11) logu(r)) = log u(ry) 1.

If 7,¢Bs, put #,,.; = ,. If however r,eF;, then 7 is contained in one
of the open intervals of F,; in this case let #,,, be the lower end-point
and 7, , the upper end-point of this interval.

The increasing sequence 7, defined in this way has the following
properties:

a) ry¢Bs for n = 1.

b) If the open interval (r,, r,.,) contains a number » not belonging
to the set E;, then

10g,“("n+1) E log.“(?n)+1-
¢) logu(ry) = [nf2] where [n/2] denotes the integral part of n/2.
Now let us suppose that for some ¢ one has for n = n,(t)
(12) M (rny 1) < 3p(ra) (log u(ra))" (loglog s (ra)) .

As M(r,1t) and u(r) are both increasing functions of », it follows (in view
of property b) of the sequence r,) that for n = n,(¢) and for r,, < r < 1,
and r¢FE; one has
148

1

M(ry 1) < () logw(r) + 1)1 (log{logu(r) +1)

and thus one can find an n,(¢) such that
{(13) M(r, 1) < p(r)(logu(r)"* (loglog s (r))~°

if r¢ K,;(t) where I, () denotes the union of the set E; and the set r < Pty -
Thus to prove our theorem it is sufficient to prove that for almost
all values of ¢ there exists a number n,(#) such that (12) holds for n = n,(t).
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Now let us put

(14) g(x) = logf,(¢"),

E 7)o, "
(15) A(r) = g (logr) = *=
and

2 nE "
(16) B'(r) = g logr) = "= —A%(0).
If £ is a random variable snch that(?)
|| 7"

17 P& =n) = =0; Li
() (=m="00 @ )

then clearly A (r) is the expectation and B*(r) the variance of &, and thus
by Chebishev’s inequality one gets(’) for every 7' > 1

Ji(7)
i

(18) lan 7" <
m—AvéBmT

and thus, choosing T = (logu(r))"*(loglogp(r))*+%* we get from (10)

for every r¢E,;, putting

(19) C(r) = B(7) (logp; (r}]lfa(loglog,u (r))(l.w”z,
(20) Z |ag 7™ < p(?,){log#(?})m.
In— AGY=0(r)

Now, in Rosenbloom’s proof of (4*) the set I, is defined as the set,
on which B*(r) > (logf,(r))(loglogf, (r))***’; thus for r¢E, and o < 1/4,
using again (10) we have

(21) B*(r) < 4(logu(r))+’
and therefore, in view of (20), we obtain, putting
(22) 0, (r) = (logpu(r)™*

that

lan| 7" < p(r)(logp(r) "
In—A(r)[=C)(7)
(*) P (...) denotes the probability of the event in the brackets.
(®) This is the main step in Rosenblovw’s proof of (4%),
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It follows that for r¢E,

(23)  M(r,t) < p(r)logu(r)*+Max | ' aRe(t)r*e™|.
0SP<IT " |k— A(r)[<Cy(r)
Now we need the following lemma:

LEMMA. Let by, by,...,bp (D =€) be arbitrary complex numbers,
£, &y, ooy Ep independent random variables, taking on the values 1 with
probability %. Then, putting

D
S = Z !bkhg
k-l

one has

(24) P( Max \ ZD’ b ske"*ﬂ > 2 1/22SlogD) <

5
o<p<an | ;= D

Proof. The idea of the proof of this lemma is well known, and is
due originally to 8. Bernstein. Clearly, if y,, ys,..., yp are arbitrary
complex numbers, ;. = a;+if, for every 4 > 0 and & > 0, in view of

|z 41y < V-z_maxfjx], |¥]), one has

0 & g apfp . i 5 g Brts i
P(lZ'J’kEk]>A)‘~<\‘2P(3 =TS eV 2P T > e
k=1

and thus, by the Markov inequality P({ > B) < E({)/B (valid for B > 0
and for every nonnegative random variable { with finite expectation
E(¢)),

D -i & g aép & g Brts
P(| S| > 4) <30 % B m

where #(...) denotes the expectation of the random V%riable in the
brackets. Now clearly, using the inequality 4(¢€"+¢™ ") < ",

e zl') plr = &%k L g~ 5% fi(gaﬁ)
E’(e k=1 }= ( -2 )gg2 Ke=1
k=1
and similarly
(e.k;i Mk) eT (3 82
and thus
2 4 2 3

P( Z‘ykfki>.ﬁ)€4€ Vi ¥l

|
k=1
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Choosing
A

D
A=1 (Z ka!z)”a and PN
Va( 3 il
=1

it follows
D D
(25) P(i PRTAESTDY iyk:ig}:,az) < 4
k=1 k=1

Now let us apply (25) for ;. = bre”” with an arbitrary real value
of ¢; it follows

D
(26) P(' 3™ | > /) < 4,
k=1

Let us substitute in place of ¢ successively the values ¢; = 2nj/N
(j =0,1,..., N—1) where the positive integer N is defined by the
inequality

2nD*? 2nD*?

(27) L Sty il

It follows

| D v | iy 2._,D3,-'2 5
(28) P( max | Zbk éke'”“"f[ o M/S) <4 ( “A - +1) il
k=1

i N -1

On the other hand, if ¢; < ¢ < ¢,

D
(29) | X bege™— D besrei| < /8.
k=1

From (28) and (29), putting 1 = ]/2210gD, we obtain (24).

Let us now apply the lemma to the estimation of the second term
on the right of (23). As the Rademacher functions are independent with
respect to the Lebesgue measure and take on the values 41 with pro-
bability 4, and for r¢E,

(30) Dl < Y wl " < () (log p ()P (loglog u(r)
h— A (F)T<C(r) k=0

it follows for +¢FE; (denoting by V{(...) the Lebesgue measure of the
set of values of ¢ for which the condition in the brackets holds), and,
taking (22) into account, that, if » is sufficiently large,

(1) P(Max | 3w Re(t)e™] > hutr) (logu ()" loglogu(n)'+’)

I<p<in 1k—d(r|<Cqr)

1
S Pllogu()
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Now let us apply (31) for r = n,. It follows that denoting by A, the set
of those t for which

(32) Max | N auhRu(0e* | > Lu(r) (logu(r)" (loglog () +*
O<PT |k A (ry) <O (ry)
in view of property ¢) of the sequence 7,

D V(A < Fo0.

fie=1
Thus by the Borel-Cantelli lemma, for almost all values of ¢ (0 < ¢ < 1)
the inequality (32) can hold only for a finite number of values of n. Thus
with respect to (23) for almost all ¢ (12) holds for n = ng(f).

As was pointed out earlier, this proves our theorem.

As mentioned above, our result is best possible as regards the expo-
nent of logu(r); however, it is not best possible as regards the exponent
of loglog u(r). For instance for the case of f(z) = ¢ one can prove more,
namely that there exist positive constants ¢, and ¢, such that for almost
all values of ¢ one has(*)

(33) ¢, < limsup - k.
P e m(r)(log () (loglog  (r))

To prove the lower inequality of (33), one needs the results of
R. Salem and A. Zygmund contained in their paper [3], dedicated to
Professor Steinhaus at his 65th birthday.

To get the upper inequality of (33) one has to notice that the proof
of Theorem 1 yields also the following result, which is slightly stronger
than Theorem 1.

THEOREM 2. Let f(z) be an arbitrary entire function, having the power
series (1). Let wp(r) be defined by (3) and put

(34) 8*r) = |, 23"

< 65,

Let f(z,1) be defined by (6) and M(r,t) by (7). Then for almost all 1 and
for v¢ Ey(t) where Es(t) is a set of finite logarithmic measure, one has
(35) M(r,t) < ¢s8(r)(loglog u(r))"”
where ¢; > 0 is a constant, not depending on r or t.

ReMARK. For the case f(z) =¢° we have S(r) = O(e'fr') and
logu(r) ~r, and thus we get for almost all ¢

¢Vlogr
(36) Mr,t) < e o8 tor  reB(1).
P
(" Iil what follows ¢, ¢,, ¢;, ... denote positive constants, not depending on r

or f, but they may depend on the function f(z) econsidered.
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Moreover in this case the set E,(#) is an interval 0 < r < r,(f). Thus the
upper inequality of (33) follows. We can write (33) also in the form: for
almost all #
4 —
Mr,t
(7, )Vr o

(37) 0 < ¢; < limsup— s
r—0 € Vlogr

where ¢; and ¢; are positive constants.
Note that (37) is sharper than the corresponding statement in [3].
Proof of Theorem 2. The proof of Theorem 2 follows that of Theo-
rem 1 step by step, only instead of estimating S%(r) as in (30) we express
our result in terms of S(r). As by (30) we have for r¢.F;

$(r) < wlr) log e(r) " loglog ()"

it is clear that Theorem 1 iz contained in Theorem 2.

Using the mentioned results of Salem and Zygmund one can prove
that for all those entire functions f(z) for which there exists an ¢ >0
such that

(38) 8(r) = p(r)logu(r))* for r»>e,

one has for almost all ¢

Mr,t
(39) limsup (9 ___ - ¢ >o.

row . S(r)(loglog s ()]

It should be however mentioned that (39) does not mean that the
statement of Theorem 2 cannot be improved for those functions f(z)
for which (38) is valid, because (39) does not exclude the possibility that
those values of r for which

M(r, t)
8(r)(loglog u ()"

; >0¢>0

are contained in a set of finite logarithmic measure. However, by restrie-
ting ourselves to the class of those entire functions for which the state-
ment of Wiman’s theorem is valid for sufficiently large values of 7, our
result is best possible,

Thus the following result is valid:

THEOREM 3. Let f(z) be an entire function with the power series (1)
such that defining M (r) by (2) and u(r) by (3) one has for some ¢y > 0 and
€10 >0

Mr) < ep (?‘)[logp(y)}cw
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for all v = 1. Let S(r) be defined by (34) and suppose that (38) holds. Let
(=, 8) be defined by (6) and M (7, ) by (7). Then for almost all values of t
we have

B — M(r,t) -
(40) 6y = hrffilp S(r)(loglogp(r))”* = Cy2.

BeEMARK 1. Clearly Theorem 3 includes our statement (37) about
the function e, as all the assumptions of Theorem 3 are satisfied for
f(z) = ¢

REMARK 2. Let us point out that there exist entire functions, having
a lacunary power series such that M (r)/u(r) is bounded; for such funetions
for all values of ¢ M (r,)/u{r) is of course bounded too.

Finally we should like to mention that our results remain valid
if instead of the Rademacher functions we multiply the terms of the
series (1) by the Steinlaus-functions, i.e. by the functions ¢”n where
Dy(t)y ooy Full), ... are independent functions, uniformly distributed in
the interval (0, 1).

REMARK ADDED IN PROOF. The random entire functions obtained
by using Seinhaus factors have been studied first by P. Lévy (Sur la
croissance des fonctions entiéres, Bull. Soc. Math. France 58 (1930), pp.
29-59, 127-149), who has proved for a class of entire functions, the coeffi-
cients of which satisfy certain conditions of regularity, the inequality
corresponding to (35). The class considered by P. Lévy includes the funec-
tion ¢". Thus the inequality corresponding to (36) (if instead of random
signs Steinhaus factors are used) is due to P. Lévy who conjectured also
for this variant of the problem that the lower inequality of (37) holds.
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