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1. Introduction. In this paper we settle one of the quedtions left open in [1] con-
cerning the symbol

(1 a=[p] 71 -

By definition, (1) means that the following statement is true: If S il well ordered
set of order type 2 and if % = (F,:u EM) is ‘any family of m = |M| subsets of Sl such
that each F (i € M) has order type less than 8] then § contains a subset C of type
» which is disjoint from m sets F), of] the family %, ie.

{u:peM] F,NC= 2} =m.
The set C is said to be (#, m)-free. The negation of (1) is written as
n=l=H{f7],n]
We proved ([1]] Theorem 10.0) that
(2) Wyt = [0, 4, LO\‘+20E];~zH2 (2= Wyiq)
So that, in particular,
(3) wyo = [0F, @]y,

holds for dl « = e, . The condition u < w, . ; in (2) is necessary since, for example
([1]] Theorem 10. 1) assuming 2% = &,

w,0=>[0, + 1, 0,0 ]x,.
By usng a result of [2] on st mappings (see [1]] Theorem 6.2) it is very easily seen that
w n=[f] w,nl) (n=o] f<n,)]

and this is stronger than (3) when « = w; We asked in [1] (Problem 5) whether (3)
is best possible when g = o, i.e. does

ﬁl) 0,0 => [0f + 1, 0,0]y,
old?

Using the generaized continuum hypothesis (more precisely, using 24 = &)
we can now show that (4) holds. In fact, the following theorem shows that (3) is
best possible in the sense that ¢ cannot be replaced by any larger ordinal.
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Theorem. If 2% =gjand S a <@, then
(5) oo =p[of + 1, 0,0, ]

2. Notation and preiminary results. Capital letters denote sets and small
letters denote ordina numbers unless stated otherwise. The cardina of X1is [X]]
The obliterator sign * written above a symbol means that that symbol should be
disregarded. For example,

{xo, ... &) = {x,:v<u}

We write S= {x, ..., £,}J if the set S= {x,] . . ., %,}| is Smply ordered by < so that
x,<x, for p<v<a. For any a, f we write [a, f) = {y: a=v<f}.

The order type of the well ordered set A is denoted by tp A. If the sets A, (v < )
are digoint and ordered, we write

S= AoU Ce UAA“(lp)

to indicate that S is the union of the A, and also that S is ordered in such a way
that the order relations in each A, are preserved and y <y if x€ A, y€ A, and
W<V <o T isacefinal subset of the ordered set Sif for each x4 S there is some
y€ T sothat x =y For a=0] co («) denotes the smallest ordinal f| such that [0, )
contains a cofina subset of type Bl Thus co (x) is either 1 or an initid ordind.
If aissuchthat f| + 4 < awhenever fl < oand y < 24then « is sad to be indecomposable.
The indecomposable ordinals are 0, 1 and powers of .

An ordina valued function f] defined on the set of ordina numbers A is
regressive If f(a) <au (x€A]jm = 0). BC Aisclosed (w.r.t| A) if B contains the limit
of any increasing sequence of elements of] B which is d0 in A. S a [0, w,) is stationary
if [O; w,) — S does not contain a closed subset cofinal with [0, w,)/ It is easily seen
(see [3]) that the set

{o: <, 3 col)=w,}

is stationary. It is well known that if ®&,(=R,) isregular and f is a regressive
function defined on the stationary set & [0, w,)) then f has a stationary value|
i.e. there is some # such that

{af x€ S5 /) =0} =¥,.

It has been proved in [4] that if Sis awell ordered set and tp S <w, . ( then
there is a partition of S into countably many (small) sets,

(6) s =5,U8,4...USJ

with tp S, = ! (n <o) We shal use this in the special case 4 = 1 and refer to (6)
as a paradoxical decomposition of S

3. Lemmas, To prove our theorem we need the following two lemmas.

LEMMA 1] Let A = [0, ag), where @ = «§ < @y and o, is indecomposable. Let
Si={(v] 8):d=y) (v&Ad] y<w,) and led

s=U U s

VEA y=oa
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be ordered lexicographically. If S1c Sand tp §” = w2, then there are yy < w, and
N < A such that co (y) = @y, Nis cofinal with A and 8’ (1 5 is cofinal with S for all
vEN]

Proor. Suppose the lemma is fdse Then for each

YEM = {0} g<w,:cq (@)=, }
the set

N]|={v{vd A S (15]is cofinal with S}

is not cofinal with A. Therefore, for y € M thereis v;d A so that

S S is not coﬁn34 with S;ﬂ (‘.’}4 Sy < dp).
Thus for y € M and v) = v <o, thereis 6, < y such that

Sy, 0){0,<d<y}=
Also, since [A[ =8, and co (y) = o, for y EM, it follows that there is f(y) <%
such that _
0, <f()  (YEM; vy3V <o)

Since by Neumer’s Theorem M| is stationary, the regressive function f has
a stationary value 8 <w,, i.e. thereis M| a M such that [M| = &, and

f=0  (leM,)
Since v,<u, (y € M)] thereis M, c M, such that |M,|= &, and
v,=¢ (€ M,).
If yeM, and ¢ =v=u,) then
S'0{(v, 6): 8=5<y} 0.
This holds for each y EM, and as | M, |= &,, it follows that
SN A(v,0)]0=0<w,}=0  ({3vaay).
We now have the contradiction

P S Sw,d+ Oxd < ;%)
This proves Lemma 1.
LemMA 2. Let 1 =n <m and led P= {a,: g < »}}J be a set of ordinal numbers
with
% < Wy, co(x)= @ (d < i)

For g <, |6t Cpo{ Cyy - - .y Cpu) b Wy Sets which are all cofinal] subsets of] [0, 2,)]
Then there is a set € such that tp Cﬂ‘:wlﬂ and

C*NC,, #@ (0 < 0];v < w).
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ProoF. FOr g < wf, we define g in the following way. 4 =O. If g = ¢ H1]
put B] = 41 if g is alimit number put

BJ = lima,.
a0
Note that BH <1, if co(g) =1 or w)sinceco(z,) = v .
We will firg prove by inducion on ny that there is a regressve functionfdefined
on P so that

() Holeo wg=olifle)=u)l[=and  (od < o)
If m =1, the function f(z,} =4 (d < w,) obvioudly satisfies (7). Now suppose
n=1| Let Q={u,{ 6< wjico(s) = w;}{ Then
{toyeqn =0T CQC{uy,0: <)

and so Q has order type «"~*. By the induction hypothesis, there is a regressive
function g defined on Q so that

o od < 0: 0g 805 2(0) <0} IRo  (2,]90).
Now define f in the following way:

fe) = gl (4J90)

f(aox = B, (%EP—' Q)‘l
Clearly f] is regressive. We have to verify that (7) holds. Let g, < w}] It follows
from the definition of the f that, if g, < g <w} and «, d P — O, then «,j =f(x,)
Therefore,
R ={ere0 < g < i fla) < 2,0 = {0120 < %9 Q) < 2}
Let o, be the least ordina such that gy = w6, Then
RC{G1 Gy =<0} ace Q! g(ao') < aau}l

which is countable. Therefore (7) holds.

We now prove the substantive part of the lemma.

Let o< o and suppose we have dready defined x,for ¢ s gand v <o, .
Since C, is cofind with [0, a), we can choose x,, 4 C,o SO that

Xo > /(%)

More generaly, by induction on v, since C, is cofina with [0, «,) we can define
elements x,, 4 C,| (V < w,) so that .

f(ag) = Xy ﬂx@g (‘1 << 0y)
and G| = {x,,]{ v =w,) is acofinal subset of [ f(x,)]2,)) Now put
ch = UHC;"J

e<o
Then C*NC,,# 7l (e=wi]{ v= o,)] To prove the lemma we must show that
tpC*=wi*l.
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For @ < wij put B =[f,]a). Then
U "[OJ ga] = U nBo (tp)'l

=@ <y
If <o, then CJ] N B) = @1 If p=g, then C;| [ B is either empty (if ] =u,) or
it is a cofinal subset of B of order type w,. By (7) there ae only countably many

values of g =g such that C;| (1 B # @l and for every such py C; (1 B is countable
since ¢} is cofinal with «; (>«,) and has order type e, Thus we see that, if

D) =C* (1 B,] then
tpD]= 01 (o < Wl
Since C* = |J D,(tp), we have the desired conclusion that tp C*=w]Y 'l
o<
4. Proof of Theorem, First we observe that it is enough to prove (5) in the
case of indecomposable ordinas, i.e. that

(8) o 7 [0F) + 1, @]k

holds if #y is indecomposable and @ =%, <a,iLetw Fa <o,y Thena= gy H
where a4 is indecomposable and « <1 Let S= S U S (tp), tp S;=w,z] (I-=2).
If (8) holds, then there is a family # =(F,i g <w,) of subsets of S, such that
tp #,=04 (1< w,) and such that S/ does not contain any (%, x,)-free] subset
of type w,x,4 Therefore, if S’ is any (F#] §,)-freq subset of S, we have that

tp §'=tp (8" Se) +1p (S NS =y +wany,
where y < w, 2y . Therefore, tp 8" < w,2] Thus (5) follows from (8).
We now assume that «4 is Indecomposable and that w1 = ag < @y . Let A = [0, 2,),
SI={l, 6 d <y} (vedjr=w)
and let S, = (] S7] Then the set

T
S= us,
viA
ordered lexicographically has order type w,u,) Since 24 is indecomposable and
o=u,<wm, there are sets A,, = @ (1 <o) such that
A=4,UA,U...U4,(tp)]
If 4 <oy and N is cofind with A, the SeYtEhl $7 has power §,. Therefore,

by the hypothesis 2%/ = §,, it follows that there are only &, sets Bc S which
are such that

Bc US
vEN
for some 3 = y(B) < @, and N= N(B) c A with co (y} = wy and NI cofina with A,
and which have the further property that
BrSy) is cofinal with S (v€N(B))
Let Bo)B,|. ... B,|beawell ordering of all such sets B.
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We are going to define a family # = (F,: i < w,) of subsets-of $! such that

©) th F,sof (<o)

(10) FOBI =2 (] <n<w)

This will prove (8)] For suppose the F, (i <w,) satisfy (9) and (10)] If S’< S and

tp §” =w,u, then by Lemma 1, §1 > B| for some v <w, | Therefore, by (10)]
{u] F,(181= 2} [0, v)

and so S isnot (#| §,)-free)

Let p<m,l

Put C|={»(B,):v=<=u}| Sincetp C, <, | there is a paradoxical decomposition
ofl C

s

G; = Cwl v U Ei
so that tp C,, S o] (n < w)| Thus we may write
Cod = (nd 19 < 0} s
om 4 0]  (N<o)
For d <t 8,,) the set M,,s = {V: V <] 9(B,) = 7,3} iS nonempty and has cardinal

power less than or equal to &, Therefore, there is a sequence (Vu,s,)s <, (Whose
terms are not necessarily distinct) such that

where

M s = {Vinss® @ < 00, }]

Let Cho=1{7:(0,y)9B,,,,qfor somagaA-(A, U..UA,}, Then the sets
C.sq are cofinal with [0, ym,]“for a<o) and d <§,| = wi| By Lemma 2, there is
aset C;| such that

(11) Col N Cpuse % B (6 <oy; §<46,,)
and
(12) tp C:,] = ot!

Put GM:{(Q, }1)1 'pEC*.QEA—(AOU..AUA,,)H Then

(13) P (G NS) 2t*! (€4, n <m<w),
(14) GunS,=0 (€4, m=n<o)
Also, by (11),
(15) G,.N\B, A7 (n<0; veM,;]d <d,)]
Now put F,= U G,. Then, by (15} and the definition of the sets M,
we have that "<

F,08B,#0 (= p)

Acta Mathematica Academiac Scientiarum Hungaricae 20, 196y



A PROBLEMON WELL ORDERED SETS 329

i.e. (10) holds. If m<a and g€ 4,,{ then by (13) and (14)
tp (F,NS) = tp(UG,NS,) I wr+

Therefore
tp (F|N US,| <wf+? (m < o).
¢€in

Since A= AJUA U... U] (tp), it follows that
pF,= 2 ot =0l

L Eat]

Thid proves (9) and ccmpleteg the proof of the theorem.
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