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1. Introduction. In this paper we settle one of the questions left open in [l] con-
cerning the symbol
(1) =a rim  *

By definition, (1) means that the following statement is true: If S is we12  or&red
set of order type SI and if 9 = (F,:JI  EM) is ‘any family of m = IM  1 subsets of S such
that each Fw  (JI  EM) has order type less than p, then S contains a subset C qf type
y which is disjoint from m sets FM qf the,famiIy  P,  i.e.

I{p:pEM; F,ilC= 0}l=m.

The set C is said to be (F,  m)-free.  The negation of (1) is written as

z =I=+ [P,  +Yl,*

We proved ([l],  Theorem 10.0) that

So that, in particular,

holds for all u-c=  wi  . The condition CI  -K o,,  + 1 in (2) is necessary since, for example
([I],  Theorem 10. 1) assuming 2#1=  kz,

By using a result of [2] on set mappings (see [l],  Theorem 6.2) it is very easily seen that

%=a,  QwlN* (n-=0;  P-=%1,

and this is stronger than (3) when aeo.  We asked in [l] (Problem 5) whether (3)
is best possible when CI  =o,  i.e. does

(4)
hold?

Using the generalized continuum hypothesis (more precisely, using 2#1  = HJ
we can now show that (4) holds. In fact, the following theorem shows that (3) is
best possible in the sense that wp cannot be replaced by any larger ordinal.
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THEOREM. If 2N1  = K~  and o 5 a c ml,  then

(5) 02u =/*  [co?  + 1, 02cI],,.

2. Notation atid  preliminary results. Capital letters denote sets and small
letters denote ordinal numbers unless stated otherwise. The cardinal of X is 1x1.
The obliterator sign A written above a symbol means that that symbol should be
disregarded. For example,

{x0,  -.., &} = {x,:v-=:cI}.

We write S= {xX0,  ..*,  a,},  if the set S= {x0,  . . .,  ZacI)  is simply ordered by -=  so that
x,-=x,for~iv-=r.Foranycr,pwewrite[cr,@={v:a~vr/3}.

The order type of the well ordered set A is denoted by tp A. If the sets A, (ve  X)
are disjoint and ordered, we write

s = A,U  . . . UAl,(tp)

to indicate that S is the union of the A, and also that S is ordered in such a way
that the order relations in each A, are preserved and x -=y  if xE A,, yE  A, and
p e v <CL  T is a co$nal subset of the ordered set S if for each xE S there is some
yE  T so that xsy. For a >O,  co (CX)  denotes the smallest ordinal /3 such that [0, CY)
contains a cofinal subset of type p. Thus co (a)  is either 1 or an initial ordinal.
If a is such that /3 + y -K a whenever /? -=  CI  and y K  x, then sl is said to be indecomposable.
The indecomposable ordinals are 0, 1 and powers of w.

An ordinal valued function f defined on the set of ordinal numbers A is
regress& if f(z)  -=z  x (EEA; CI  f 0). B c A is closed (w.r.t.  A) if B contains the limit
of any increasing sequence of elements of B which is also in A. S c [0, 0,) is stationary
if [O; w,)  - S does not contain a closed subset cofinal with [0, 0,). It is easily seen
(see [3])  that the set

C u: z<iw2;  co(cr)=w,}

is stationary. It is well known that if N,(>K~)  is regular and S is a regressive
function defined on the stationary set SC [0, w,),  then f has a stationary caiue,
i.e. there is some 0 such that

I{cc:  aES;f(c+8}1=h’,,

It has been proved in [4]  that if S is a well ordered set and tp Sco,+  1Y then
there is a partition of S into countably many (small) sets,

(6) s = s,us,u  1..  us,

with tp S,5@(n  ~0).  We shall use this in the special case ;( = 1 and refer to (6)
as a paradoxical decomposition of S.

3. Lemmas, To prove our theorem we need the following two lemmas.

LEMMA 1. Ler A = [0, cq,),  where 05 x,,  -C q and  q, is indecomposable. Let
SyY={(v,  S):S<y}  (ucA;  y<w,) and let

s=u us;
vEA  yewr
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be ordered lexicographically. If S’ c S and tp S’ = ozclo,  then there are y -= w2  and
N c A such that co (y) = q , N is cojinal with A and S’ n S,Y is cofinal with S; for all
VEN.

PROOF. Suppose the lemma is false. Then for each

yEM={e:  @-=02:co  (Q)=q}
the set

NY  = {v: vE  A; S’ n S; is cofinal with S;>

is not cofinal with A. Therefore, for y EM,  there is vy E A so that

S’ f” S,Y is not coJna1 with S,Y (vy  z v -=z ED).

Thus for 7 EM and ry 5 v CL x0,  there is 8, -=  y such that

s/n {(v,  6):  e,4i-+= 0.

Also, since [A[ = Ho and co (y) = wi  for 1~ EM, it follows that there is f(y) <y
such that

h <f(Y) (y EM; v, 5 v c=  ao).

Since by NEUMER’S Theorem M is stationary, the regressive function f has
a stationary value 8 -=w2,  i.e. there is M, c M such that (Ml j = ‘k2  and

f(y)=0 (Y  EMI).

Since vy-=c10  (y  EM), there is M2 cM, such that j&f21  = &!z  and

I$=< (Y E M2>.

If ycMz  and <sv<q,, then

S’n  {(v, 6): 856<y}=  0.

This holds for each y EM, and as ]M,  I= s2, it follows that

s/n ((v,  6):  fskw2p=  0 (( 5 v -= CqJ.

We now have the contradiction

tp S’ ?z  w2c + l9do  -=  wzslo.
This proves Lemma 1.

LEMMA 2. Let 1 sin  -=w and let P= {a,: Q  K o;}, be a set of ordinal numbers
wi th

‘A@  -=  w2,  co(qJ  = 01 (e -= wlj.

For Q -=  ~7,  let CtiO,  C,,, . . .,  ego, be N  1 sets which are all cojkai  subsets of [0, x0).
Then there is a set C* such that tp C* 5~7’ 1 and
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PROOF. For e == WY, we define fi, in the following way. PO =O. If e = u -I-  1,
put /I,  = x, ; if e is a limit number put

j?,  = lima,.
a-==&?

Note that ,f$,  < ge if co(e)  = 1 or u, since co(a,)  = w, .
We will first prove, by induction on n,  that there is a regressive functionfdefined

on P so that
(7) lb:  eo -= @ -= w; ; f(cx,)  -= c&} j 5 No (eo -= a.

If yt = 1, the function f(z,)  ==&  (e -=z  q) obviously satisfies (7). Now suppose
~251.  Let Q={a,:  f3 < o’j  ; co(g)  = ai}.  Then

{a W(VS  1) : o-  -=z  co;-‘}  c Q c {c(,,~  : IT  r co”,-  ‘}

and so Q has order type o’j-I.  By the induction hypothesis, there is a regressive
function g defined on Q so that

I{o:  (ro -= o; cc,  E Q;  g(Q  -==  cc,,}~  s ~0 (G,,  E PI-

Now define f in the following way:

“fw  = s&J b, E Q>t

f@J = B, be--Q>.

Clearly f is regressive. We have to verify that (7) holds. Let e,,  K  07. It follows
from the definition of the /?,  that, if e. < e <:o; and txQ E P - Q,  then xQ,  So.
Therefore,

R = be0 -== e -= o", ; f&J  -= r,,l  = {e:  eo -==  e, ae E QJW  -==  a&
Let co  be the least ordinal such that e. 5 ALTO.  Then

Rc{a:  co-=o;  a,EQ,gh)  -==  xs,}

which is countable. Therefore (7) holds.
We now prove the substantive part of the lemma.
Let Q-K  o’j  and suppose we have already defined xgY for 0 -=  e and v <or  _

Since C,, is cofinal with [0, a,), we can choose xeo  E C,, so that

XQO  =- f&h

More generally, by induction on v, since C,,  is cofinal with [0, EJ we can define
elements x,, f C,,  (v -=  wi) so that

“fw  -= $7 -= x&q (v  -== P -=z w

and C,*  = {x,,:  v ~0~) is a cofinal subset of [j’(a,),  cx,).  Now put

c* = u c;.
p-2;

Then C*nC,,#0 (@-=o;; v-c  wl).  To prove the lemma we must show that
tp c*GS@‘.
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For Q -= w;, put B, = [&,  a,). Then

U [O, r,) = U B,b).
OCWy u-=m;

If Q<o’,  then C,*  n B, = 0. If e=o,  then Ct 0 B, is either empty (if p, =a,)  or
it is a cofinal subset of B, of order type wl. By (7) there are only countably many
values of Q =-g  such that Ct fl B, $0 and for every such Q,  C,*  fl B, is countable
since C,*  is cofinal with q, (=-cq,)  and has order type ol. Thus we see that, if
D, = C* n B,, then

tpD,  5 w1 ((7  -=  07).

Since C* = U D,(tp),  we have the desired conclusion that tp C*soy+  l.
c<co;

4. Proof of Theorem, First we observe that it is enough to prove (5) in the
case of indecomposable ordinals, i.e. that

(8) 02%)  i) [OY + 1,  02Q]H,

holds if CI~  is indecomposable and w 5 x,,  K  01~.  Let o 5 CI  -= ol. Then a = cq,  + a,
where a0  is indecomposable and c~i  -=u. Let S= S, U S1 (tp), tp Si=qq (i-=2).
If (8) holds, then there is a family 9 =(fi;:  p cc+J of subsets of So  such that
tp P-,swy  ([t-=  02)  and such that So  does not contain any (9,  NJ-free  subset
of type W?CI~.  Therefore, if S’ is any (9,  ti*)-free  subset of S, we have that

where y-=w,r~,  . Therefore, tp S’<c+c(. Thus (5) follows from (8).
We now assume that a0  is indecomposable and that w  5 q, -=  q . Let A = [0, s(e),

s,y  = {(v, 6): 6 -=  y} (t’EAl Y-=%,9

and let S,=  IJ SyY.  Then the set
9<*2

s =  u s ,
VEA

ordered lexicographically has order type ozaO,  Since Q is indecomposable and
OS%O<tO1, there are sets A,, f 0 (H <w)  such that

A=A,UA,U...UA,(tp).

If y <q and N is cofinal with A, the set U S,Y  has power K~.  Therefore,
YEN

by the hypothesis ZN1  = K~, it follows that there are only +&z  sets Bc S which
are such that

B c  US;
VEN

for some y = y(B) K o2  and N= N(B) c A with co (y) = w1 and N cofinal with A,
and which have the further property that

B f’ .S$ is cofinal with  Sz (v E NW).

Let Bo,  B,,  . . . . B,,  be a well ordering of all such sets B.

6* A.-i-  .2la/4ematicn  Atxrfcmid~  Scierlriarum’  Hmzgoricnc  20,  r969
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We are going to define a family F = (Fh: p K wJ of subsets-of S such that

(9) tp F,,  5 coy (P < w2),

(10) Fpf’IB,  f 0 (‘I -=z  p -==  w2).

This will prove (8).  For suppose the Fn (p cw,)  satisfy (9) and (10).  If S’cS and
tp S’ =ozclO,  then by Lemma 1, 5”  I B, for some v -=w2.  Therefore, by (lo),

cp:  Fp  n S = 0} C [O,  v)

and so S’ is not (9,  H,)-free.
Let fl’O2.
Put c,  = (y(B,)  : v~p}.  Since tp Cp-=‘02, there is a paradoxical decomposition

of c,,
c, = c,,u  ..‘  u epw,

so that tp C,, 5 07  (rt  < 0). Thus we may write

c,m  = bpns  : 6 -= 4lJ < 3
where

a,, 4 co”, (n -2  0).

For 6 z SBn,  the set M,,ns  = {v: v -=/r;  y(B,)  = ylma}  is nonempty  and has cardinal
power less than or equal to til. Therefore, there is a sequence (vpnJa)a<wl  (whose
terms are not necessarily distinct) such that

M,nd  = &w?s: c -==  %I.

Let
c

Csnsa  = {y  : (Q,  y) 6 BYrndd  for SOME?  Q  E A -(A, U . . U A,)}, Then the sets
lm6a are cofinal with [0, Y#,,~)  for 0 < o, and 6 <a,,, s 0;. By Lemma 2, there is

a set C$ such that

(11) c;r,  n clrnSd  P 0 (fl-=o,;  J-=bJ

and

WI tp czn 5 oy+  ’

Put Gcl,={(@,r):  YEC,*,,@~A-(A,U...UA,)}.  Then

(13) tp (G,,  r‘l S,)  5 o;+ 1 (eEA,,  n 4 m-=w),

(14) G,, n s,  = 0 hEAm, rnsnntiw),
Also, by (1 l),
(15) G,,nB, f 0 (n -= 0; vEMpnd;  s -= S,,).

Now put F,,= u G,,. Then, by (IS}  and the definition of the sets Mpas,
l2<6J

we have that
q-m z 0 cv == p1),
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i.e. (10) holds. If m-=w and @CA,,  then by (13) and (14)

tp(q-m,)  = tp(  u GpnnsQ)  5 ,;1+1.WC??!
Therefore

tp (4 nQcy  se)  -= 0~2 (m -= co).
m

Since A = A0 U A, U . . . U A^, (tp), it follows that

This  proves (9) and ccmpletes  the proof of the theorem.

(Rewired  23 August 1968)
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