ACTA ARITHMETICA
XI (1966)

On the divisibility properties of sequences
of integers ()
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Let a, < a, < ... be a sequence A of integers. Put A (r) = _\_f 1.
=i

The sequence is said to have positive lower density if

Lim (A () /) > 0,

T—ro

it is said to have positive wpper logavithmie densily if

= ] ]
lim = 2 —=0,
Xe=ng lﬂg.'f-' 1

;=T

The definition of upper density and lower logarithmic density is
selfexplanatory.

Besicoviteh ([2]) was the first to construct a sequence of positive
upper density no term of which divides any other. Behrend ([1]) and
Erdos ([4]) on the other hand proved that in a sequence of positive lower
density there are infinitely many couples satisfying a;|a;, Behrend in
fact proved this if we only assume that the upper logarithmic density
is positive.

Davenport and Erdos ([3]) proved that if 4 has positive upper
logarithmie density there is an infinite subsequence @iy 1 < j < oo sati-

sfying @i | LT
Put
fla) = ; L
a}'(_:r-

It is reasonable to conjecture that if A has positive density then

(1) im 79 _ .
X

We have proved (1) and in fact obtained a fairly accurate deter-
mination of the speed with which f(z)/x has to tend to infinity, this



412 P, Erdos, A. Sarkozy and L. Szemerédi

strongly depends on the numerical value of the density of .. We will
prove (1) in a subsequent paper.

Throughout this paper ¢,, ¢,, ... will denote positive absolute con-
stants, not necessarily the same at each occurence, log,z denotes the
k-fold iterated logarithm. In the present paper we shall prove the
following

TarorREM 1. Assume that the sequence A has positive upper logarithmaic
density and put

(2) e T,

logw <d a; i
g aj<z "

Then there is a ¢, depending only on ¢, so that for infinitely many x
(3) F(@) > metaliorse) Plows

On the other hand there is a sequence A satisfying (2) so that for all x
(1) f(fa‘?) < mecs[log‘ga')”z]ﬂg‘ax.

First we prove (3). Our principal tool will be the following purely
combinatorial

TuroreM 2. Let -/ be a set of n elements and let By, ..., B,z >¢,2"
(¢y < 1) be subsets of . Then if n > ny(c,) one of the B’s contains at least
¢os " logn of the B’s, where cg depends only on c,.

Before we prove Theorem 2 we show that apart from the value of
e it is best possible. To see this let the B’s be all subsets of .% having !
elements where 1n | e;n'® =1 = In—em'. A simple computation shows

. . 1210
that for suitable ¢;, z > ¢,2" and every B contains fewer than 7" "
other B’s.

To prove Theorem 2 we first note the well known fact that for suit-

able ¢
& Ty O\ [n) _ 0_42:;
() ..’_.:(J') Lag\j) T8 7!

wherein Y,,j < in—e¢n'* and in Y, j > in +cyn'®. Because of (5) we
can assume without loss of generality (replacing ¢, by 1¢,) that |B| denotes
the number of elements of B

. 2 = 2
(6) In—en'® < |By| < dntegn'

Denote by ) the family of these B’s which have precisely j ele-
ments (j satisfies (6)) and denote by B{, ..., BY) the sets of .77, Clearly

7 NY i gty < Bon < £
(7) Aygmﬂ2 <5
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where in M the smmmation is extended over those j’s for which g(j)

¢ oF . ;

4 —: (") . By (7) and (T) < {7 — we can assume without loss of generality
2 \2 g Vn

that either g¢(j) = 0 or g(j) > }e, and that

(8) NG) > e Vn.

We obtain this by considering only the B’s which have j elements where

9(j) = %¢4.
2
§ = [—]+2.
Cy

Put
I'rom (8) we obtain by a simple argument that for a suitable ¢,
there is a sequence j, < j, << ... < j, satisfying

(9) ff(ﬁir) > tey, r=1,...,8
and
(10) Jepi—is > WPy =108,

I'rom (10) we obtain by a simple computation that

(11) (}r ) ~ t,?r:]|\n.1-'2|nSt);1 r— 1 —

.'jr—t.
We are going to show that ¢; can be chosen as 1e¢;,. In fact we shall
show that if we consider only the set of V7, r =1,...,s and denote
these sets by Bj, ..., B;l then there is a B’ which contains at least

oo 12
0 Jeh = logn g ==
(12) e y = 40,

B’s. Assume that (12) is false for sufficiently large n, we will arrive at
a contradiction. Denote by I? the subsets of % having j, elements which

contain at least e"'*1°5n of the sets B. By our assumption the families
[ and #Y) are disjoint. Denote IVr) U ol — yUn pyut

L0 = 1(G), VO] = (o).

By our assumption we have

(13) 0 (Ge) = h(s) + 129 = h(j)H ( i )

We will obtain our contradiction by showing that for a suitable »

(14) 2(ir) > (7)-
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Now we estimate ¢(j,) from below. Tirst of all we evidently have
(1) 2(i) = 179 > 3o, (7).
1

2
Now we show that for every » < s (¢ = [——]—{--2)

(16) 7(in) > (r-+o(D)e (7).

To prove (16) we use induetion with respect to r. By (15), (16) holds
for r = 1. Assume that it holds for » —1, we will deduce it for ». To show
this we will prove that if (16) holds for »—1 then

(17) h(je) > (r—1+0(1) ().

By (13), (17) implies (16) for » and thus we only have to prove (17).
Consider now ﬂll the subsets of % having j,. elements which contain one
of the sets of VUr-1, We will estimate (j,) from below by counting in
two ways the number of times a subset of % having j, elements can con-

tain a set of VUr-1. First of all there are clearly ¢(j,_ ,)( ~Je-1 ) such

Jr—lr—1
relations, since to each of the ¢(j,_,) sets of VU1 there are clearly
(;:' _j:‘:) subsets of . having j. elements which contain it. On the other

hand the & (j,) sets of 17 each contain at most (;’ ) sets of VUr—1 (since

they contain at most (ir ) subsets having j, , elements). The other
W1 ‘

; 112
(:) h(j,) subsets of % having j, elements contain fewer than %" %%
Jr

sets of VUr-1, Mo see this observe that such a set can not contain a set
of IVr-1 since otherwise it would belong to t 1V and since it does not
belong to IV9 it contains fewer than ¢ %% gsets of %), Thus we
evidently have

18 (7 (Rr ?r_l) = f Ir ) ( et ”fl'r:!”’r!n..
(18) #lie) (10 )+
FFrom (18) we obtain by a simple computation using (11) and ¢, = le,,
= i -1 q 12 : —1
19 —Jr 1) (_}_r ) - (ﬂ') c-nt = logn (Jr )
( ) J'r) )(x’ (Jr.r‘ })(JI'_J?‘ 1 jf—l .',"r ¢ jf' 1

< . a \~Yn .u.] e
= . . i EE i 1 e g\'l'
=70 1)(Jr—1) (,1:-) (Jr,
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In (19) we use
w—jra\ fir V7' [ m ‘l(u)
(,fr "jr—l) (jr—]) N (_'.'.-r‘—l) jr ’
From (19) and the fact that (16) holds for » -1 we have
1) > (1o )(2),

which proves (17), and hence (16) holds for all » < s.

But (16) impliex that (14) holds for » = s. This contradiction proves
Theorem 2.

By the same method we would prove the following

1

Tueorem 3. Let & be a set of n elements and let By, ..., B, 2 >c—

Vi
where @ > 1,z — 2" and ¢ is a sufficiently large constant. Then if n > n,
one of the B’ conlains at least ¢“*'**" of the B’s.

Theorem 3 clearly contains Theorem 2. The proof of Theorem 3
is gimilar but somewhat more complicated then that of Theorem 2. We
supress the proof of Theorem 3.

The proof of (3) is now a simple task. In fact we shall prove the
following slightly stronger

Turorem 1. Let ay < ... << a; = N be a sequence of integers satisfying

i
71
20 \ — = ¢ulog N .
(20) 20 > olos
1=

Then there is a constant e,y depending only on ¢,y so that if N
= No(ey1y ¢15) Then

—+ 1 1
(21) M s —elogN '
— 2 )

where in (21) the swmmation is extended over the «’s, which have at least
exp (ey(log, .-\')""3]0;{;3.-\") divisors among the a’s.

It is easy to see that Theorem 1’ implies Theorem 1. To see this ob-
serve that if (2) holds then (20) holds for infinitely many N. But if (21)
holds a simple computation shows that to each N which satisfies (21)
there iz an M — M(N) < N which tends to infinity with N and for
which the number of a; <~ M which have at least exp[cw(logzN}”zloga N)
divisors among the a’s is greater than le,, M. Thus M satisfies (3) and
hence Theorem 1 implies (3).

Thus we only have to prove Theorem 1’. Assume that Theorem 1’
is false. Then for arbitrarily large values of » there exists a sequence
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a, << ... < a; < N satisfying (20) which does not satisfy (21). Then there
clearly exists a subsequence of the sequence a, < ...,say b, <<...<b. < N
satisfying

= 4ey,log N

"
)w

e

i=1

so that each b has fewer than exp(e,;(log, N)"*log, N) divisors among the
b’s. We now show that this conclusion leads to a contradiction.
['irst we observe that by using

s~

2

<2

s
;-;|.‘-3

e

1

we obfain that there is a ¢ so that there is a subsequence b; < ... < b
of the b's each of which ean be written in the form

b-s, = 1q,, 1<7r <35

where the ¢, are squarefree integers and where
(23) —>

(23) immediately follows from the fact that every integer can be
written (uniquely) as the product of a square and a squarefree number.

d(n) (as usual) will denote the number of divisors of n. d+(n) denotes
the number of ¢’s which divide n. By our assumption we have for all
¥ (= Ly 8)

(24) A+ (g) < exp(eys(log, N)"log, N).

From (23) we have for N > N,

N 8 2

. ' N 1 1
o \‘II I _ % =N — —N>—¢,.NlogN.
(25) N dt(m) r;l [ Q’r]/ N E P 5 €12 4¥ 108

=1 r=1

Denote by »(m) the number of distinet prime factors of m. Since
the ¢’s are squarefree we have d+(n) < 2'™.

Thus from (25) we obtain (the dash indicates that the summation
is extended over the n < N for which »(n) > log, N)

N
! 1 2 1
(26) Z d*(m) > — ¢,, Nlog N — N8N ~. 54 NlogN.
o

=1
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On the other hand we evidently have

N N 7
\' d(m) = \’ [
n.i.':; ld

] < 2NlogN.
m

M=1
Thus by (26) there is an m satisfying »(m) > log, N for which

<= C12 1 (i
(27) dt(m) = 20 d(m) = -%-6122 "),
The last equality of (27) follows from the fact that since the ¢’s are square-
free we can assume that m is squarefree.

Now we can apply Theorem 2. The set % is the set of prime divi-
sors of m,v(m) = n. The B’s are the ¢’s which divide m, ¢,,/20 = ¢,.
We thus obtain by Theorem 2 that there is a ¢/m for which

d+(g) > exp (es(log, N)*log, N)

which contradicts (24) if ¢;; is sufficiently small.

This completes the proof of Theorem 1" and hence (3) is proved.
It is clear from the above proof that (21) would remain true with 1—¢
instead of §.

To complete the proof of Theorem 1 we now have to show (4). (We
do not give the proof in full detail.) In fact we shall prove the following
stronger

TarorEM 4. There is an infinite sequence A of positive density for
which for all x

(28) f(@) < wexp e,y (log,x)'*logsa).

Our principal tool for the proof of Theorem 4 will be the following
result from probabilistic number theory:

TuEOREM 5. Let n be squarefree. Let n = [[pf, pi™ < ... < plg), be
k

the decomposition of wn into primes. Then for every ¢, > 0 there is a k,
= ko(cyq) 50 that the density of integers n which satisfy for all ky < k < »(n)

k—e5(logg n) /2 Ft-c s (logs n) 12
(29) et sl 21) < P < e 1510y n)

8 positive.

Theorem 5 can be proved by the methods of probabilistic number
theory ([5], [6]). We do not give here the proof of Theorem 5.

Now we show that the sequence of integers which satisfy (29) for
all k& > ky(eys) also satisfy (28) and if this is accomplished Theorem 4
and therefore (4) is proved. Thus the proof of Theorem 1 will be complete.

Acta Arithmetica XI.4 27
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Let @y << ... < a; <o be the sequence of integers satisfying (29).
From (29) we obtain by a simple computation that for every r, 1 <<r <1

(30) log,a, — 2¢y4(logsa,)'"™ << v(a,) < logya,+ 265 (log,a,)".

Denote as before by d*(a,) the number of a’s dividing a,.. To prove
(28) it will suffice to show that for every »

(31) dt(a,) < exp (e, (logya)*logya).

Denote by p, < ... < p,q, the prime factors of a.. Assume aa,.
[fv(a;) < k, then by (30) there are clearly fewer than v(a,)fort < (log,: r)""+2
choices for «,, thus these can be ignored. If »(a;) > k,, let p; be the gre-
atest prime factor of ;. Since a; and a, both satisfy (29) and (30) a simple
computation shows that

(32) 38— 3¢y, (log,a,)? < v(ay) < 8.
Thus by an easy argument and simple computation

v{a,;l} 8 s
dt(a,) --_{l“gzw)kul-z'Jf" Z Z (u)
S=ﬂ.‘0+] 3_3(_-15(10&)'“]_)”2

< (log,x)*o ™2+ y(a,) {v(ar)}*cls(lﬂgzarl”z

< v(a,)stonaN? — oxy [r.-.lr,(logzrr!)”zlngg;rr).

Thus (31) is proved (with e, = ¢,).
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