Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 19 (3—4), (1968 ), pp. 413—435.

ON SOME PROBLEMS
OF A STATISTICAL GROUP-THEORY. IV

By
P. ERDOS and P. TURAN (Budapest). members of the Academy

1. In this paper we shall continue the statistical investigation of S,, the symmetric
group of n letters. Let P be a generic element of S,, and O(P) its order. In the first
paper of this series (see [1]) we proved that the relation®

(1. 1) log O(P) = [%——i—o(l)] log” n

holds in S,, apart from o(n!) P's. This was refined in [2] to a ,,Jogarithmic-Gaussian™
distribution. The interest of these results is clearly shown by the theorem of
E. LANDAU (see [3]) according to which

max log O(P)

n—e  Jnlogn

These theorems can obviously be reformulated in terms of the orders of all cyclic
subgroups of S,. In this setting it is natural to raise the same question for the
pairwise nonisomorphic cyclic subgroups of S,. So we have two problems.

I. What is the maximum number of the pairwise nonisomorphic cyclic sub-
groups of S,?

II. Does there exist a ,,sharp almost all theorem™ for their order too?

These problems are in turn equivalent to the problems, how many different
values can O(P) assume and whether or not these values show a behaviour ana-
logous to (1. 1). We shall answer these problems by the following two theorems.

THeOREM 1. The number Win) of different values of O(P) in S, is

Jomq/ Vnloglogn
(1.3) exp{iél iog:irJ'_O[—'—__J}'

Tueorem II. ,,Almost all” of the possible different O(P)-values (with o(W(n))
exceptions at mosr) are of the form

. 6 log2
(1.4) exp{{l*o[l})l s lnlogn}-.
* Here and in what follows the o and O-signs refer (o n— — ==,
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414 P. ERDOS AND P. TURAN

These theorems seem to us of interest for more than one reason. Comparing
(1. 3) with the ..exact” interval for O(P) furnished by (1. 2) it turned out that W(n)
is very small* and hence there must be ,,very big” intervals within

(1.5) I:1=x=exp {(l + o(l))]*’l};_lo—gn}‘.‘;fM,

containing no O(P)-values; this means the nonexistence of certain cyclic subgroups
in S,. The explicit determination of such intervals seems to us to be of interest.

Since %Ioglmﬂ,iaﬂn the value in (1. 4) is ,,essentially”
M0,5404

which is very large compared to the value (1. 1) which is ,,essentially” only
exp {2(log log M)?}.

This fact gives obviously an interest to the problem for which m is the number of
P’s with O(P)=m maximal and what is the value of this maximum.

For the study of the distribution of the O(P)-values it is of interest to study
mean-values of O(P). We have found that

. g 1 n
. ML S o i
(1. 6) AR Pé; O(P) < exp ;cl e
where ¢; — and later ¢,, ¢, ... — stand for positive numerical, explicitely calcul-

able constants.** Owing to (1.2) and the quick increase of the function exp (Vx log x)
one had the guess for a much larger M, (n)-value. Since we do not have at present
an asymptotically exact formula for M,(n) we shall postpone the treatment of this
problem to another occasion.

2. The statistical point of view leads to transparent laws in different sort of
questions too. Such questions are e.g. the study of conjugacy-classes and commuta-
bility of elements of S,. So — denoting the total number of conjugacy classes of
S, by V(n) — we assert the

THEOREM 111, The elements P of S, — with exception of the elements of o( V(n))

conjugacy-classes — are commutable exactly with
2.1) exp (1+o(1))Efn' —

E 4?,: o
P!

As an application of this theorem DRg. J. DENES has communicated us orally
the following remarkable theorem.

* A trivial upper bound for W(n) is the number of divisors of #n!. But this is = H =
mu]—n(%) ) . . . ) —'Zl—ép??n
=2 =7 which is much bigger than the expression in (1.3).
** If some constant depends on certain parameters, this will be always explicitely stated.
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. 1V 415

For all P’s — with exception of the elements of o(V(n}) conjugacy classes —
the ..general commutator-equation”

2.2) XYX-'Y-'=P (X, Y¢S,
has B

. | V6 -

(2.3) exp {(] +o(1)) 5 }f.u]ogzn}
solutions,

Dr. DENEs intends to publish his proof elsewhere.
For the ,,special commutator equation”

(2.4 XYX-'Y-'=F (E unitelement)

the number of solutions* is the number of commutable pairs in S,. As to this we
found with VERA T. SGs that this number is

2.5 n!p(n),
p(n) being the number of partitions of n. More generally we assert the

TueoREM IV. The number of commutable (a, b) pairs (with the convention of
the footnote) from an arbitrary group G of order N is Nk where k stands for the number
of conjugacy classes in G.

We shall deduce two corollaries from it.

CoroLLARY 1. [In an arbitrary group of order N the number of commutable
pairs (with the above convention) is at least™ N loglog N. By other words a finite
group cannot be ,,too non-commutative”.

Taking into account the Hardy—Ramanujan asymptotical formula
| 2 -
(2.6) p(n) ~ —=exp|—=1Vn
4n)'3 V6

for the number of partition of # one can see from (2. 5) at once that Corollary I will

no more be true if Nloglog N is replaced by

IogN-J, s, 2.:1'.
6

Nevertheless it would be of interest to improve the lower bound in Corollary 1

or even determine the minimum number of conjugacy classes in groups of order N.
The second corollary which is an immediate consequence of (2. 6) (and (2. 5)) is the

r
N ExXp [A 1 W

CoroLLary 1. The probability that a random pair (P,, P;) of S, commute
tends with 1/n rapidly to 0.

* (X, Y)and (Y, X) are counted as dilferent solutions if X Y.
** The logarithm is meant here with the base 2.
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416 P. ERDOS AND P, TURAN

Since Theorem IV and its Corollary I are not of statistical nature we postpone
their proofs to Appendix I. For the same reason we postpone the solution of the
following group theoretical extremal problem to Appendix II:

Determine all ,,least commutable™ P’s, i.e. the P’s which commute with the
minimal number of P's of §,.

The solution is given by the

Tueorem V. The P’s with the required minimum property are exactly those
whose canonical cycle-decompaosition consists of twe cycles with the length 1 and
(n—1) respectively, if only n=6.

3. We shall also deal stetistically with a different sort of questions. All groups
G of order =n can be embedded into S,: but it is an important longstanding question
to determine for each G the minimal g such that G can be embedded into S,.
Here one can hope a simple law for g in a statistical sense only. What we can do
at present is to present such a law for commutative groups with order =n.
Denoting the total number of such groups by G(n) this is given by

THEOREM VI. If (n) == so that

3.1) lim w =0

x=ca lOG:

then all commutative groups of order =n, with the exception of o(G(n)) such groups
at most, can be embedded into S; with

n
3.2 =5 .
S =[5l
We shall also show that the theorem is best-possible in the sense that choosing
L[t -9]

with an arbitrary small 6 =0, we show that more than ¢,(d)G(n) Abelian groups
of order =n are not embeddable into S;.

The theorems as well as the proofs of this paper are directly or indirectly
connected with partition-problems, even with some which would be considered
by nonarithmeticians in themselves rather weird and artificial. By this connection
the partition-problems cannot be considered anymore to be an isolated playground
for arithmeticians, since the search of analogous statistical laws for other ,,big”
groups will sysrematically lead to such problems. Part of the partition problems
revelant here are of the type that for what kind of partitions is it true that .,almost
all” of them consist of @(n)(1+o(1)) summands, ®(n) depending on the type
of partitions under consideration. Such results for some special kind of partitions
has been found by ErpGOs and LEuNER (see [4]); the method used here for another
special type of partitions seems to be extendable to a general class of partition-
problems. However, in this paper we shall confine ourselves to the case we actu-
ally need here.

4. Now we turn to the proofs of our assertions. For the proof of Theorem [
we shall need some lemmata.

Acta Mathematica Acadentioe Sclentigrum Hingaricae 19, 1968



ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. 1V 417

Lemma 1. If for x=0
)= [l Q+e ")

q prime
then we have* for x— +0
loglog :
2 1 &
log/(x) = ————+0|- d
1 X . 1
12x log — log*
x X
For the proof we write
s e N T
log f{x) _f log(1+e ) dn(r) = .xf {Tew d
1] 0
where 7(r) denotes the number of primes not exceeding r. Hence
4.1) ogfd) = x | =B arrom [ x2E% wrroq)
@ BT O] g T lge ’
Splitting the second integral into
.t__'i' x~llog?x—1 e
I+ J +
2 ok x~Vog2a—!

one can easily see that this is

o[i-] exp [—%1 ;g%]

and also
) log (1 +e-*) 1 14/ 1
4.2) log f(x) —f logr tf!‘-f—O[?] exp [_E-I’ log = J :
2
Splitting the remaining integral into
x=1llog=10x-1 10x~1logx—1 oo
2 x-1log—-10x-1 10x-Tlogx~1

the first and third integrals in (4. 3) are evidently

) I :

1
xlog!o—
xlog p

* The asymptotic part of this lemma is implicitely contained in the paper of HArRDY and Ra-
MANUJAN [3]. p. 130. For our aims however the remainder term is quite essential, whereas the paper
of Hardy and Ramanujan contains no remainder term at all.
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418 P. ERDOS AND P. TURAN

1 ;
replacing in the second logr by log = the error is

loglog%
o|—
xlog?—
Hence
1 o log log%
log f(x) = —]flog(i +e ¥)dr+ 0 ——=1s
log =% x log? =

from which Lemma I follows at once.
5. Further we shall need the
Lemma 1L If for x=0

Fx)= [l (l+e%+ePrfe-rx4 )

q prime

then we for x—+0

1
2 loglog;
—4+0 | —
2

log F(x) = Tl
12x log = x log =

For the proof we write

B s
LR v - . el :
og F(x) logf(x)—leog{ T +1}

Hence
[log F(x)—logf(x)| = > log{l + e @ e~ 054} =
q

=3 Jep(-gW)=(1-e>) Jem I] =
q v=2 n=>0 q,v
qvy=n, v=2
o = 1
=0(x) D Vne ™= 0[ ;—]
which, together with Lemma I proves Lemma II.
6. The proof of Theorem I will easily be completed connecting Lemma II with the

LemMa III. Let for x=0 be

h(x) = ; a,e”", a,=0

— n
n=

(=]
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. IV 419

and for x — +0 with numerical positive A

(6.1) log h(x) =

Then*

= Da,= n:xp{.?

n=N

2 +0[’N-@!3gN]].
log N

For the proof let

A
6. 2 —_—————
(6.2) Tiice
A positive constant, to be determined. Then
247/ N log log N
(6.3) log (o) = = 1 ol {1 +0 [%]}
Hence B
ff__}\,r NXg
exp [—-2 }x g N ]SN = H;: a,e™"™ = h(xy) =
_ 4 N loglog N
=exp {71 log N [HO[ log ]]}
i.e.
24 f;'r N }N log iogN
Sy = exp {[J+/—] l g N | O[ log®2 N :
Choosing -
(6.4) =124
we got already - -
_ N VN loglog N }
(6.5) Sy = exp{2l- 24 1oe W +o[ —r

which is the second part of Lemma III (slightly stronger). Further if d=4(N)—-0
will be determined later, we write

_ 4 N ., legloe N\ _,
(6. 6) cxp“ 24 —— Tog N 1+0 [WH} = h(x,y) =
= 2> + > + > -

Z
u"(l AN (1 =ON=n=(1+&N (1+HN<n=100N

+ T e LS S8 S

n=>100N

) * The Tauberian theorem differs again from that of HARDY—R aMANUTAN (l.c. [5]) containing
in hypothesis as well as in assertion remainder terms, which is quite essential for our later aims. Be-

sides in formula (5.281) 1. c. the facmr%—ﬁ_ seems to be replaced by %% ;
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420 P. ERDOS AND P. TURAN

As to S, (6. 5) gives easily

oo

e [y y Iy log logy
(6.7) S =< fexp {HA [21 Tous - i_\fmlog ’\’]+62 “logPy dy = o(1).

100N

For §; we get

. VN loglog N| { [ 24 [ y __y_]}
(6. 8) S; = IOONexp{ "o N lexp ],f o gN'}--__fT:istw 2V y T .

Since for all sufficiently large N’s

max [2 V"y - 1_] = }N {2 V146 —(1 -l—d): =
VN

y= (148N

— 8 o — 82
= i AI {l '——4'.'—"0(03)}*—: Iri\'r[l ——5—]
(6. 8) gives o

N 3 VN loglog N
(6.9) Saﬂexp[l{ 24 logN[IH-S_]+0[ Iogffziﬁg]}'

Asto S, (6.5) gives

. VN log logN} { i [ [y ¥ ]}
S, = Nex —_ ., expiy24 max |2 ——F——1;.
! e {03 log32 N PF y=(1-8)N l logy  JYNlogN

One can easily see that the last maximum is

f—

(6.10) l 2Y1-s —(1—5)}+0[- —'@_] -

log N log3/2 N

VN [ oz] N VN
3 " ]
l logN{ 7 ok )}J’O[logﬂw =3 V Tog N %4 Tog32 N

Hence choosing
/loglog N
log N

(6. 6), (6.7), (6.9), (6.10) and (6. 11) give for all sufficiently large N’s

o N log log N
S, = exp HVZA on N [l —Cs log N ]}

Acta Matbematica Academiae Scientiarum Hungaricae 19, 196§
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. IV 421

and a fortiori

24 0BT ]
expi—lf 24 —~—+— > 0
p{ ]r log N Q=N +IN

/ N VN log log N
= { 2A FE—— ] Tt
R H log N ‘e log?2 N

; N
and — replacing N by e
T C
N N . VN loglog N
S ! —“‘.: f—)_ I = i T
N exp{Z]l, 24 logN ]f log N ¢ “ log32 N }
which completes the proof of Lemma III.

7. Now we can turn to the proof of Theorem I. Let
(7.1) N=pip?..p0" 2=py<p;<..<p,

be an O(P)-value; the canonical cycle-decomposition of this P should consist of
m, cycles of length »n, (v=1,2, ..., k) ie.

(7.2) l=n,<n,...<m,
(7.3) m,=1, V=2 s Ky
. k
(7.4) > mn,=n
v=1
so that
(7.5) O(P)=[n,, nys ..., ;] =N.

Since each pj» is a factor of some n; and

(7.6) ny+n,=n;n, forinteger n, =2, n,=2
we have
k
(7.7) PU+pR+ . P =n+nt . b = 21 mn; = n,
i=

P1=P2=:.=PDy-

Hence to each such O(P)-value we make correspond uniquely a set of powers
of distinct primes with the sum =n.
But conversely, having any sum of prime-powers

(7.8) i +g8+ ... +gf =n
with
(7.9 2=q,=¢,=...=<(q;, ¢ primes
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422 P. ERDOS AND P. TURAN

the number gf'q5:...qf* is the order of a P,:; such a P, is furnished by
any permutations of S, consisting of / cycles with cycle-lengths ¢%', g%2, ..., ¢f"
respectively and

M-.

i — qlgl

i

L]
-

further cycles of length 1. Hence the different O(P)-values are the g%:g%:...qf-
numbers extended to all systems satisfying (7. 8)—(7. 9). Hence W(n) is identical
with the number of solutions of (7. 8)—(7. 9).

Now the number of solutions of (7.8)—(7.9) is evidently > a, where for

v=n

x=0

ae~* = F(x) = J[ (1+e ®+e-T5fe-ax4 ),

g prime

D3

v

Application of Lemma II and III completes the proof of Theorem I.

Owing to the grouptheoretical connection it would be desirable to obtain
better approximations to W(n) than the one given by our Theorem I. The Tauberian
theorems of Ingham (see INGHAM [6]) would certainly lead to a better result but
the verification of its assumptions would be much more laborious than the way
we have chosen. The same holds on the saddle point technique of ROTH—SZEKERES

(see [7]).
8. For the proof of Theorem IT we shall need two further lemmata.
LemMA IV. For x— +0 we harve
1
log log;

1 log2 L0

gprime €7+ 1 . i : 2 1__
x log p ‘.x log =

For the proof we write

Ba

s 1o
T e+l ) e+l

q

0
Analogously as in Lemma I this is
il log lo . log lo 1
! dr glog log 2 glog 5
—e f ol O ——— | = +0
1 gi_. el log? 1 -1 1 c1 2 1
g% x log* xlog x log® —

indeed.
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. IV 423

9. The next lemma is the crucial one. Let us consider all solutions of the system
(7. 8)—(7.9). Then we assert that the number of summands follows a rather strong
statistical law. More exactly we assert the

LeMMA V. For almost all* solutions of the system (7.8)—(7.9) the inequality

(9.1 I= l610 2]'}—Dg--—+O(V{.¥z_log“°r73n)
holds. -
For the proof we define
(9' 2) Hnul — E 1
P52+ +p""’"-’u
Pi<pr<..<pm

Then we have for x=0, y real

(93) G(} \)di!f v,{ L@ TRV = H {i-|—g-)'-qIJl_e—)'-rf:x+___}
g prime

and we have to investigate
(9' 4) S"J'H = 2 an

" —-m n=m
v=n

where m =m(n) will be determined later. Writing G(y, x) in the form

o ) —D(e~®+e= x4+ . ) aer :
9.5 G(ynx)= F(.\)”Qm!l I+€ T } F(x)Go(y, x);
putting
T
9.6) = 7 v i =nm=0
( Vénlogn : 1(
to be determined, we get
©.7 Sun = (F(xp)em) (Go(yy, x1)em™).

For the first factor on the right Lemma II gives the upper bound

2n1/ n Vn loglogn ]}
£:9) e {}1"6 ]‘I logn +0[ log32n J|°

The second factor in (9. 7) is owing to (9. 5)

— e M)e—0%1 ?
= exp {m_l-'l— > - (l_ e' )_e_ —-}:expyI {m—[l—-%] = 17+

gprme 1 He~ e e gprime €7 + 1
Vi 1 1
Y [1 - '2_] -'m%e [E"Tl?.: I e ]+ e pel-oip )|

* ie. with o(W(n)) exceptions at most, with the notation of Theorem I.
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424 P. ERDOS AND P. TURAN

The last sum being

ela—4? )xl +e[‘f q? ]-‘51 e

= = < 2 Z exp [ ] =0 [—l_] = O(nlogm)'/#
qprime (eqn b= 1)- gprime v= ]-"xl
the last factor in (9. 7) has the upper bound

exp ¥, {m—[l—%] e

q prime er™i 4 1

-+ O(nlog n}”“}.

Using Lemma IV this is in turn

_ _ 26 log2 Vn loglogn
(9.9) = exp ), {m [1 > ] ] log . —rO[ Tog 21 .

This together with (9. 7) and (9. 8) gives

2ny/ n Vn loglogn
S = €xp {} 6 lf logn €7 log3/2 n
(. 2V6log2y/ n ), ¥ 2V6log2y/ = }
+,1r1[m = Vlogn]+ 5 ~ I/logn .
Now choosing
(9.10) m ..Vélogz , y, = log=%26p

]ogn log 0 3.:1

this gives for all sufficiently large n’s

2t/ n 1 Yn
(R11) Sy = E2P {;EV logn 2 1og%%n } ’

10. We shall need also an upper bound for

(10.1) - Y= 3 Ap= 3 H,
n=M n=M
v=n

M= M(n) to be determined later. First let us observe that for v=nand pu =3Vn

P +p¥+. .. 4pr= 2 I=n

1=1=3}n
i.e.
(10.2) SI,,,, = Z Ay
M=u=3}n
Vv=n

We apply Cauchy’s coefficient-estimation with

x=Xy=——, y=y =—|p|~0
o V6nlogn' ! :

Acta Matbematica Academiae Scientigrum Hungaricae 19, 1968
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to be determined for A,,; this gives, using (9. 5), (9. 7) and (9. 8) again

Vn loglog n
(10-3) A= exp{ ]/ log n" [ log32 i ]}
) e~1%1 L p— g%y -+ ..
‘eXIJ{_#!.l'1:+(€" ~1) lre-1 }

The second factor in (10.3) cannot exceed

d

gprime € st

exP!-""{ p++(n) X : ]—+O(nlogn)‘-"‘}.

Using again Lemma IV this is

2l61022 n ), . n
= exp {J:[[ A+ ] IOE?‘:‘ ]—.-Csj-il..- ]ogfl}

and thus from (10. 2) and (10. 3)

L )2 n L n log log i
(104 e exp{ l logn € _]0g3-"3n ;

\

2./ n [
S| 2)6log2 ] gl'f]f'-L _
m logn ' logn
Choosing now
2]51022 S n l'n
10.5 M= — | : R
L T ] logn = log™ 3
(10.6) ¥, = —log—026,
we get
(10.7) g ex iy ] ¥ log=999 |
. M,p = EXP lﬁl lOEH 2 g -”l’-
Since from Theorem T we have
274/ n I'n logloqn
]',1,/ — A -~ l ER— =
) ,; 3 e)\pl 6 ] logn €10 logn }

this, (9. 11) and (10. 7) prove Lemma V.

11, Now we can turn to the proof of Theorem II.

As told all O(P)-values are the numbers
(11.1) qi g5 ... qf*

Acta Matbematica Acadenriae Scientiarnm Hungaricae
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426 P. ERDOS AND P. TURAN

satisfying (7. 8)—(7.9). Owing to Lemma V with o( W(n)) exceptions also*

216 log2
T

(11.2) !'=

/_ n / -0,73
lx fogn +0(Vn log 1)

is satisfied. But we have always

By gyl
+ ot
(11.3) N=ghgb. gft < [EL 1 qi ]

(1A
—
-~ =
\-——/'__

Now using (11. 2) we have on one hand

(11.4) s> exp(llogI—1) = exp{"ﬁl"gz

and on the other hand

1
[f;] = Ep [’ log %] = exp {Lﬁfg}_ (1+o()V nl_og.;i}

which prove Theorem 1I.

(1—o(1)) ¥ nloan}

12. Next we turn to Theorem III. Let — as in Theorem IV — p(n) stand for
the number of the partitions of #; we characterise the partitions with the numbers
my, n, in section 7. According to the classical asymptotic formula of HArDY and
RAMANUIAN (see [5]) we have

1 2n
(12.1 n) = (14 —exp | ——1Vn|-
) p(n) = ( V3 P[Vrﬁln]
Let us denote by
(12.2) Ty Moy eens Woimy

the partitions of n and define the ,,partition-function™ h(z,) by
2 \ i 2

(12.3) o e e MMM/
ny 4+ ..y

Then we need the

LemMa VL. For almost all partitions, i.e. with o(p(n)) exceptions at most, for
n=ng, the inequality

(12.4) h(z,) = Vn log®n
holds (the right side could be replaced by ¢,,Vnlogn).

For the proof of this lemma we consider first the set IT of the m,~partitions
with
(12.5) max m;n; = Vn log’n.
i=12,...%

* The remainder term was of course only for Lemma V of vital importance.

Acta Matbematica Academiae Scientiarume Flungarvicee g, 1964



ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. IV 427

Fixing m; and n; let ITt":m) be the corresponding subset of II and [II] the
cardinality of I1. Then

[Amend| = p(n—mjng) = p(n—Vnlog®n)
and from (12. 1)

1 e/
< (1+o(l —exp!{ —fn—ynlo z”}{
( M) 4(n—Vnlog*n)y3 P =I'6 V g

1 27 - log? T
= ))——explEyn [1 =222 = pny(1 101 ~ 7 log?nl.
(1+0(1)) v exp {Vrﬁ Vi [ e ]} p@) (1+0(1)) exp{ 7e og n}

Since 1= U II™:-n) and m;, n; has at most n values, we get
Mg, ny

|1 < p(n)2n® exp {— }2 log? n} = o(p(n)).
Hence with exception of o(p(n)) =,’s at most the inequality
(12.6) max m;n; = Vnlog2n
i

holds. For these partitions we have

2m;
h(my) = max m;n; 2 = Vnlog?n
j 2m;
J

indeed.
We shall need also the following theorem of ERDOS—LEHNER (see [4]).
With the notation of section 7 for all but o(p(n)) partitions the inequality

o | '
(12.7) i(u:l +o oty — '2: Vnlognl = w(m¥n

holds, if only w(x), e for x—e=. -

Le. almost all partitions consist of (14 o(1)) % [-"’;log n summands.

13. Now we can prove Theorem III as follows. Let us consider the conjugacy-
classes of S,: as well known P, and P, belong to the same class if and only if the
cycles of their canonical cycle decomposition are pairwise identical in their number
as well to their respective length. Hence a conjugacy-class 2 is determined by the
common
(13. 1) (Myy Moy oy R P, Moy e, 1)

numbers of their P’s. Thus first of all
(13.2) Vin)= p(n).
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i.e. the number of the conjugacy-classes of S, equals to the number of partitions
of n. Secondly the number of P’s in the class U is

n!

(13.3)

mylmy! Lo Ry o

owing to Cauchy’s formula (see e.g. RiorRDAN [8]). Fixing P, in the class U let the
centraliser of P, be C(Py). As well-known there is a one-to-one correspondence
between the conjugates of P, and the cosets of C(P,) in S,. Hence, with the notation
of section [12 we have

(13.4) o = ISl

C(Py)
and thus the number of P’s commutable with P, is owing to (13. 3)
(13:5) |C(Pg)l = my ! my! ..o nf ny Lon™

for all Py’s of the class 2.
Now we remark that

(13.6) (my+my+...+m)! {'mlJ.—.*uzJ.—‘..%—mkE[ 1 ]""[ 1 ]"” [ 1 ]""'(

IC(Po)| myl ot my! ny n, "
l ] l g e g k I My
- [n i n e n ] = [Z v-] = (i laglgmr s
1 2 k y=1
Hence
: ) {1}114._“..‘_”;;()! ”IE_;_---‘FI“;\. myd. o
13.7 C S o e 2 VTR it LS .
( ) ICFo)l (1 +log nym+-+me ~ 2elogn

So far we made no restrictions on the conjugacy class 1. Now we take into
consideration Lemma VI, (12.7) and (13.2); these give that with exception of

the P’s of
o(V(m)=o(p(n)
conjugacy-classes in the remaining set IT, of conjugacy-classes, both inequalities
(12. 4) and (12.7) hold. Hence for P,<1II, (12.7) and (13.7) give (.using also the
!

inequality /! :}l g]]

. : Vn “_"“”};:*'_’”"g" [ Ve . —. ]

C(Py) = [SO] > exp 1{1_0“))4?: Vi log nJ-.
which gives the first half of Theorem L

On the other hand (13. 5) gives (using the inequality /!=/' for ail Py’s)

|C(Po)| = (myny)™:(msny)™ .., (my m)": =

+ oot
ming+ .. +mia ™ "
Wy A+
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Now restricting P, to [T, we may apply (12.4) and (12. 7); thus

v‘ nlogn 6 -
C(P| = (V7 log2n)* T 2=V " 18 _exp{(wo(l))z—zp’n logzn},

which completes the proof of Theorem III.
As a by-product we notice the following

COROLLARY. All conjugacy-classes of S,, with o(p(n)) exceptions at most,
contain

n!exp{ (l—l—o(l)) ]/n log? n}
P’s.
14. Next we turn to theorem VI. We shall need the well-known theorem of
ErDOS—SZEKERES™ (see [9]).
Denoting the number of pairwise nonisomorphic Abelian groups of order
m by k(m) we have

(14.1) > k(m) = Aon(1+o(1)), Ay = L(2)L(3)...,

m=n

{(s) is the Riemann zeta function.

Taking this in account we have only to prove that (3. 2) is satisfied for all but
o(n) Abelian groups of order =n.

We shall need the remark (which follows at once from the fundamental theorem
of finite Abelian groups) that

(14. 2) k(mymy) =k(m)k(my) if (ng, my)=1.

We shall denote by z(m) the maximal prime-power divisor of m and let us
fix a yu(n) with property (3. 1). Let M be the set of integers m not exceeding n with
the property

(14.3) z(m) =
We shall need the

LemMA VIIL. The inequality
U= >k(m)= o)

meM

n
20(n)”

holds.
Let

) _a
z(m) =g —thl(ﬁ)'
Then we have
m=q*m,, (g%, my) =1

* Their theorem furnishes also a remainder-term. However here — in contrary to the previous
discussions — it is immaterial. Even = O(n) is enough.
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and hence — using also that k(g*)=p(«) and (14. 1) —
U= 3 Kkgy 2 kim)= I p@ 2 km)=0mn) 2 p@).

——=g%=n m1‘—’~£ (m1,q)=1 e =q*=n my=— —"—ﬂqmﬁn q“
2y T 2y T 2¢(n) 7
=(m)<g*

(14.4)

The contribution of z=1 is o(n) owing to

1
(14.5) > q- = o(1).
n
2g(m — ="

Since roughly
x=2logn
and
p(x) = ceVz < ce'wm,

the contribution of z=2 is

<! =

(14.6) <0(netfieen) ¥ > mr<
2=a=2log n 1/
B [ zw{n)')

1

logn = o(n),

=0 (H‘ e+llogn ) [ .;,J(r,ﬁ]

which completes the proof of lemma VIII.
Owing to this lemma it is enough to restrict ourselves to Abelian groups of
order m=n with the property

n
(14.7) z(m) = ?l,(/_(n_)
15. Let m be such an integer and let
(15.1) m=aa..aq (=q{'¢5...q¢)
be any decomposition of m into prime-powers. Let us consider
(15.2) Dm)y=a,+a,+ ... +a.

Since an easy induction gives for integers b; =2

bi +b2+.-. +b;§blb2...b!,
we gel

(15.3) D(m) = gf* +q8+ ... +qP~.

Since only at most one of the qfi can exceed Jn, we get from (14. 7)
n - n - n

15.4 D(m) = 5~ +s¥yn = ——+Vnlogn = I——] =/,

- ) = 25 V" = Ty Y o = [5G
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Now take for n=c,, any commutative group G of order m=n with (14.7)
of type (ay,a,,...,q). But then forming the permutations of a,+...+a.=I
elements

(12...a))(ay + 1, 0y +2, o, ap+ax)? (@ + .o +a—1+ 1, o, a+a, + ..+ a )
l=v=a;, 1=v,=0a;, ..., | ==

these form a group G* isomorphic to G which is a subgroup of S, indeed.

In order to prove that the theorem is no more true for Sp,i-s; with an
arbitrarily small numerical positive 6 we have only to remark that for a prime ¢
the group G, the order of which is divisible by g, cannot be embedded into S; with
d=gq further that the number of integers = divisible by a g=n'"" is

n 1
-f | BT —
and finally (14. 1).

APPENDIX 1

As told we are going to give the proof of Theorem IV and its corollaries in
this Appendix. Let us consider a fixed conjugacy-class Q; of G containing Q]
elements; let x be one of its elements and C(x) its centraliser, containing |C(x)|

: : N . .
elements. Hence # commutes in G with [ —————— — l] elements, different from o. Since

(o3

the same holds for all elements of Q;, the total number of commutable («, f) pairs
with 2€Q;, a#f is _
. N .
gl 1 = N0
Summation for j=1, 2, ..., k gives
k
kN— 2 |0; = kN—N.
i=1
This gives the total number of commutable (¢, f)-pairs with o= f; since we have
N further commutable pairs (x, ), the proof of Theorem IV is finished.
In order to prove Corollary I we appeal to the following well-known theorem

(see [10]).
Let 2=2, =&, =... be defined by the recursion

(. 1) Ry =00 .00+ 1.

If for a fixed v and positive integers x;, X5, ..., X,

1 | 1
(1.2) ——F +ot—=<1
X, X Xy
then
. 1 1 1 1
(1:3) —f—t =1 2
X X Xy Uypy—1
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Next we apply the following reasoning of LAnDAU (see [L1]). With the above
Q;'s we have

[Q,|=1 and for 2=j=k 9, = JTN i (y; positive integers)
i1
and hence
1 1 1 1
— + .+ =1-=,
i »n Y- N

But then (I. 2) is fulfilled and (I. 3) is applicable with v=k —1. This gives

(1.4) l—-%‘él—%il. ie. op=N+1,
Now from (I, 1)
S{:I__-]] = %yy Byyy = 02—, +1 < of
i.e.
iy =22

Hence (1. 4) gives
22*=N or k=>loglog N

which together with Theorem IV proves Corollary I indeed.

APPENDIX I

1. Now we prove Theorem V. According to (13. 5) the number of elements
with which a fixed P, S, is commutable depends only upon the conjugacy class
to which P, belongs: the extremal classisaclass Q=Q(ny, ny, ..o msmy, my, ...,my)
for which

(1L 1) SO myt my! ... ™ ng2 L on

is minimal under the restrictions (7.2)—(7.3)—(7.4). Hence we have to show
that the minimum is (# — 1) and the only extremal class Q, corresponds to

(IL. 2) k=2, my=my=1, n=1, ny=(Mm-1).
First we remark that for

(II. 3) ;\"‘_-.,'4, léal =0y =<...=<d0a

the inequality

(IT. 4) A asay... . =a,+as+ ... +a. -+ 14

holds. Namely the expression

1 I 1 1
aya,day daya,dy apdsay a,ds;dy
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attains its maximum for a,=1, a,=2, ay=3, ay=4, which is 5/12. Hence

1 1 7
1 = + it .
a, d; a; a; dz dy 12
Thus
a
0,030, = d;+ay+ay+a,+ 14 [al_]] [%—] [‘;—3] [—4‘5-] =a,+a,+az+a,+14

i.e. (II. 4) holds for k=4. If it holds for k=k,
a\ay...ap, =a,+a,+...+a,+14
then multiplying by a;,+,(=2)
a,0y..05 4 =0+ ... +a, + 146, =
=(a,+a,+...+a,. )+ 13aq,0=a,+as+... +a, . + 14

which proves (II. 4). One can see quite analogously that for

(1. 5) k=3, 2=a,<a;=..=g
the inequality

(I1. 6) a,0y..a,=a; +a; + ... +a+ 14
holds.

For k=1 we have

J(@)=n>n—1=f(Qo)

i.e. this class cannot be extremal. Putting aside temporarily the case k =2 we suppose

(IL. 7) k=3
and hence
(I1. 8) =3,

Let now Q*(nj, ..., nf: m%, ..., mf) be an extremal-class. We assert that
(11.9) ny =3-mj =1,

i.e. a cycle-length =3 can occur at most once in an extremal-class. For if not,
let nj the longest cycle-length with mj=2. This implies that if the cycle-length
min} occurs at all in 0* and =n; then

(I1. 10) mf = 1.

Then we consider the class Q; which comes from Q* contracting all cycles with
length nf into a single cycle (of length mfn}). In the case (II. 10)

(1L 11) fQ) _  2minp* > <1
- AQY = 1 nfym sy~ (my = DIyt
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and in the case when the cycle-length m}n} does not occur in Q*

Q) _ Mnjny) i <1
0% m¥ () (.i':lll}c —D!(p)mi-t
i.e. O* could not be an extremal class. Hence (II. 9) is proved.
Next we assert that
(I1.13) ni=1-mi=1
i.e. the cycle-length n; =1 can occur in an extremal-class at most once. Obviously

we may suppose
(11. 14) BG=)f =n—1.

(1. 12)

Supposing -
my =

we consider the class Q, which arises from QF taking away one cycle of length 1
and replacing the cycle with length #f by one of length (m;+1). Then owing to
(IL. 14) and (II.9) we have

Q) _ (iD= +1) _ mf+1 _ 4 1
3

f(Q*) ”;IT ['"r l’.i"l';: h‘r'iﬂf )

and thus Q* could be an extremal-class. Hence (I1. 13) is proved.

(IL. 11) and (II. 13) give at the same time that the cycle-length 2 can occur
at most twice in an extremal-class and it could occur twice only if O* has (exactly)
one cycle of length 4. If 0* has no cycle with length 8, then replacing Q* by Q5 which
contains a cycle of length 8, taking off the two cycles of length 2 and the one with
length 4 we get

=1

fQ) _ ust
floh T2 aiar T

if O* has (exactly) one cycle of length 8 then
Q5 _ 282

HOY — 2122 114t-iigt <

Thus the cycle-length 2 can occur at most once too, i.c.

(1. 15)

(1. 16)

mi=ms=..=mf =1
and
(11. 17) QY =nins ... 0;
with
ny+ny+ ..l =, k=3
(I1. 18) | =0 =n=..=n;.

If k=4 then (I 4), (I. 17) and (II. 18) give
O =n+14=1(Q,)
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i.e. we may suppose
(II. 19) k=3.
(I1. 5) gives at once that in this case
”'1 = l
f(Q*) =Ny,

2=n,<ny, nHy+n3=n—1

Q) =2(n—-3)>(n—1),

and hence

for which for n=6

i.e. OF cannot be extremal.

For the case k=2 the above reasoning can be repeated and gives that for
0*#0, J(0F)=/(0Qy) which completes the proof.

( Received 11 September 1967)
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