INTERSECTION THEOREMS FOR SYSTEMS OF SETS (lI)
P. ERDOS anp R. RADO

1. Introduction

In this paper we present the complete solution of the problem which was con-
sidered in [1], with the exception of the case in which both the given cardinal numbers
are finite. The results of [1] will not be assumed. We begin by introducing some
definitions. T
A system I, = (B,:veN) of sets B,, where v ranges over the index set N, is said

to contain the system X, = (A4, : pe M) if, for p,e M, the set 4, occurs in X, at
least as often as in X, i.e. if

|{v:iveN; B,=A,}| = {u:neM; A, = A}l (4o M).

If £, contains X, and, at the same time, X, contains X, then we do not distinguish
between the systems I, and X£,. The system £, is called a (@, < b)-system if
IN| =a and |B,| < b for veN. The system X, is called a A(c)-system if [M| = ¢
and A, A, = A,, A, whenever i, ity, tia, 13 € M po # fty; pp # p3. The rela-
tion

a— A, ¢) (1)

means, by definition, that every (a, < b)-system contains a A(e)-system. Clearly,
(1) implies a, — A(by, ¢} Whenever a < ay; b = by; ¢ = ¢o. The logical negation
of (1) is denoted by a+> A(b, c).

In [1] the following results were established.

TueoreM 1. (i) If a, b = 1 then
(b* bt = AT, a*).
(i) Ifaz2;b=1;a+b =N, then
(@)™ - A", a").
TuaeoreM II. Ifa, b =1 then a®* '+ A(b*, a™).
Tueorem U1, If1 < a, b < N, then
et = A(bT, a"),

1 2 b—1"
3 s b+ 1 e e e SR Tt e e L0
where c=bla (l TP P b!a"“‘) .
R. O. Davies [4] has found a very simple proof of Theorem I (ii).}
S. Michael [3] has found, independently of [1], a proof of Theorem I (ii).

Received 18 September, 1967; revised 29 February, 1968.

1 The cardinal of the set A4 is denoted by |4], and set union by A-+-B or (v € N) 4,, and set
intersection by AB or TI(v & N)A,. A < B denotes inclusion, in the wide sense. We use the
obliteration operator ~ whose effect consists in removing from a well-ordered series the term above
which it is placed. Unless the contrary is stated all sets are allowed to be empty. For every cardinal
a the symbol a+ denotes the least cardinal exceeding a.

* [added 9-10-1968] Karel Prikry has proved a general theorem which implies the case a=¥,;
bh=W,: of Theorem TI (ii).

[J. Lonpon MATH, Soc., 44 (1969), 467-479]
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It follows from Theorem I that, given any cardinals 5, ¢ > 1, there always is a
cardinal @ such that (1) holds. We shall determine, for any given b, ¢ such that
b+c = N,, the least @ such that (1) holds. We denote this cardinal by f,(b, c).
The results of [1] will not be used. Indeed, by means of lemmas 1 and 2 below we
shall obtain proofs of Theorem I (i) and of Theorem II which are simpler than
those in [1]. We shall express f,(b, c) in terms of sums or upper bounds of sequences
of cardinals which in their turn are given explicitly in terms of » and ¢. Our result
is stated as Theorem IV. We shall also give simpler expressions for f,(b, ¢) which
are valid when the generalized continumm hypothesis

2=a" (a=No) (H)
is assumed. Our results will show that the cardinal number f,(b, ¢) is always regular
(disregarding the degenerate cases mentioned at the beginning of section 3). We

should like to thank the referee for his helpful suggestions and for having pointed out
some omissions in our original argument.

2. Lemmas

For every cardinal @ we denote by w(a) the least ordinal » whose cardinal |n|
equals g, i.e. the initial ordinal belonging to the cardinal a. For a > N, we denote
by a' the least cardinal b such that @ can be expressed as the sum of b cardinals less
than a. If @ = a' then a is called regular, and if a > o’ then a is singular. All our
arguments are based on the “ naive set theory . Unless it is stated otherwise, small
letters denote ordinals or cardinals.

LEMMA 1. Let ¢ = ¢ > b. Suppose that ¢, < ¢ whenever by < b and ¢, < c.
Then ¢ — A(b, c).

Proof. Let (A,:veN) be a (¢, < b)-system which contains no A(c)-system.
Put o(M)=Z(ve M)A, (M = N). We define subsets N, ..., N,4 of N. Let
2o < w(b); Ny, ..., N;, = N and assume that [N,| < ¢(A < 2,). Put

M =N0+ aee +N'¢D.

We then take as N, a maximal subset of N—M such that A, A, = o(M) wheneverf

{n, v} = N,,.
It follows that
A,a0(N;) ¢ o(M) for veN—(N,;+M). (2)

If [N, | = c then we obtain a contradiction. For we have
ol <b < M| <e
leM)| < Z(ve M) |4,| < IM|b < ¢;
Z(by < b) |[6(M)]] < c.

It follows from ¢ = ¢’ that there are a set M, = N, and a set X such that |M,| = ¢
and A, 0(M) = X (ve My). But then (A,:veM,) is a A(c)-system which is the
desired contradiction. Hence |N, | < ¢, and we have defined sets N, such that

T {xq, ..., Zn} s denotes the set {xo, --., £,} and, at the same time, expresses the fact that x,, = x,
forp <v <n

1 For every set 4 and every cardinal b we put [4]® = {X: X < 4; [X| = b).
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IN,| < c(A < @(h)). Then |[No+ ... +N | < ¢, and we can choose
voeN—(No+ ... +Noip)-
Then, using (2), we obtain the required contradiction
b> A, = Z(Ao < 0(®)| 4y, 6(N; )~ Ay 6No+ ... +8,)|
> Z(lo < w(h)) 1 = b.

The following version of Lemma 1, although not required in the present paper,
might be of interest. In it ¢ need not be regular, and the conclusion is weaker than
that in Lemma 1.

LEMMA 1A. Let ¢ > b and suppose that c,%° < ¢ whenever by < b and ¢, < c.
Then ¢ - A(b, cy*) for ¢y < c.

The proof is very similar to that of Lemma [ and is omitted. R. O. Davies has
found an alternative proof of Lemma 1. His method seems to yield Lemma 1A
as well.

Lemma 2. Letn=ow(b) = 1and 1+c, <c(v <n). Then
(v < n)eg ... &+ A, ©).

Proof. Let |A|=c(v<n)and A, A, =B(u<v<n). Letf {X,:41eL}, be
the set of all sets X < Ag+ ... + 4, such that there is m(X) < n with

XA, =1(v <m(X)); XA, =0 (m(X)<v<n).
Then |[L] = Z(v < n) ¢y ... &,. Assume that
LeLj|ll=c X;X,=X ({4 p}s <L)
We have to deduce a contradiction. We have |X;| = |m(X)| <b (AeL). Let
Xom ey e g <own S hpting X el (pr)

The assumptioni {go, ..., fi,} = [0, )} implies |L| < 1 which contradicts |L| = ¢ > 1.
Hence there exists the ordinal

i = min ([0, W)~ {uo, ..., 4.}).
Case 1. Thereis p, <r such that i < pu,,. Then
X, 4; # 9 (heL); X, X;, 4, =0 ({lp, 44} < L).
Hence we obtain [L| < [4;] = ¢; < ¢ = [L], i.e. a contradiction.

Case 2. g, ...s fi, < f. Then {g, ..., 4} =[0,)andr <n. Then X, A, # O
if el and X; # X; X, X; A, =@ ({Ado, 4;}« = L). This implies

L] < 1+]|4] = 1+¢ < c = L],

a contradiction which proves Lemma 2.

T The symbol {X, : Ae L}, denotes the set {X, : Ae L} and, at the same time, expresses the
fact that X, 7= X, whenever {A, u}. < L,

1 For ordinals m, n such that m <2 n we put [m, n) = {v : m < v < n}.
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LEMMA 3. For all cardinals p, q > 1 we have g° +> A(p*,q").
Proof. Let
n=ow(p); [Al=q9 (v<n; A4,4,=9 (u<v<n).

Let {X;:7eL}, be the set of all X = A,+ ... + A4, such that [X4,| =1 (v < n).
Then the (g%, <pt)system (X,:iel) contains no A(gT)-system. For, let
(X, :2€L)be a A(g")-system, for some L' = L. Then we can choose {z, f}, < L.
Since X, # Xy;wehave N' = {v: X, Xz A, # @} # [0, n), and there is vy € [0, n)—-N".
Then X, A4, # @ for leL, and X, X, 4, =X, X;4,, =0 for {4, g}, =L, so
that |[E| < |4, | =¢ <g¢" = |L| which is a contradiction.

Remark. 1f ¢ = N, then the conclusion of Lemma 3 follows, of course, from
Lemma 2.

LEMMA 4. Let xg, ..., 8%, be cardinals, x, < ... <2, I =w(l]) and t < |I|'.
T hen
(S0 < ;)" < S < D2
Proof. Let
IXid=x0<D; X;X, =@ (A<pu<l); |TI=t
Let fe (Xo+ ... +X))7, ie. let £ be a mapping f: T— Xo+ ... + X,. Then there
is 2o(f) <1 such that f(T) < Xo+ ... + X, Hence

(Ex)s= ; (o+ ... +8) < Z(2] %) < E(x,2).
Fe

LEMMA 5. Let a = Ng: n=w(a); m= o(d@). Let x4, ..., %, be cardinals such
that xo < ... < %, Then there are an ordinal k and ordinals vo < ... <9, <n
such that either

k=m and x,<..<R8,, (3)
or k=n and x,=..=2%,. 4)

Proof. For pi, v <n put g = v whenever x, = x,. Let the equivalence classes
of the relation g = vbe Ny, ..., N,,, where pisanordinal, | € p € n. We can number
the N in such a way that whenever r < s < p; ueN,;veN, then x <vand x, < x,.
If p > m then we can choose v,e N, for 4 <m, and (3) holds. Now let p < m.
Then there is n < p such that [N | = a. Then, iff N_ = {v,, ..., ¥} ., we have (4).

LemMma 6. Letl a' > b"; b =57, and suppose that a — A(bg, ¢) for all by < b,
Then a — A(b, c).

Proof. There is a sequence§ b, < ... < b,, — b, where m = o(b’).
Let [IN| =a and |4,] < b (veN). Then N = N,+ ... +N,., where

Ny={v:|A]<b} (u<m).

¥ The symbol {vg, ..., fi} < denotes the set [y, ..., ) and expresses the fact that », < v, for
1< f <n
TWeput x- =ypif x =y+, and x~ = x if x is not of the form y+.

§ The relation by < ... < b, — b means that b, < ... < by and sup (x < m) by, = b,
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By definition of m there is u < m such that [N, | =[N| =a. Since a —» A(b,, c),
the system (4, : veN,) contains a A(c)-system.
LemMmA 7. If ¢ > ¢ then ¢+ A(2, ¢).
Proof. We have ¢=c¢y+ ... +&, where m = w(c) and ¢, ...,¢, <c. Let
S=So+ .. +8,; IS)=c, (u<m); S,5,=0 (u<v<m).
Put 4, = {¥} (v <m; x€e8,), so that A,, is independent of x. Then the (¢, < 2)-

system (A, : v < m; x€8§,) contains no A(c)-system.

3. Determination of f5(b, c)

For cardinals b, ¢ we denote by £, (b, ¢) the least @ such that « — A(b, ¢).
For the sake of the completeness of the discussion we begin by stating the values
of fy in the degenerate cases, which are, of course, of little interest.
f3(0,00=0; fa(0,c)=1(c=1); fi(l,0)=c (c>0).

If b >2 then fy(b,0) = 0; fu(b, 1) = 1; fx(h,2) = 2. Next, if 1 <b, ¢ <N, then
Theorem IIT gives what seems to be the best known upper estimate for f;. In this
case the determination of the exact value of £, (5, c) is beyond the scope of methods

known at present.
For the remainder of this paper we shall assume that

bz22; ¢=3; b+ecz=N, (3

The number f,(b, ¢) will turn out to be closely related to the number s(%, ¢) defined
by the equation

s(b, ©) = sup (cg, .-, Eupy < ) E(v < 0(B)) ¢p ... 2,. (6)

In fact, for every choice of b and ¢ the number f,(b, ¢) has one of the values s(b, ¢),
s*(b,c). This means that our analysis will show that s¥(b, ¢) > A(b, ¢), and

5o 4> A(b, ¢) for every s, < s(b, ¢).
Qur results are summarized in the following theoremt

THeOREM IV. Let the cardinal numbers b, ¢ satisfy (5) and let the cardinal number
s5(b, c) be defined by (6). Then

(a) falb, ©) = s(b, ¢)
ifeither () b<Ny<c'=¢
or (Y Ny<b =b<c=c" =c
and sup (by < b; ¢y < €)™ > sup (b, < b)c,™ for every ¢, < c,
or (i) No<b=by"<c'<c =c¢
and sup (¢, < ¢) ¢ = (sup (¢, < €) ¢o™)' > ¢,*  for every ¢y < c.

(b) In all other cases
fulb, ©) = (s(6, ) *.

s(b, ¢) = max (b, ¢). €))

We note that

+ (a) (i) is Case 1a, (ii) is Case 2b 2¢ 2b 1a, and (iii) is Case 2b 1¢ 2a.



472 P. ERDOS AND R. RADO

For, if all ¢, =1 then Z¢,...¢, = b, and if ¢, is arbitrary such that ¢, < ¢, and
c,=0(v=1)then Ec ... &, = 1 +¢p.
If ¢ = N, then
5o +> A, ©) (50 < 5). (8)

For we can choose ¢y, ..., £, < ¢ such that, by Lemma 2,
So < Zeg ... &, A(b, ©),

and then appeal to the monotoneity of our relation.

We shall evaluate 1, (b, ¢) without assuming the generalized continuum hypothesis
(H). We shall also compute f4(b, ¢) under the assumption of (H). To avoid tire-
some repetition we shall use the relation

s(h,e) 2 d

to express the fact that if (H) is assumed then s(b, ¢) = d. Such relations will be
stated without proof. The reader can easily supply the proofs, e.g. by referring to
(2] §36. Whenever the arguments of the functions s or f are the given cardinals
b, ¢ we shall write s and f, instead of s(b, ¢) and f,(b, ¢) respectively. The symbols
b,, c,, where v is an ordinal, will always denote cardinals such that b, < b and
¢, <c. Weput

n = w(b).

Our discussion will follow a highly ramified scheme of classification which in the
interest of clarity is presented in detail.
We use the notation
a” = Z(v < m)a",

where a denotes a cardinal and » an ordinal number,

Case 1. b < ¥N,. Then s =c. For we have, for any ¢,, Z(v<n)cy...¢, <¢
and (7) completes the proof.

Case la. c¢=c¢". Thenfy =s.
Proof. By Lemma 1, ¢ » A(b, ¢). For, we have ¢’ = N, > b and ¢, < c.
Case 1b. ¢ > ¢'. Thenf, =s™*.

Proof. By Lemma 7, ¢+ A(2,¢) and hence c+> A(b, ¢). Also, by Case la,
¢t = A(b, ¢*) and therefore ¢* — A(b, ¢).

Case2. b= ¥,
Case 2a. ¢=c,*. Then, clearly, 5= c,". Also, s = b if ¢ < No; 5 = ¢ if
bgco*;sgrifco’<b£co;s£bif}¢0$c’o<b,
Case2al. b=b5b". Thenf,=s".
Proof. We begin by showing that
s+ A(b, ©). €)]

If ¢ > N, then, by Lemma 2, s = ¢, +> A(b,c). Now let ¢ <N,. By Lemma 3
we have, for v<n, 2"+ A(v|*,3). Hence there is a (2", < [v]*)-system
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(A,; : Ae L) which does not contain any A(3)-system. Choose any distinct objects
X0y vy Xy Yoy ooy ¥, OUtside (v < n; A€ L) A,; and put

Bvi = {XU, e} ﬁva yv}'{_Av). (V < n; ;'E Lv)-
Then (9) follows if we can show that (B,,:v <n; AeL,)is a (s, < b)-system which
does not contain any A(3)-system. Clearly

v, D:v<n deL} =2"=s.

Also, |B,;| < b. Now let vo <v; <v, <n,and 4,eL, for p<3. Suppose that
the three pairs (v,, 4,) are distinct and that (D, Dy, D,) is a A(3)-system, where
D,=8B,,;, for p<3 If vog=v, =v,, then (4, , :p < 3)is a A(3)-system which
contradicts the definition of the 4, ;.
If vo = v; < v,, then y, € Dy D, — D, D, which is false.
If vg < vy = v,, then y, € D, D,— D, D, which is false.
Hence vy < v{ <v,. But then x,_ e D, D,~D; D, which is false. This proves (9).

Next, we prove that
st = A, o). (10)

Case 2ala. b2 N,. By (7), (s*)Y =s" > b= 5. Hence, by Lemma 6, (10)
follows from

st AT, ) (Ro < by < B). an
Since s > ¢,', (11) follows from
(co™)" = Aho™,c)  (No < b < b). (12)
Since (c,*)* = ¢t = ¢, (12) follows from
(Cob")+ - d(bo+s (Cob°)+) (No < by < b). (13)

But (13) follows from Lemma 1. For we have, if 8, < b, < b,
((Cobo)*-)’ = (co’)* > oo 2 byt

&nd (Coba)bu = CObD < (CObn)+.
This proves (10).

Case 2alb. b= N,.

Case 2albl. ¢ <¥N,. Then s=N, By Lemma 1, s* =N, - ANy, N)),
and this implies (10).

Case 2alb2. ¢ = N,. Thens =c¢,. By Lemma I,
5T =cot > ARy, %),
which is (10).
Case 2a2. b=b,*. Then s=co’ and f, =s*. Also, s= ¢, if by < i
sLcifey <by < cossEbifcy < by

Proof. Clearly, 5 = c,™ < by’ = ¢;? < 5. By Lemma 3, 5 = ¢,"0 + A(b, ¢).

By Lemma 1,
(co™)™ = A(b, (co™)™). (14)
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For, we have (c,20)* >coo=h and (c") = ¢ < (co*)". By (7), (14)
implies s™ — A(b, c).

Case2b. ¢=c".
Case 2bl. b =b,".
Case 2bla. ¢ =b. Then we can choose a sequence 0 < ¢y < ... < &, = C.

Thens= 20 2l ts.. Esfa =t s 0 5
Proof. Let xq, ..., £, < c. Then we can find inductively numbers

f0) <...<f(n)<n

such that x, < ¢y, (v<n). Then EZ(v<mx,..%, € Z¢p...0,. Hence, by

Lemma 2,
§ = Zeg... ¢, + Alb, €).

We now prove
st = A(b, o). (15)
By (7), (15) follows from
st o A, s*). (16)
We have (s7) = s > s> b. Hence, by Lemma 1, (16) follows from
s < s (17)
Put ¢y ... 8, =p, (v <n).
Case 2blal. There is a sequence vy < ... < ¥, < n with p,, < ... < f, . Then
s=Z(v<mp, <A <mvp, < Z(l<np,, <5
By Lemma 4,
st = (Zp,, ) < Ip¥r < Zple. (18)
Put w(by) = m and consider the sequence d, vors @y Whete dpyp i = €,( < m; p < 1),
By definition of s,
T(v< mple € L(v< md,y...d, <s.
Hence (18) implies (17).

Case 2bla2. There is no sequence vy < ... < ¥, < n with p,, < ... < f,,. Then,
by Lemma 5, there is a sequence 0 < v < ... < 9, < n such that p,, = ... = p, =p,
say. Thenp, =p (vo S v<n);

s=Z(v<vo)p,+E(vo <v<mp<bp
Also, bp = Z(vo < v<n)p,<s. Hence s = bp. We have p > ¢, (v < n) and
sop=czc =b; s=p.
Consider the sequence d, ..., d, defined by

Ay +u =€, (it < vo; v < ).

By definition of s,

5% = (¢g... 8, ) < (v < n)dy...d, < s.
This again proves (17).

Case 2blb. ¢ < b. Then
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Proof. Choose 0 < ¢, < ... < &, — ¢, where m = w(c'), and put
Aip=¢, (<m; v<n).

Let xq, ..., £, < ¢, and choose any v < #. Then we can find inductively numbers
£0) < ... < f(m) < m such that x,,;, <dpyey (<m; v<n). We define [
by putting f(mv+u) = mv+£ (1) (u<m; v<n). Then f(0)<...<f(m)<n
and x, < dy,, (v <n). Hence

(v < m)Xg... %, < Edy ... d,.

This proves s = Zd, ...d,. Put p,=d,...d, (v <n). We shall make use of the
fact that p,, = ¢ ([2], p. 141, Satz 6). We have

s=X(v<n)Imv<A<mv+mp, < Z(v<n)|m| pyin
Z(v <n)c'(c) P < Zv < m) P

=Z(v<mc+Im<v<nmcl <

Il

< E(v <m)(ep ... ) < T(v < m)d,y...d, < 5.
This shows that, by Lemma 2,
s=c"= %d,...d, + Ab, ¢).
Finally, by Lemma 1, s* — A(b,s™). For, we have (s*) > s> b;
s=c" < bcPo=ch g5,
b

sPo = clabo = cbo = 5 < 5*.

Now (7) yields s* — A(b, ¢).

Case 2blc. ¢ > b. Then s = sup (¢, < ¢)eg™ =

Proof. Let cg, ..., ¢, < c. Then there is ¢ such that 2,¢5,...,¢, < ¢ < ¢ and
hence E(v < m)co ... ¢, < biPo = t%. Therefore s <sup (e, < c¢)cy =0, say. If
X, =cg <c(v<n),thens> Zx,... %, >cl. Hence s>candsos=o.

Case 2blcl. There is 2 < ¢, < ¢ such that s = ¢,">. Then f, = s".

Proof. By Lemma 3, c¢,"+ A(b, ¢;"). Hence s+ A(b,c). By Lemma I,
st = A(,s*). For, we have (s*) >s>5b; sho=cPo%=s5<s* By () we
deduce s* = A(b, ¢).

Case 2blc2. s> ¢o™ (cp < ©).
Case 2blc2a. s=3s". Thenf, =s.

Proof. By Lemma 1, s » A(b,s). For, if 5o < 5 then there is ¢5 < ¢ such that
soPo < (eo™) = ¢ < 5. Also, using (7) we find 5' = s > ¢ > ¢’ > b, s0 that Lemma 1
applies and gives s > A(b,s). By (7) we deduce s — A(b. ¢), and (8) completes
the proof.

Case 2blc2b. s> s'. Thenf, =s".

Proof. If we assume that s > ¢ then there is ¢q < ¢ such that €™ = ¢. Then,
for every ¢, < ¢, we have ¢, < ¢® < (¢,%0)" = ¢, and hence s € ¢,™ < s which
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is a contradiction. Hence, by Lemma 7, s = ¢+ A(2, ¢) and therefore s+ A(}, ¢).
Also,
€)Y =ct>c>b; c=xp+ ... +%; l=w(); xo<..+%<c

by<b<c =\l =]l
Hence, by Lemma 4,
e TAh<Dxtlog s =c<ct.

Now Lemma 1 gives ¢™ — A(b, ¢*) and so s¥ — A(b, o).
Case 2b2. b=10".

Case 2b2a. ¢ =b. Choose0< ¢y < ... < &, —c. Then

s=3(v<ncy ..o fu=sT sZec

Proof. 1If xg, ..., %, < ¢ then there is a sequence f(0) < ... < f (1) < n such
that x, < ¢gp, (v <m). Then Xx;..%, < Zcp... ¢, and therefore, by Lemma 2,
s = Z¢y ... 8, A(bc). We now prove

st = A, ¢). 19)
By (7), (19) follows from
st = A, s7). (20
By Lemma 1, (20) follows from
sto < s (b < b). (21)

Let by < band put ¢y ... 8, =p, (v <n).
Case 2b2al. Thereis vy < ... <¥, < nsuch that p,, < ... p,. Then
s=Z(v<np, < ZA<n)|vlp,, <Zld<np, <s.
By Lemma 4, which applies since by < b=¢' =" =b' = |n/,
sh = (Zp,,)’ < Zpie < Tph. (22)
Put w(by) =m and d,,,, = ¢, (< m; v<n). Then, by definition of s,
(v < n)ple < Xdy...d, <.
Hence (22) implies (21), and (19) is proved.

Case 2b2a2. There is no v, < ... < ¥, < n such that p,_ < ... < p,. Then,
by Lemma 35, there is 0 < vy < ... < ¥, <n such that p, = ... =p, =p, say.
Then

pr=p (<v<n)
5= Z(v < V) py+ (Vo S v < 0} p, < Vol p+ [l p
=bp=Z(vp<v<np,<s;
s=bp; pzc, v<n); pzc=c =b; s=p.
Putd, ,4=c¢, (v<n 4 <v). Then, by definition of s,
(co ... 8, )% < (v < m)d, d, <5 sho=plogs

Hence (21) follows and (19) is proved.
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Case 2b2b. ¢’ < b. Then

s=c" fi=s*; s&ct.

Proof. Let m = w(c’), and choose a sequence 0 < ¢y < ...< ¢, »c. Put
dpyip=¢, (u<m;v<n). Let x, .., %, <c Then, for every v<n, we can
find inductively numbers £,(0) < ... < f.(m) < m such that

Xpyip Sumyrpy (< m; v < n)
Define f by putting f (mv+p) = mv+f(p) (g < m; v<n). Then
fO<..<fm<n
and x, <dg,y (v<n); Bl < i) Ky B L Bl ey
Thus § = 2dg...d,. Putp,=d,...d, (v <n). Then
s=Z(v<mImv<l<mv+mp, < Z(v<n)|m Puim
=I(v<n)c () < Iy < n) 'l
=I(v<mc+Im<v<ncl <
On the other hand, using c; ... &, = ¢ > ¢, we find
"< v < n)eg ... 8)"N < Z(v < m)dy...d, = s.
Hence, by Lemma 2, s = ¢ = Zd,...d,+ A(b, ©). We now prove
st = A(b, o). (23)

We recall that s always stands for the number s(b, ¢). By Lemma 6, (23) follows

from
st = A(B,T,0) (¢ <b; <b). (24)

Next, by the monotoneity property of s, (24) follows from
sT(B Y, 0) = A 0) (< by < b). (25
But (25) follows from case 2blb, and (23) is established.
Case 2b2c. ¢ > b. Thent
s=sup (bo < b; co < e Z c.

Proof. Let xq,...,%, < c. Then there is ¢; such that x, .., 82, <¢; <ec
Put o = sup (b, < b; ¢, < ¢)co™. Then

(v #) %y, €67 € Do

Also, 6 = 2" > |v| (v<mn); o> b, sothat s <o. If s < o then there are b, and
¢, such that s < co®. Put y,=¢, (v<n). Then s< e < E(v<n)y,...0, <s
which is a contradiction. Hence s = 0.

Case 2b2cl. There are b, and ¢, such that s = ¢,”. Then f, = s*.
Proof. ByLemma 3,s = ¢," + A(by ™, ¢,™) and hence s +» A(b, ¢). By Lemma 1,
s* = A(b,s%). For, we have (s*)' > s > b, and if b, < b then

=gt gs <57,

+ This value of s remains valid for the remainder of the paper.
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We now conclude that s — A(b, o).

Case2b2c2. s> ¢, (by < b; ¢y < ). Putk = w(s’). Then there are sequences
bo < ...<b,<band ¢y < ... €& < csuch that ¢ < ... < &% —> 5.

Case 2b2c2a. There is k, < k such that ¢,, = ... = ¢ = ¢, say. Then f, =s".
Proof. sup (x < k) = 5. There is b such that
by, < byyy1 < ...<b>b<b,

If b < b then & < &® < 5 (k < k) which is false. Hence b = b; |k| =b"; s =b'.
We have ¢ > ¢l (v < n) and hence é® > s.

On the other hand, & < E(v < n)s = bs = s.

Hence, by Lemma 2, s = £ +» A(b, ¢).

We now prove

st = A, ). (26)
We have (s*)" > s' = b'. Hence, by Lemma 6, (26) follows from
sT o A 0 (b < D). @n

Choose any b, < b. Then, by Case 1 if b, < N, and by Case 2blc if b, = N,,
fa®E, ©) €57 (bf, ¢) <s*. This implies (27) and therefore (26).

Case 2b2c2b. There is no «, < k such that ¢,, = ... = ¢,. Then, by Lemma 35,
there is xy < ... < R, < & such that

Crp < oo < G, > C< 0
Case 2b2¢2bl. ¢=rc. Thens=rc.
Proof. We have |[k| =2 ¢’. If s > c, then there are d,, e, such that
do<b, ey<c; e*ze.
Then, for d, < b and e, < ¢, we have
et < e e <sup(d, < b)e < s
and therefore s = sup (d, < b) e,. This implies the contradiction
S <b< <kl=ys"
We have thus proved that s = ¢. Let dy < . Then, by Case 1 or Case 2bl,
faldot. o) €57 (dy*, ) <57 .
Hence ¢* — A(d,*, ¢) (d, < b), and we deduce from Lemma 6 that
ct > A, o). (28)
Case 2b2c2bla. ¢=¢. Thenf,=s=c

Proof. ¢ = ¢ >b. If dy < b and ¢, < ¢ then ¢,% < s = ¢. Hence, by Lemma 1,
¢ — A(b, o).

Case 2b2c2blb. ¢ >¢'. Thenf, =s" =c*.

Proof. By Lemma 7, ¢+ A(2, ¢) and so ¢+ A(b,¢). Now (28) completes
the proof.
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Case 2b2c¢2b2. € < c. Then
s=sup(by < b)»; fui=s".
Proof. By Lemma 2,
s=sup (K < kel <sup(xk < k)& < "+ A, o).

Hence s+ A(b, ¢). We now prove

st > A, o). (29)
In view of Lemma 6 and the relations (s*)" > s > b, (29) follows from
st > A, ¢) (bse < b). (30)

By Case 1 or Case 2bl,
fulby, ) <sTBE <5t (by < ).
This proves (30) and hence (29).
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