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Q 1. Introduction 

Vu. V. LINNIK has discovered (see [I]) in 3941 a very powerful new method 
of elementary number theory, which he called the large sievel. In his original 
formulation the large sieve asserts that if we take any sequence S, consisting 
of Z positive integers sN, and if Y denotes the number of those primes’ pi?% 
for which all the elements of the sequence S, are contained in 5p(l -F) residue 
classes mod II, where O-= F< 1 ? then one has 

As shown by the second named author in [3], Linnik’s method is capable 
to prove much more, namely that if Z is not too small compared with N, then 
the elements of the sequence S, not only occupy “almost all” residue classes 
mod p with respect to most primes PSI%, but are almost uniformly distributed 
in the p residue classes mod p for most primes PsI’N. More exactly, let us 
denote by Z(a, p) (where a = 0, 1, . . . , p- 1) the number of elements of the 
sequence S.y which are congruent to n mod p. Then one has, putting 

(1.2) 

the inequality” 

1 As regards important applications of the large sieve m number theory, see e.g. [2] 
31. (41. [5], [S]; [5] aud [6] contain many further references. 

? In this paper p al\vays denotes a prime number. 
3 Here and in what follows all the constants of the O-estimates are absolute, 1.e. do not 

depend on Y, nor on the sequence S,, nor on Q. 
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(1.3) 

for QsN31B. Later, the second named author has found (see [7]), a new proba- 
bilistic method for proving theorems of the type of the large sieve. This method 
@y;;;f$ further and generalized in the papers [S], [9], [lo], [Ill, [12]) gave 

(1.4) 2 d”(p) = O(Z(Q” + A’)) 
P’Q 

for Q s 1/x. This estimate is better than (1.3) for Q Z N318, but weaker if N3’S~ Q z? 
s;R. 

Especially for Q = N1’3 this result gives 

The estimate (I .5) is essentially best possible, because if for instance S, is 
22 the sequence of odd numbers 5 N, one has Z(O,2) = 0 and thus 2 Z(O,2) - z 

i I 
= 

= $ i.e. this single term is already of order NX. 

The probabilistic approach, besides leading to a very sharp estimate for 
QsN1j3, has thrown light on the reasons why an arbitrary sufficiently dense 
subsequence of the sequence I, 2, . . . , N has to be almost uniformly distributed 
among the residue classes mod p for most p 5 N113; it became obvious that 
this is due to the statistical independence (more exactly: almost independence) 
of the distribution mod p and mod 4 of the numbers ng N for any two primes 
p, qsNl’3, p # q. 

In the last two years important progress was made on the large sieve. The 
first essential improvement was obtained by K. F. ROTH [13]. His result was 
sharpened by BOMBIERI [ 141 who has shown that (1.5) holds also for Q = 1%. 
More exactly Bombieri proved 

Clearly (1.6) is superior to both (1.3) and (1.4) for the full ranges Qs N316 
resp. Q z 1/N. 

An important generalization of Bombieri’s theorem has been obtained by 
H. DAVENPORT and H. HALBERSTAM [15]. To make this advance clear one has 
to notice that putting 

one has 
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Now DAVENPORT and HALBERSTAM have proved that if c+sc~,.,,, xD 
are arbitrary real numbers in the interval (0, 1) such that Izi-ajl 2 as-0 
for i f f, one has 

(1.9) 

Clearly, if the numbers -% (a = I, 2, . . . , p- I; p5Q) are taken as the numbers 
P 

aIt . . . , t(D (D = 2 (p- 1)) then 6 2 $ and thus (in view of (1.8)) (1 .Y) implies 
P’Q 

(1.6). 
Note that from (1.9) one obtains even more than (1.6) natnely that 

2 2 lslfj’= qq i+N,I 
q-Q a=1 j 

(a, 4)=1 

because if (a, 9) = 1, (a’, 9’) = I (here (a, q) denotes the greatest common di- 

visor of n and 9) one has for 9, 9’ 5 Q and2 f c 

,L-C!,l 

q’ 

, q q' 1 -- Q"' 
Recently P. X. GALLAGHER [lS] has found a very elegant and simple 

method for proving (1.9). More exactly, he proved 

(1.10) 

which implies by (1.8) 

(1.11) z’ il’(p)s%(QZ+ xN). 
P=Q 

Thus we have for Q = t% 

(1.12) 2 D(p) 5 (71+ 1)ZN. 
PSQ 

In the paper [Ii] of the first named author it has been mentioned (without 
giving the proof in detail) that by a probabilistic argument it can be shown 
that (1.12) cannot hold if Q is of larger order of magnitude than INlog N. 
The aim of the present paper is to prove this statement in detail, and to get 
some related results concerning the behaviour of ~.F(p), when S, is a random 

P~Q 
subset of the set (1, 2, , . .? N}. 

The results obtained throw some light on certain open problems connected 
with the large sieve. 
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5 2. Equidistribution of random sequences in arithmetic progressions 

In this Q let S, denote a random subsequence of the sequence (1,2, . . . , N} 
obtained as follows: let zl, Ed, . . ., F,~ be independent random variables, each 

of which takes on the values I and 0 with probability $; let S, denote the set 

of those nzN for which E, = 1. (It is easy to see that under these suppositions 
each of the 2” subsets of the set {I, 2, . . . , N} has the same probability to be 
chosen.) In this case 

(2.1) z= se,, 
?l=l 

(2.2) 

and consequently 

(2.3) S(p) = p ."2 (Z(a, 

a=0 

are all random variables. One obtains easily 
P--l 

Ek,, n 

pe 3 ! 

(2.4) 

and thus, putting” 

(2.5) 

we have 

A*(p) = p - 2 Z*(a? p) - P 

ll=O 

%(Q) = pzQP' (l-=0, 1, 2, ‘ . .) 

P.6) 

where 

(2.7) 

and thus AQ(- k) = A,(k) and especially 

(2.8) A,(O) = T(Q)- 
Let us determine first the expectation5 of R(Q). As 

~2.9) I 

1 
1 

E(E,) = - and E(F,F,) = 
-7 

if 12 f 111 

2 1 
I- if I2 = irl 

2 

4 Thus .z,(Q) denotes the number of primes -Q. 
5 The expectation of a random variahie [ will be denoted by E(t). 
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we obtain 

(2.10) 

Now clearly 

Let us suppose that N-r mod p, where O~r<p. Then we have 

(2.12) p. (IZ [f!f?] + 11’11 = 2A’+r(p-r)+p-2r. 

Thus it follows that 

(2.13) n21 jl CA& - nl) - xc,(Q) 1 = 2h.&3 + O(Q*x,(Q)) 

and thus, taking into account that x0(Q) = and 

(2.14) x1(Q) = ~- Q" +o QZ - 
2 1ogQ ! I log2 Q 

it follows 

(2.15) E@(Q)) = NQ~(Q)+O(Q2zo(Q)) + o[$). 
I 

1 
Thus the expectation of R(Q) is smaller by a factor of order ___ 

log Q 
as NQ’. 

Note that the expectation of R(Q) can be inferprefed as its average over all 2” 
subsequences of the sequence { 1, 2, . . . , IV}. Thus the average of R(Q) is of order 
O(N*) even for Q = 0 (VNlogN) while for its maximum according to (1.6) this 
is known only for Q = 0(1/N). It is an open question whether the estimate 

(2.16) R(Q) = O(N*) 

holds for all sequences S, if Q-fNv(N) for some function y(N) such that 
y(N)- 00 for N- 03. Our method is not capable of giving such a result; however 
by evaluating the variance of the random variable R(Q) we can show by Ce- 
bishev’s inequality that the estimate (2.16) is valid at least for rnosf subsequen- 
ces SN. 

To evaluate the variance” of R(Q) note that though the random variables 
c,,F~ are not independent, they are pairwise uncorrelated and thus the variance 

F The variance of a random variable :’ will be denoted by P(F). 
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of the sum on the right hand side of (2.6) is equal to the sum of the variances 

of the single terms. As D2(&,+J = 2 if n # m and LP(.$J = 
4 

16 iz’ 

(2.17) DWQ)) = ; n.l mtl (A& - m) - dQH2 + $ (dQ) - no(Q))2. 

Now cIearly 

(2.18) 5 ,$ A@-~2) s N2[n;(Q)+q(Q)-7tO(Q)]+2N~~(Q)+~;(Q). 
n=lm=l 

As further from (2.11) we have 

2 2 A&-m) ZT N27ro(Q)-2Nn,(Q)t7tl(Q) 
n=l m=l 

it follows 

(2.19) 

+ $ in:(Q) + 24(Q) + ba?> -%(QP + 3 
\ 6 I 

z n;(Q) - $ dQh(Q). 

In view of (2.14), it follows 

(2.20) 

i.e. 

(2.2 1) W(Q)) = qEp/+q-L) 
E@(Q)) 

. 

It follows from Cebishev’s inequality that for A=- 1 with probability2 1 -k 

R(Q) is contained in an interval 

[E(R(Q)) - AD(R(Q)) 7 E(R(Q)) + W?(Q)) I- 

Choosing for 1. the value L=min 
I 

Q m 

2N 
(log Q)3’2’ m 

z possible exceptions for all other sequences, i.e 

NQ2 
sequences, R(Q) is of order ___ 

8 log Q 
Thus we have proved the following 

it follows that for all but 

for the large majority of all 
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THEOREM 1. Let us consider all 2” subsequences SN of the sequence {I, 2, . . . 

. . .) N}. We have for all these subsequences with the possible exception of f such 

sequences 

(2.22) R(Q) = NQ?+O NQ” 
8MQ I log2 Q 

where Q &N113 and 

(2.23) h = min 
I 

Q VR 
(log Q)3/2’ ~ i 

Thus, if Qz VN log N, (2.22) holds except for at most 
2” log3 Q 

Q2 
sequences, while 

-- 
for Q sfN log N (2.22) /lolds, except for at most 2N ‘zz N sequences. 

COROLLARY. If Q = VAN log N (A=- 1) then R(Q) - y except for at 

most 
2N log2 N 

N 
sequences. 

Let us now consider the quantity 

. 

It is easy to show [using the central limit theorem and the fact that for 
any given p the quantities Z(a, p) (a = 0, 1, . . ., p- 1) are independent], that 

(2.24) P 

exceptional sequences we have 

for ail a and p (05==a5p--I, psQ). 
On the other hand, using again the independence of the random variables 

qa, p) (a = 0, 1, . . . , p- 1) and the central limit theorem it follows that for 

all except for at most 0 sequences SN, one has, for all p such that 

N 
ClogNqrr- ,- 

Vlog N 

/J”(p) = F 1 L 0 
I (&)I 

if C is a sufficiently large positive number. 
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§ 3. The values of a random trigonometrical polynomial at well spaced points 

In this Q we shall consider the sum 

(3.1) 
VCl 

where C+ z.,! . . . , xD are real numbers “well spaced” in the sense of Davenport 
and Halberstam, satisfying 

0 -=ul~a*‘...<a*<l and 

(3.2) x,+1-- U”Z6=-0 for 1~ = I, 2, Is ., D- 1 

and S(a) is the random trigonometric polynomial 

(3.3) qcL) = 2 Fne2Ti*x 
n=1 

where Q, . . . , eJT are independent random variables, each taking on the values 

1 and 0 with probability i. 

We first evaluate the expectation of T(a, S). We have clearly 

(3.4) 
N N D 

T(a, S) = 2 2 ,5*&m 2 e2ni(*-*)ll. 
n=1 #I=1 V=l 

and thus 

(3.5) E(T(cr, S)) = + 2 1: + Ni1 (N -I) cos 2714 4-y. 
” 1 I=1 , 

Now it is well known that 

(3.6) 
N-l 

;+ 2 (N-I)cos2;tfcr,. = 
sin” Nltr;c,. 

I=1 2 sin2 XCI,. ’ 

As a matter of fact the formula (3.6) is well known as a formula for Fejer’s 
kernel of the arithmetic means of Fourier series. 

It follows from (3.5) and (3.6) that 

(3.7) 

Let us now consider the special case when a;$ = (a:, . . ., a:) is the set of 

all numbers 5 with (a, q) = 1, lsasq, 1 -=qqQsIV. It is easy to see that 
4 

sin2 N~c ?- 

(3.8) 2 5 ’ = O(Q3) 
qs;Q a=1 a 

@,a=1 sin2 ,z- 
9 
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thus, denoting by q(q) the number of numbers acq relatively prime to q, we 
have 

(3.9) 

As however 

(3.10) 

it follows that 

(3.11) E(T(a& S)) =z i O(NQ log Q) + O(Q3). 

It follows that for Q = o(N) there exists for each EZO a sequence S, for which 

(3.12) 

Thus the estimate 

(3.13) 

which according to the theorem of Davenport and Halberstam is valid foi 
QzlT;;f cannot be valid if Q is of larger order of magnitude than 1/N. By evaluat- 
ing the variance of T(a, S) one can prove even more, namely that T(a$S,)w 

3Q2N 
--G- 

for all except o(‘2”) sequences S,V, if $ = o(l) and $ =0(l). In par- 

titular one can prove that 

(3.14) 

exceptional sequences 

(3.15) 

Let us summarize now our results: Theorem 1 shows that the estimate 

(3.16) R(Q) = O(W) 

cannot hold if Q is of larger order of magnitude than V’Nw It remains an 
open question whether (3.16) holds if 1/EZQ5 1/N log N. However, (3.11) 
shows that even if (3.16) is true for the range 1/N5 Qs mog N it cannot be 
proved by the methods used up to now, as all these methods gave estimates 
for R(Q) through estimating r(ti;S, S). 



12 P. ERDOS AND A. RSNYI 

Q 4. Some open problems 

Let SN denote a subsequence of the sequence (1,2, . . . , N} which contains 
at least cN elements (O-zc-= 1). Let Y(cL, E) where O-Z&-= 1 and 1125 cc-= 1 de- 
note the number of those primes pz%N” for which at least pe residue classes 
mod p do not contain any element of S,. It follows already from Linnik’s 

result (1.1) that Y --$ 
I I 

E is bounded, namely that 

(4.1) 
1 I 1 203t Y -,& i=-. 
2 : C&2 

From (1.12) one obtains the slightly better estimate 

(4.2) Y $& s-. 
I i 

n+l 

&C 

As regards Y(R, E) with l/2 <=cc-= I we get from (1.11) the estimate 

(4.3) Y(,, E) s n”“-l+-jl. 
EC EC 

It seems probable that (4.3) is far from being best possible; it is an open problem 

whether Y(a, E) is bounded for every CI with i ~a-= 1, or not. Of course, 

Y(t, E) is not bounded: as a matter of fact if S, is the sequence of numbers 

5Nc 0 -K c < 
I 

1 

I 

1 EN 
- 
2 

and O-=E=- - then for all primes p with - 
2 l--E 

-=p-=N at 

least PE residue classes mod p do not contain any element of SK, and thus 

Y(1, F) 2 

N 

-l1-&)+q&J- 
log N 

Another related problem is the following: if O<EC I let SN be a subse- 
quence of the sequence (1, 2, . . . , N} such that for every p with A,<:-= N” 
where A,=-0, O-=a-= 1 there are at least EP residue classes mod p which do 
not contain any element of S,. What is the maximum MN{&, IX) of the number 
of terms of such a sequence S,? It is easy to show that for each E with O-= E-= l/2 
MN(c, l)z[[1/N]. As a matter of fact let S, denote the sequence of squares 
5 N. Clearly if b is a quadratic non-residue mod p, then there is no element of 
the sequence 12, 22, *. .) k2, . . . which is congruent to b mod p; thus for each 

P- 1 p the number of empty residue classes is at least - 
2 

if ps~3. 
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