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§ 1 . Introduction . A system of sets is an ordered triple J=(F, M, S) where

(1 . 1)

	

F: M--{X : X(-- S}

is a mapping from the set M into the set of all subsets of the set S . If µ E M, the
image of It by the mapping (1 . 1) is Fµ . In particular, if M is a set of power m and
S is an ordered set of order type a, we call f an (m, a)-system . The system of sets
.1= (F, M, S) defines a graph = ~V (f) on the set S in which two distinct vertices
x, y E S are joined by an edge of the graph if and only if x, y E Fµ for some it E M .
A set Bc S is a complete subgraph of e(f) if each pair of vertices in B are joined
by an edge of the graph . Thus 1§(f) is defined by the complete subgraphs Fµ(yE M) .
A set C c S is said to be (f, n) free if C is disjoint from at least n of the sets FF, (,u e M),
i . e . the cardinal number of the set {p E M : Fµ U C = 0) is not less than n .

The problems studied in this paper have the following general combinatorial
character. We seek conditions which enable us to assert that (in a precise sense)
iff =(F, M, S) is any (in, ca)-system, then either there is a large complete subgraph
of (f) or there is a large (f, n)-free subset of S . For example, we study relations
of the form
(1 .2)

	

a

By definition, (1 . 2) means that the following statement is true . Let f=(F, M, S)
be any (m, a)-system . Then either there is a set B c S of order type f3 which is a complete
subgraph of (f), or there is a (f, m) free subset of S of order type y . We investigate
under what conditions (1 . 2) is true or false . We study also a number of related
problems. The main results of the paper and the outstanding problems are sum-
marized in § 3 after we have introduced some notation .

§ 2 . Notation and definitions . Capital letters A, B, . . . , Z always denote sets .
As usual, the symbols E , c , u, n denote respectively the membersliip relation,
inclusion in the wide sense, and the binary operations of forming the union and
intersection of sets. We use 0 to denote botli zero and the empty set . A-B denotes
the set theoretical difference of A and B. If A is a set of sets then' U (X C A)X
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and n (X E A)X denote the union and intersection of all the sets X E A . The Cartesian
product of A and B is A X B. AB denotes the set of all functions which map B into A .
If Ifi is any property which the elements of a set A may or may not possess, then
(x EA : O(x)) denotes the set of all those elements of A which possess the property 0 .
In some cases, when it is clear that 1) refers only to the elements of A . we omit A
from the symbol .

Small greek letters denote ordinal numbers (ordinals) and small latin letters
denote cardinal numbers (cardinals) . If S is simply ordered by the binary relation
R, then tp 1z S denotes the order type of S with this ordering . In most cases that we
consider there is only one order relation defined on a set S which we invariably
denote by _ . In this case we write simply tpS instead of tp S . The cardinal of a
set S is denoted by I, S1 . If tp S=a, then the cardinal of a is ja',= ;S, . We make no
distinction between finite ordinals and the corresponding cardinals . Consequently,
in view of the convention mentioned above, a small latin letter may also denote
a finite ordinal, but this will always be made clear in any particular context . As
usual, the strictly increasing sequence of infinite cardinals is denoted by
S"~ ,;, R I , . . ., R, . . . . The initial ordinal of cardinal a is the least ordinal with cardinal
a and is denoted by co(a) . We write coz instead of co( T), also we write just 61) instead
of (o o . If r is finite, by our convention . o)(r)=r . For any x, /I the set {v : 7-- - v-_,R}
is denoted by [a,

The obliterator sign - written above any symbol means that that symbol is to be
disregarded. Thus A O U A, U . . . U 4. denotes U (v - a)A, . The symbol {x,	ix),

is used to indicate that the set S={x,, : v =x) is simply ordered by < and that
x;<x I , if < t<x. In a similar way, {xo , . . ., z a }# means that x;. ;= x,, if

	

it <7_
If the sets A, . (v - x) are disjoint and ordered, then either of the symbols

(2. 1)

	

S= U (v <7)A,,(tp) or s=A, U . . .14,(íp)

mean that S is the union of the A,.(v < a) and that S is ordered in a natural way,
i . e . the order relations in each A, are unchanged and elements of A;_ precede elements
of A„ if ;. < h -< x . Thus, if tp A,

	

(r < x), then (2 1) implies that

tp S= f3o+ . . .+/y .

We say that T is co-final with the simply ordered set S if T ,7 S and for each x E S there
is y E T such that x y . Also, if a = tp S and Q= tp T, we say that f3 is cofinal with x .
For any a, cf (a) denotes the least ordinal cofinal with 7 - this is the cofinality
index of a introduced by TARSKI [10] . For any a., cf(ef(a))=cf(a) . If x= f3+ 1, we
write a - = f . If x > 0 and a f3 + 1 for any f, then a is called a limit ordinal and we
write a - =a. Thus a is a limit ordinal if and only if cf (a)=1 . if x is such that
fl + y a whenever f3, y < a, then a is indeeoniposable . It is well known that the only
indecomposable ordinals are 0,1 and the powers of co . Every ordinal 7. >O call be
expressed in a unique way as a finite sum of positive, non-increasing indecomposable
ordinals, i . e .
(2 . 2)

	

a = a0 + . . . + x,,,

where L)--w,x ; is indecomposable (;. --0) and ao . . .--a,>0 . We refer to (2.2)
as the standard representation of a . We say that x is even if x=2f, otherwise x is odd .
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The next largest cardinal to a is aT . If a=b+, then we write a - =b. If a is not
the successor of any cardinal b (i . e . a b+), then a is a limit cardinal, and we write
a -- =a. If a- o then a' denotes the cofinality cardinal of a, i . e . the least cardinal
h such that a is the sum of b smaller cardinals . If a= then a'=For every
a, a' a . If a= a, a is said to be regular ; otherwise, if a'<a, a is a singular number .

The set of all subsets of a set S is denoted by [S] . We write

[S]° _ (X: X (:::S, !X_ a} .

In particular, [S]°=0 if IS',<a . In a similar way, [S]

	

denotes the set (X: XcS,
IA' , a} . If A, B are disjoint sets, then [A, B]'°' _ ((,, y} : x E A, I,E B}.

A graph is an ordered pair CP=(S, E) with Ec [S] 2 . More generally, if Ec [S]k ,
P= (S, E) is called a k-graph . S is the set of vertices of and E is the set of edges
(k-edges) of ~V . The complementary graph of the k-graph 1§=(S, E) is *=(S, E*),
where E*=[S]' ,,, E. A set TcS is a complete subgraph of the k-graph =(S, E)
if [T]kcE. If S, c S and E, =[S,]'` nE, then ~, =(S,, E,) is the restriction of
(P on S, . A set S' c- S is a connected component of the graph ~P = (S, E) if for each
pair of points x, y E S there is a finite integer r and edges 11,, !I, , . . ., 17,. E E such
that x E H o . y E H,, and n,, í'iá H7,,, 7'0 (L) < r •) . The graph W _ (S, E) is p-chromatic
if S earl be expressed as the union of p sets X, (r o)(p)) which do not contain any
edge of S, i . e. S= U (r < w(p))X,, and X, . ( r < (,!)(p)) is a complete subgraph of
the complementary graph ~P' .

An (m, a)-system of sets is an ordered triple J- =( F, M, S), where S is an ordered
set of type ~t, ! M Í = m and
(2 . 3)

	

F: M---[S]

is a mapping on M into [S], the set of subsets of S . The image of p E M under the
mapping (2 . 3) is denoted by Fa , . If we do not take the ordering of S into account,
we call f=(F, M, S) an (nn, a)-system, where a= S', . The number of sets of the
system f (i . e . IM's) is also denoted by . If M, c M, then f, =(F, M,, S) is
a sub-system of and we write f, c~. The set-system f =(F, M, S) defines
a k-graph „(f )=(S, E,.) on the set S with edges

Ek = (ir (M) [Fa ,]k .

We are mostly concerned with ordinary 2-graphs and we usually write S(f) in-
stead of WJJ) . A set Tc S is said to be (f, k)-complete if T is a complete sub-
graph of W k(,f) . Similarly, we say T c-- S is (~, < k)-complete if [T] `kc C (µ E M)[FJ `.
A set Vc S is said to be (f, n)-free if I {µEM : Fa, n Ir=0}', n, ii e . V is disjoint
from at least n sets of the system . If 1=(F, .bl, S) is any system of sets we define

P(f )= Ix S : fy M: x F,}', <'M ;) .

Q( )-(-CES : ~ uEM : :vCF1 1 = ;M,) .

We are mainly concerned with infinite set-systems, i . e . ;~I -, . In this case P(~)
is the set of elements of S which belong to almost all the sets Fa, and P(f) c Q (f) .
Suppose that f, =_ (F, M, , S) is any infinite sub-system of p = (F M, S). I f X
is a finite set, X c P(, ,), then ,.J (z E X) (p E M ; : .,v 4 FJ <'M, M . Hence, there
is some p E V such that Xc F,,, . This proves that
(2.4)

	

P(, I )
is' (j',

	

N o)-complete if f, c , if, 1 - R' .

1 1
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The symbol
(2.5)

means that the following statement is true . Let f=(F, M, S) be any (m, a)-system .
Then either (i) there is a set Bc S of type fl which is (f, k)-complete, or (ü) there
is a set Cc S of type 7 which is (f, m) free . If this last statement is true when we
replace the condition (f, k)-complete in (i) by (,f, < k)-complete, we write instead

(2 . 6)

	

a

	

[~, 7]m k .
The symbol

(2.7)

means the following is true . If f = ( F, M, S) is any (m, a)-system such that tp F„ < f3
(pE M), then there is a set Cc S of type ,, which is (f, m)-free . Since each set
Fu (y EM) is a <k+)-complete set, it follows that (2 . 7) implies (2 . 5) and (2 . 6)
for any k .

For part of our discussion it is convenient to use another symbol

(2.8)
which is weaker than (2 . 7) but stronger than (2 . 6) in the special case when k=~
and By definition, (2 . 8) means the following is true . Let f=(F, M, S)
he any (in, a)-system such :hat tp FF , Íi (It EM), Then either (i) there is an (m ; a)-
s.ystem f, c f such that tp P(f , ) -/3 or (ü) there is a set C c S of type y I+'hich
is (f, m)-free . The relation (2 . 8) is clearly weaker than (2 . 7), but if m o then,
in view of (2. 4), (2 . 8) implies that a->[f, y]„ 1~o .

Similar to the relations (2 . 5), (2 . 6) and (2. 7) we have analogous relations

connecting cardinal numbers . For example, (2 .7)' means the following . Iff = (F, M, S)
is any (In, a)-system such that 'Fm ; < b (h E M), then there is a set C E [S]` Ii'hich is
(f, m) free . By the well-ordering axiom (2 . 7)' is equivalent to the special case of
(2. 7) when a=(t)(a), fl=co(b) and y=co(c) . A similar reJnark applies in the case
of (2. 5)' and (2 . 6)' .

(2. 9) means that the following is true . Let f=(F, M, S) be any (m . a)-system
of sets which is such that S does not contain any, (f , n)-free sub. e t of cardinal c . Then
S is the union of a set of poirer less than a and feiier than s (f, k)-complete sets, i . e .
S= J (,,--=-j)B,.'.JA, n'here 'A --- a, (J-(o(s) and B y (v tó) is (f, k)-complete . The
statement (2 . 10) means that, under the same hypothesis, a stronger conclusion
holds namely that S is the union of fewer than s sets irhich are (f, k)-complete (i . e .

JIaí .Srnrdrin~ _i~ademirn • Scieietinrrus Ilungmiear !-. t 9 GG

(2 . 5)' a [b, c]m .

(2 . 6)' a [b, c] ;„k

(2 . 7)' a - [b, c],,,

We shall investigate relations of the forms

(2.9) (a ; m, n, c) k -is,

(2. 10) (a, in, n, c)k-»s .
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the last statement holds with A = 0) . The symbols (2. 9) and (2. 10) both have an
obvious interpretation when k is replaced by -<k. In some respects (2 . 9) is more
general than (2.5) . For example, if s-- a', then (a, m, m, c)'-s implies that a --[a, c]m.

For finite integers in, n, k, s (2 . 9) is closely related to
(2. 11)

	

(m, n)k s

(see Theorem 12. 1) . By definition (2. 11) means the following holds . Let f _ (F, M, S)
be any system of IMI =m subsets of a set S such that the union of any n of these sub-
sets cover S, i . e .

S= (ItEN)F,

	

(NE[M]") .

Then S is the union of fewer than s complete subgraps of the k-graph N k V), i. e .
S= Ci U C 2, U . . . U0, and [CQ] kC U (p E M) [Fµ ]k (1 6 < S) .

In the final section of this paper we establish a few results in another direction .
These are expressed in terms of the symbol

(2 . 12)

	

(111, 1 , f3) 2 _17

which means the following . Let f=(F, M, S) be any (in, a)-system which has no
( , 2)-complete subset of type f3 . Then S is the union of n sets S v (v < (o(n)) such
that tp S, = a(v < c)(n)) and for each p E M there is some v = v(µ) < c)(n) such that
F, 0 S,=0. We only consider the relation (2 . 12) in the case when a is indecomposable .
We use the same symbol with cardinals a, b in place of the ordinals a, [3 and the
interpretation, in this case, is the obvious one .

In some of our proofs we employ known results (from [2], [3], [7]) about the
partition symbol
(2. 13)

	

a (Í1o, . . ., 13,)" .

This means : If tp S=7 and [S]" = U (v < ;)K,, then there is a set S' c-- S and an index
v < íl such that tp Y = a,, and [Sly c K, . Like the other symbols we have used, (2 .13)
has an obvious interpretation when the ordinals a, are replaced by cardinals .
If f3„

	

(v < íl), we write (2 . 13) in the alternative form

We employ also the so-called polarized partition symbol

lbl

	

lbo

b1 11 ' .

This means : If A, B are disjoint sets, IA, =a, IBj =b and [A, B]' , ' =Ko +K, , then
there are sets A' c-- A, B' c B and o < 2 such that JA' j = a,,, ! B' j = b„ and [A', B']' , I CK0 .

The negation of any one of the 'arrow' relations (2 . 5)-(2. 14) is conveniently
expressed by striking orrt the arrow- thus

	

indicates that (2 . 5) is false .
The continuum hypothesis asserts that 2 o _ , . We sometimes make use

of the more general hypothesis that for all i° . Where the statement of
a theorem is prefaced by ( ) this means that some form of the continuum hypo-
thesis is used in the proof.

§ 3. Summary of results and problems . The symbol (2 .6), or

(3 . 1)

	

a --[i1, Y]< k ,

(2.14)

11* A_^a A[a lh-a,i,a Acadenaiue Scienlia,11M Flnn,aricae 17, 1g66
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is slightly more general than (2 . 5) in the sense that this last relation implies
a - [f3, y]°„ for any p < k . In § 4 we establish a few general results concerning these
symbols and also (2 . 7) . In § 5 a complete analysis of (3 . 1) is given in the two simple
cases (i) k=2, 11z arbitrary and (ü) nr finite, k arbitrary . In these cases (3. 1) is closely
related to the partition symbol (2 . 13) with r=1 ; such relations have already been
fully discussed in [7] .

In § 6 we study the cardinal forms of these relations (2 . 5)', (2 . 6)' and (2 . 7)' .
Our main result in this section (Theorem 6 . 1) shows that

(3 . 2)

	

11t- [m, 1171 '-"' 0

holds for any /11, 11

	

In fact, if 11í --n, then the stronger relation na [nr, In],,

holds. We have only very few results of the form (2 . 5)' when k ~~ . We prove
(Theorems 6 . 3, 6 . 4) that

7~r ~[177 • 17] ;;,

	

and 711

	

-[m om , 7?7]„ ;-

provided m ~ o and

	

The following questions which we cannot resolve
represent extensions of these results in various directions .

PROBLEM 1 .

PROBLEM 2 .

PROBLEM 3 .

( •) óz >[ z .a]

	

(a=,, or

	

) .

0) ~m+1 y [ rt-F1 ~U]S<o1i •

[n § 7,8 we study (3 . 1) and similar relations when 117= ~ and are de-
numerable ordinals . As we have already remarked. (2. 8) is stronger than (3 . 1)
in this case with kOur main result in these sections (Theorem 8 .2) shows
that for given /3, < < o), , there is a o < w, such that

xo

x-» [Í~, Y] o

	

(if

We also show how to calculate a o in terms of the given J3, y . In § 9 we study the similar
problem with denumerable a, (3, ,, but arbitrary m. A surprising feature of this
analysis is that the relations

a-_[ij, y],, and y -•[l1-

are equivalent for a .

	

We do not know if this is the case for arbitrary
ordinals a, /3, j%

In § 10 we study (3 . 1) in the case when a is non-denumerable . Our analysis
is incomplete and we mainly restrict our attention to relations of the form

z - [/i, l

with x indecomposable . With this restriction we are able to decide whether or not
such relations hold provided a o911 + i It is a little surprising that new difficulties
are encountered at this stage. The simplest question we cannot answer is

PROBLEM 4 . (?)

	

+1 (0

	

+ I , 0j ;a) ]2 ,
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There is another interesting problem which arises in this section. We can
show (Theorem 10 . 6) that w,a= [wo, wzaj~, if a<w j , but we cannot solve

PROBLEM 5 (?) w' w==> [w + 1, wz wLh, .

In § 10 we also study relations of the form

Y]H o
in the case x = w1 n < (o,) . Again our analysis is incomplete . In Theorem 10. 9
we prove that

(t)i [wI wI
z
Ho if w

	

<wz

and in Theorem 10 . 10 we show that this result is best possible in the case of (i) = w .
The stronger relation_

e ),f [w1, Y~s a

	

(,i wi+ ~)

is proved in Theorem 10 . 15 for the case when cf (A) ; w and w < <. < C0, . We also
prove that this last result is best possible if =It +1 and cf (µ)=w . In Theorem
10. 14 we prove the negative relation

x-+-[coi', cooo+2 2 0
IN

	

(a 00'
We cannot answer the following questions

PROBLEM 6 . (') wí ' [cot, ~~ + IIK o (any < wz)
PROBLEM 7 . (?) wo+z

[w~+v,
0) + I a]Ro

	

(v=1 or 2 ; -aw l ) .

In § 11 we establish a few general results concerning (2 . 9) and (2 . 10) . For
example, we show that (a. m, n, c)l->2 is equivalent to the polarized partition
relation

QlIa1

_
(c n

if a--e-- . This enables us to utilize some results from [2] . In § 12 we show
that (Theorem 12. 1) for finite k, in, n, s

I,I

(a, in, n, c) k --s

is equivalent to (2 . It). We prove (Theorem 12 .2) that

(in, n) k --> s

holds if nr --k (n - s + i) + s -1 and we show that this is best possible in a number
of cases . We cannot prove this in general, i . e .

PROBLEM $ . (?) (m, It)k-+-s if rrj < k (iz - s + i) s -1 .

In § 13, § 14 we investigate (2 . 9) in the case of infinite cardinals . In Theorem
13. 1 we show that
(3 . 3)

	

(No, K . No, O)` o - o •

This is a stronger statement than (3 . 2) when in = n= ,,~ o . We also show that the

Acta DIaCGevzatica Acadenzine Scienliaruvn Hungarirae r„ rc(G
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o on the right-side of (3 . 3) cannot be replaced by a finite number . For k-graphs
(k< Ro ) we have the much stronger result (Theorem 14 . 4)

(m, in, m, m)k -3 if in'= t1, .

Also, if m is not a limit number (i . e . in =n+), then (Theorem 14 . 1)

(m, m, m, m)' m
holds. These partial generalizations of (3 . 3) leave several questions unanswered, e . g .

PROBLEM 9. (~) ( 1 , `1

	

1

	

1) 3

PROBLEM LO .

	

áw,)2

	

u,

It follows from Theorem 14 .5 that

but we do not know if the following is true .

PROBLEM 11 . ( ~)

	

(~ca+ 1

	

1

	

w) á ~ ~ t

We prove in Theorem 14. 6 that, if in

	

o ,
(m+, m+, m+, 171+) `-rrn

and
if n < m .

Also, in Theorem 14 . 7, we strengthen the last formula, in the case when nI is a regular
limit number, to

(n, +' m+, m+, m) 2 _~--nr .

We do not know if a similar result holds when m is a singular limit number .

PROBLEM 12 . (?) ( v+ a

	

v+ 1 ~. + 1 ^ v)2 _ ,

	

( v = o) or o),) .

In § 15 we establish a few relations of the form (2 . 13) . It follows from Theorem
15. 1 and the partition relations
(3.4)

	

w -(o), e,)) 2 ,

(3.5)

	

(1)2_(0)2'#)2 if /3.<(, co

due to RAMSEY [81 and SPECKER [9], that

(m, 0),
(t))2 -3.

(na, m'- , f3)2 3

	

if

	

/3--w.

Also, by using essentially the same construction used by SPECKER [9] to prove that
co3---(W3)'- . it is easy to prove that

(na, (1)3 . 4)2-3

	

(m -_ zx a ) .

We do not know if the following is true .

:1 .ta Matbenzatica Acadeniae Scientiarurn Hungaricae 17, 1966
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PROBLEM 13 . (?) (No , 0) 3 , 5) - --4 .

For infinite cardinals we prove (Theorem 15 . 5) that

(m, a, a) 2 -(a') ' if a' < a.

This result is best possible since we prove also (Theorem 15 . 6) that

(m, a, (a')á)2--;a' if 77i~a+ .

In Theorem 15. 7 we show that
( i, Vii, ái) 2 „ o,

and this is obviously best possible . We conclude with the following question .

PROBLEM 14 . (?) ( 2, t~2, X2)2 _ I

§ 4. Some general results . The theorems of this section give connectives between
different relations of the various forms (2 . 5)-(2 . 8) . For the purposes of this section
it is unnecessary to distinguish between (2 . 5) and (2 . 6) . Consequently, we state
our results only in terms of the first of these a [/3, y ] ;;, - it is a trivial matter to
check that similar statements remain valid if k is replaced by -- - k. Frequently the
proof of a statement concerning the symbol (2 . 5) requires only slight modification
to establish analogous results about (2 . 7) . To avoid tedious repetition we merely
state corresponding results .

As an immediate consequence of the definitions we have the following monoton-
icity relations .

THEOREM 4. 2 . If m - o and a [(l, 7] ;;,, then a -- [/3, y] p- .

REMARK . Similarly, if m _- Zy o and a-[fl, f] ,, then a=>[ll,

PROOF OF THEOREM 4 . 2 . Let f ' _ (F ' , M', S) be an (m', x)-system . We will
assume that S does not contain any (f', k)-complete subset of type fl and deduce
that S contains a (f', m')-free subset of type y .

There are disjoint sets M, (v E M') such that M„! <m (v E M') and such that
M = U (v E M')M, has cardinal in . Consider the (m, a)-system f _ (F, M, S), where
F1, = F4, if it C M,, (v C W) . Since the two k-graphs ~qjf) and ~Mf') are identical,
it follows from the hypothesis a [/3, j]'„ that there is a set Cc S of type y which is
( , m)-free. Hence, there is M, c M' such that ' 11, ', =m' and C n F,, =0 (v E MI) .
Therefore, C is also (f', ní)-free .

We do not know if the converse of Theorem 4 . 2 is true, but in the next two
theorems we show that this is the case when extra conditions are imposed on in .

THEOREM 4.3 . Let

	

!x ~n rn' ; x [#, Y]n . Then x -- [l~> Y] .

167
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THEORENi 4. l . Let x ^ x', fl-fl, 1-k-_ I ff . Then

a -> [(3, y]n
a - [li, y],,,

a

	

[f3, j,,,

implies

implies

implies
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PROOF . Let J"=(F, M, S) be any (in, a)-system . We will suppose that there
is no (f, in)-free subset of type 7 and deduce that there is an (f, k)-complete subset
of S of type f .

We want to show first that there is a sub-system such that !f' =n
and such that S does not contain any (f', n)-free subset of type y. Let K = {C : C (--
c-- S, tp C= /). Then 1K

	

Also. by our assumption, ! {DIEM : C íI F,,=
=0)i < m (CE K) .

Case l . K! < in' . Then 'M- < in, where M* ='J (CE K){µ : Fµ n C=O). Hence
there is a set of cardinal n, NE [M-M*]" . In this case put f'=(F, N, S) . Clearly,
S does not contain any (f', n)-free subset of type y since Fµ í1 C 0 (µEN; C E K) .

Case 2. 'K~ =/n . Then m'=n, and K= (C o , C, , . . ., ej, where i.=co(n) .
It follows by induction that for v < i . there is

p(v) EM-U(o<v)fuEM :C,nFµ=0)U{µ(o)) .

Now put N= {µ(0), . . ., µ(;.)) and let f'= (F, N, S) . Then f'(:77: f and ' f'j =n .
Moreover, S does not contain any (f', n)-free subset of type ~ since C„ n F,~,.~ T 0
(p< L'

The hypothesis a--[f3, y] now implies that there is a set Bc S of type f which
is (f', k)-complete. The set B is also (f, k)-complete since

( ) THEOREM 4.4 . If 7n ,R 02 a and x [fí, y]k,, > then 1-[fl, y]m •
REMARK . Similarly, if Y12 ~p•2 x and

	

then a [fl,
PROOF OF THEOREM 4.4 . We can assume that )n :~-nl . Then (*) Implies that

nz ::-2~a' . Let f=(F, M, S) be any (in, a)-system and suppose there is no (f, k)-
complete subset of S of type f3 .

Let =w(ní) . Then m =m o + . . . + 7h ;, where m y < m(v <).) . For v < i, there
is µ(v)E M such that
(4 . 1)

	

i jp E M : Fµ = Fµ(,. ) )', >m, . .

Otherwise, we should obtain the contradiction in 2!a':nl,, < in . Put N [0, i.)
and let F,. = Fµ( ,, ) ( vCN). Then J'= (V, N, S) is an (in, a)-system. Moreover,
since the k-graph ~elkO') is a Subaraph of u'kQ ), there is no (f', k)-complete subset
of S of type fl . The hypothesis of the theorem now implies that there is a set Cc S
of type y which is m.')-free. Hence, there is N' E [N] such that C n F;, =0
if I-CN' . Put M'= U(vEN'){lt : F„=F,.) . Then (4. 1) implies that ',M'i~nwfor all
v < i., i . e . ',M' =In . Since C n Fµ =O (p E Nt'), it follows that C is (f, m)-free .

We have also the following

( -) THEOREM 4. 5 . If m =n = o and m' [m', 1111w then in [in, nr]11

REMARK . We have also, if' in .n= ~ and in', [in', ní],,, then m, [n-1, na],, .

PROOF OF THEOREM 4 . 5 . We may assume that

	

Let

	

Then
we may write m /no + 177,

	

+ m;, where n < 1770 < n7, < . . . nr,, and m,. = m y

Let f =(F, N, S) be any (la, in)-system. Since N contains only n- subsets
and n

	

m,, it follows that for v < i. there are N,, c N and S,, E [S]"'° such that
{/LEN :x-Fµ}=Nv

	

(xESj.

A, ;. : M,-5, i,mca A-demi- .Scientimunz Hui+saricae 17, 1966
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Choose x,. E S, . ti _'(o-: v) S, Put S'= {x,. : v < íl} and let F, = Fµ U S' (µEN) .
Then f'= (F', N, S') is an (n, m')-system. The k-graph ~,JP restricted to the set
_(v< ti)S,, is completely characterized by the k-graph More precisely,
if Y c: S' is a (f', k)-complete set, then the corresponding set

(4 .2)

	

T= U (x, E T', i, < íl)S„

is (f, k)-complete. Similarly, if T' is an (f', n)-free subset of S', then the set T
given by (4 . 2) is (f, n)-free . The result now follows from the hypothesis
ní [m', rn']n, for if !T' ; = m', the set T in (4. 2) has cardinal m .

Later on we require

THEOREM 4. 6 . If S _- 0; 1EI < in' : x, [(f,

	

then

Sae- [#v, (5A.
PROOF . Let _ (F, M, S) be a (m, Sae)-system such that tp Fat < (3e (u E M) .

We may write S= U (o < e)Se (tp), where tp S„ = Sa (o < e) . If µ E M, then there is
o(µ) < a such that tp F,, rl S,, (µ) < P . Since jel < rri it follows that there is M' E [M]'"
such that o(µ) = o (µ E M') . We have that So = U (;. < a)T,. (tp), where tp T z = S
(). < a) . For µ E M'let F' = {7 < a : TA i1 Fal 0}. Then tp F,, < a (y E M') . The hypothesis
a ~ [/i, y],,, implies that there is A c [0, a) and M" E [M']"` such that F' U A = 0 (µ E M")
and tp A = y . The set U (1 E A)T,, is disjoint from the sets Fµ (µ E M") and has type Sy .

§ 5. Two special cases . In this section we analyse the symbol cc -[(f, y]„
in the following two simple cases (i) k = 2, m arbitrary, (ü) k arbitrary and m finite .
Our results are expressed in terms of the partition symbol (2. 13) in the special
case when r = I ; these 'unitary' partition relations have been completely discussed
in [7] .

THEOREM 5 . 1 . For any m _- 1, the relations a -> [/3, y]m and a ((1, 7)' are equi-
valent.

PROOF . Suppose that a-(f, y) I . Let f_ (F, M, S) be any (m, a)-system .
Then B= U (µE M)F,, is (f, 1)-complete and C=S-B is (f, 7n)-free . Since either
tp B = /i or tp C i, it follows that a -> [(i, y],; .

Now suppose that J' . Let tp S=a. Then S=X U Y, where tp Xá/3,
tp Y J! ,,, . Let M=(0, w(in)) and let F.= X (µEM) . Consider the (m, a)-system
f =(F, i1I, S) . If B' is (f . 1)-complete, then B' c X and tp B' f3 . If C' is (f, m)-free
then (since m 1) C' c Y and tp C' y . This shows that a-+-[/l, y],; .

The condition that m is finite is only required for the second part of

THEOREM 5. 2 . (1) Let m -- 1, p = C0(m), a (& . . ., &, y)I, 1Yhere P;. _ /3 (ti < p) .
Then a=>[fl, J,, .

(ü) Let 1 raa< o , k~2 . If x -((3 0 , . . ., /3, , y)', where /3,.=Pj (7 <m), then
„ k

PROOF . Let _ (F, M, S) be any (m, a)-system of sets such that tp Fµ <
(µ E M) . The hypothesis of (i) implies that tp C y, where C'= S ti U (µ E M)Fn .
Since C is (f, m)-free, this proves that a- [/3, y], .

Now assume the hypothesis of (ü) holds . If S is an ordered set of type a, then
there are disjoint sets Fu c S (µ - in) such that tp Fu < a (µ < m) and tp F,,, < .

Ada dlntl~emaeica A,,deeniae S,ienti zen, Yeo+„a,i,ae t-, t966
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Let M=[0, m) and let f=(F, M, S). If B is any (f, k)-complete subset of S then,
since k~- 2 and the sets FN, are disjoint, it follows that there is some P -< in such that
Bc F,, . Hence there is no (f, k)-complete subset of S of type fl . On the other hand,
since ni is finite, a set Cc S is (f, m)-free only if CC F,,, . Hence S contains no
( , m)-free subset of type y . This proves (ü) .

We mentioned in § 3 that the relations

x - [Te r]m and x -'[fl, i]m y0
ore equivalent for denumerable a,

	

It is easy to see that a similar remark does
not apply to the symbol x--[/J,

	

For example, since

co2 -- (c92, o))' and o.)2- (co2, co2, (1)' .

i'.. follows from the two theorems that

w2 - [co2, eo],,, and o)2-+ • [w2, eoj ;,, if In ~--2 .

§ 6. Cardinal numbers . The main result of this section is

( ) THEOREM 6. 1 . Let in, n

	

0 . Then

(6 . 1)

	

n1 -> [in . 739]„ ~ 0 .

Also, if m' jzn , then

(6 .2)

	

to [m, m]„ .

In order to prove this theorem, we prove first a lemma . This is a special
case of a more general result (Canonization Lemma) proved in [2] .

(*) LEMMA 6 . 1 . Let p< 0 ; in >m'-'- 0 ; i=w(in') ; in =in, + . . . -: ih ;. :
in -in~~(m' 1 m0 ~ . . .~ m l,)+ (It<7). Let S=SO U . . .USa ; ;SF ,' = tn„
[S] 2 =L0 U . . . U LP . Then there are disjoint sets S„ (-- S„ (fI < ) such that , Sf,' =7n},
(fI < ).) and

[ S/µ, S~,] ~' ~ C L nlµ .rj

	

(f( < l' < ~.)>

Irhere 7[(µ, v) `-P (y< I,

PROOF . Let P = {0, 1, . . ., p} . Since [S] 2 = U O'E P)L,, there is a function cP E Pf`1 '
such that {x, y} E Lo ( {x . y)) ({x, y}, C S) . Let Tu = U (i, < µ)S,, for p <i . The hypothesis
implies that i, PTµ! < in, Hence there is a function 1/ 4 E PTµ and a set S't~ E [S„ T ], µ
(p-: ;.) such that
(6.3)

	

Of x' A) = 0 ,0')

	

(x E S,
,

; YETI ; p - A) .

Choose xt, E Sµ for u < i . Let M = [0, i) . Since PM T < in'

	

it follows
that there is a function 0„ EPM and a set S,, E [S,' ,- {xµ }] n1 µ (µ < i) such that

(6.4)

P . ERDŐS, A . HAJNAL AND E . C . MILNER

(M.V, .v,.}) = 04(")

	

(x E Sf, ; fi, 'r < i_) .

The sets S' (,u< i,) are clearly disjoint since the S<í are disjoint . Let -v ,- S'g

	

IV
y E S,_ where fI < I, < i . Then, by (6 . 3) and (6 . 4)

(P(fx, A)=Mx)=(n({ , x,.})=070.

Act,, Jfatben-'ice A,'d",niae sci-ti, r Hun;a, ae
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This proves that

where 7r(í7, v) = 0u(v) .

PROOF OF THEOREM 6. 1 . First we prove (6 . 2) . Let f=(F, N. S) be a (n, m)-
system of subsets of S such that I, F,I < 777 (v E N) . We have to show that, if In' = 17' .
then S contains an (f, n)-free subset of cardinal m .

Case 1 . n' >m . There are disjoint sets S; E [S]"' for i. < u~(n7) such that
S= U(;.< u)(m)) S,, . Each of the sets F, (v (:_ N) is disjoint from at least one of the
sets S;, (J. < c)(n)) . Hence, there is a set N, E [N]" and such that S, F,. =O
(v E N,) . Thus S,, is a (f, n)-free subset of S of cardinal 7n .

Case 2 . n7' >n . Then S-, U (v E N)Fv. is a (f, n)-free subset of S of cardinal n7 .
Cases 1 and 2 above show that (6 . 2) holds if n' >7n or if m' >n . In particular,

since rn' n', we have proved
(6.5) nT [m'. m']„- .

The remaining cases which have to be considered follow from (6. 5) and the remarks
which follow Theorems 4.4 and 4.5 .

Case 3 . n7 >n >n7' . Since m >n . , it follows from Theorem 4 . 4 and (6 . 5)
that m' [in', n7']„ . Therefore, by Theorem 4 .5, in= :,. [In, 777]" .

Case 4 . n>7n>n' . From (6.5) and Theorem 4 .5, it follows that n7 [m, n7]„ • .
Therefore, since n >m + , it follows by Theorem 4 .4 that In =:>[In, 7n]" .

These four cases exhaust all possibilities and complete the proof of (6.2) .
Since (6 . 2) is stronger than (6 . 1) when 7n' = n', it is only necessary to prove

(6 . 1) under the added assumption

(6 . 6)

	

777 ' = 77 ' .

In fact, it is enough to prove

(6 . 7)

	

In --[7n, n7]", "a

	

(in Zto) .

To see this we must show that (6 . 6) and (6 . 7) imply (6 . 1) when in =n. From (6 . 6)
and (6. 7) we have

(6 . 8)

	

77T -~ [7n', n7']

	

" .

Suppose first that 7n >n . By Theorem 4. 4 and (6 . 8), it follows that In'- [n7', in],',"o.
Now Theorem 4. 5 implies that 7n [m, n7]„ "o . Now assume that m -~ n . From (6 . 8)
and Theorem 4. 5 we have n7--[in, 7n]„`'1 " . Applying Theorem 4 . 4 to this last relation,
we deduce that in ->[7n, m]„"O . Therefore, in order to prove the Theorem it suffices
to prove (6 . 7) .

Let

	

=(F, M, S) be- any (7n, in)-system . We will assume that S contains no
n7)-free subset of cardinal 7n and deduce that there is a (f', ~ too)-complete

subset of cardinal n7 . Since the sets F,, (p r M) are (f, < ;gy p )-complete. there is
no loss of generality if we assume also that

(6. 9)

	

Fu, I < n7

	

(/I E M) .

We shall consider separately the cases (i) n7 regular, (ü) n7 singular .
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Case (i) . to = m'. If x E S and M' c M, we put M'(x) _ {µ E M' : x E Fµ) . Suppose
that there is M' E [M]" such that the set

T={xES: !M'(x)j<m)

has cardinal m . Then, in view of (6 .9), we can define inductively x, and µv for v < o,(rn)
such that

x„ET U(o<v)F,eU{x„),

fly E M' - U (L) ` v)M'(x,) U {µo , . . .,M.
Put Sx = {x, . : v < w(in)), M* _ {El y : v < (o(m)) . From the way the x y and U, are
chosen, it follows that ~S*!='M*,=m and

x~'. F,,

	

(xES*,µEM*) .

This contradicts the initial assumption that S does not contain any ('f, nl)-free
subset of cardinal m . Hence,

(6 . 10)

	

{x E S : M'(x) < m)! < m

	

(M' E [M]"') .

Let % < u)(m) and suppose we have already chosen y o , . . ., ~'a E S in such a way
that each finite subset of {y,, . . ., y .,) is contained in m of the sets F, (µ E M), i . e .

(6 . 11)

	

U(xCX)M(x)i=rn

	

(XE[{Yo, . . .4j]` o) •

We write m(x) = U (x E X)M(x) . Since Y= {yo , . . ., yJ contains fewer than m(= m')
finite subsets, it follows from (6. 10) and (6 . 11) that the set

A= U(XE[Y]' 11 "){xES : 1,M(X+{x))I < I'll

has cardinal a < m . Therefore, we can choose

y,ES-AUY.

Since I ,,, A, it follows that if X is any finite subset of YU {y.), then X is contained
in in of the sets F,A (µ E M) . Therefore, by induction, there is a set Y* _ {y, : ti -:0)(m))
such that each finite subset of Y* is contained in m of the sets F, (11 E M) . Hence
Y* is (f, < o)-complete . Since Y*', =in, this proves (6 . 7) for regular cardinals m .

Case (ü) . m > m' . Then we can assume that m = mo + . . . + 7h;, where = co(m)
and 171,=711F,>(m'- n7p+ . . .+l91µ)- (,(1</.) .

There are sets K, for v < . such that '& =m,. and so that K, c S (if v is even),
K,. c M (if v is odd) . Let K='J (v < %)K . Consider the set Ec [K]', where {x, y} # E E

if and only if x S. I , E M and x E F, . By lemma 6 . 1, there are disjoint sets K~, c K,,

(v < %) such that ''K,' , = 1n, and, for p < v < a, either

(6. 12)

	

[KID , K,. ]' ,I UE=0,
or
(6. 13)

	

[K,, K'.]' ,1 (-- F .

Choose z, E A,, (v < i) and put S'= {z„ : v < ;., v even), M' = {z-v: v < ;, v odd) .
Then, since the sets K,. are disjoint, S' E [S]m", M' c [M]"" . Consider the (m', m')-
system f'= (F', M', S'), where F = F,, P S' (v E M') .

11,"15, 1i- :Stadrnrurc S,

	

w,
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Suppose that there is a (f', ní)-free subset of S' of cardinal in' . Then there is
N, (-- {v : v < ~, v even} and N, e {v : v < J., v odd} such that N, =!N,! =m' and

(zF„ zj C E

	

(iI E N, , "E Nz) .

Therefore, (6 . 13) is false and (6 . 12) holds whenever µ E N, and v E N, (or vice-
versa). Hence,

_t- x F,,

ifxES,= U(yEN,)Ku andyE M,= U(vEN2 )K,,.Since S, =fM, =nt, this contra-
diets our initial assumption that S does not contain any (f, m)-free subset of power
m. Hence, S' does not contain any (f', ní)-free subset of power m' .

Since m'- [rn', m'],n, 11 " by case (i), it follows that S' contains a subset of cardinal
m' which is (f', < o)-complete. This means that there is a set N3 C {v : v-~ ;, v even}
of cardinal m' such that, whenever NE [N& 11 0, then there is v=v(N)E M' such that

(6. 14)

	

{zµ : h E N} c F,, n S' .

Let S 3 = U(vEN3)K,, . Then S3 E[S]"' . If Yis any finite subset of S3 , then N=N(Y) _=(µ: y E N 3 , Y(1 K„ 0} is a finite subset of N 3 . Hence, there is v = v(N) E M'
such that (6. 14) holds. This implies that (6 . 12) is false if v = v(N( )')) and It E N(Y) .
Hence, for these values of p, v (6 . 13) holds . This implies that

Yc U(µEN(Y))Kµ(-- F_ .

Therefore, S 3 is

	

o)-complete. This completes the proof of (6 . 7) and concludes
the proof of Theorem 6 . 1 .

The condition m' ri for (6 . 2) is a necessary one since

(6. 15)

	

1]„ if

To see this let 1=co(m) =c)(n) ; S=U(o<~l)S„ M=U(o< ;jAt, ; 'I S, = in
M„(1MQ =0

	

Wj=nom 1,,, ( o <A') . Now consider the
(n, m)-system

	

=(F, M, S), where

Fµ=SO U . . . US„

	

(µEM,,, ; o-- A) .

Clearly, jf,'i < m (µEM) and S does not contain any element which is disjoint
from n of the sets FI , (µ E M) .

In contrast with (6 . 15), however, we do have the following

(X-) THEOREM 6.2 . If m, n -- o and a < co(m), then

(6.16)

	

co(m) -=a [x, co(m)],, .

In order to prove Theorem 6 . 2 we make use of the following result established
in [4] .

LEMMA 6. 2 . Let m - ;~ o and let S be an ordered set of type co(m) . If i/r is any
mappin,~r of S into [S] such that x á O(x) and tp qt(x) < a < w(m) (x E S), then there
is a set S' E [S]'" such that x ~ 0(y) (x, y E S') .

Acta 31elLennrtrc. _laariea~nde J .-,- d~.nnrzrn Hrrngn
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PROOF of THEOREM 6 . 2 . We will first prove (6. 16) in the case m=n.
Let ti = co(m) and let S = {x,, x, , . . ., xx} . Let M = [0, ~) and let f _ (F, M, S)

be any (m, m)-system of subsets of S such that tp Fµ < a (µ By induction,
there are ordinals o,, < i such that ou < o,, (µ < v < ~) and

Yµ =x, µ ES FF,

	

(µ<4

Let S, and consider the set-mapping ~ E [Si]s, where i (yF)= Ft , (1 S, .

Then x ~ O(x) and tp 00 < x (x E S,) . Therefore, by Lemma 6. 2, there is M' E [M]'
such that

y,, J FL

	

(Et, V E M') .

The set S' _ fy u :it EM'} is (f, m)-free and has order type ), =co(m) . This proves

(6 .17)

	

%--[a, ;-],,,

Now suppose in -n . If in'-- n', then (6 . 2) implies (6 . 16) . Therefore, we may
assume that

Case 1 . Suppose n >m . Then (6. 17) and the remark which follows Theorem
4.2 imply that

	

Therefore by Theorem 4 . 4,
Case 2 . Suppose m >n . Let J=(F, N, S) be any (n, .^.)-system such that tp FA, < a

(µEN) . Then S'=S- U (µ E N) F„ is an (f, n)-free subset of type 1 . Hence,
;,],, . This completes the proof of (6 . 16) in the case m_1n and concludes the

proof of Theorem 6 .2 .
The formula (6. 1) provides a complete discussion of the symbol (2, 5)' in the

case k< , . In contrast, the only results we have of this kind when k-- o are given
by Theorems 6. 3 and 6 . 4 . We conclude this section by stating the three simplest
problems not covered by our results .

THEOREM 6 . 3 . If m ,t o and k" < in', then

(6.18) m [m, n]m .

PROOF . Let _ (F, M, S) be a (m, m)-system and suppose that S does not
contain a ( f, k)-complete subset of cardinal m .

Let v = o)(n), x = co(k) . Put N= [0, v), K= [0, x) . Let o < v and suppose we
have already chosen disjoint sets SQ E [S]' for a < Q. Since T = S- U (6< o)SQ has
cardinal m, it is not (f, k)-complete. Hence, there is a set S„ E [T]' such that Se FN,
(p E M) . Therefore, by induction, there are disjoint sets S„ E [S]' (g < v) such that
S„U:Fu (t) < i , ; It EM) . Let S„={xs, ., :-cEK), (2EN) .

For any function (pE KN we put

M(cp)={µEM : U(oEN){x,~~~~}n Fµ =O} .

If p E M, then by the definition of the sets 5,,, it follows that there is some function
c,o E K' such that

X",

	

F

	

(2EN) •
Therefore,

M(-- U(cpEK")M«c )

,ístr Jíaib n:.hce li demrne Sc ruarrt;r Htu~,aricee ;- . ;q6G
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Since k" < In', it follows that there is O E K' such that I M(O)d =m. Put S'= {x ~ 1

Q( N) . Then S'j =n and x q FI, if x E S' and u E M(0), i . e ., S' is a (f, m)-free
subset of S of cardinal n . This proves (6. 18) .

We do not know if the condition k" < m' in Theorem 6. 3 is necessary . The
negative results that we have suggest that this might be the case . For example,
it is easy to see that

In-±-[m, 1]m' if In

We will prove the slightly more general result that
(6. 19)

	

m-+-[m, 1]n' , if
To see this let

	

and let S= U (It < ; )Sµ (tp), M= U (p

	

where
tpS=w(m),jSu ',vn(p<i) and Mµ nM.=o (µ<o<)), M~=n~ ;MI,'I (FI
Now consider the set-system ,f =(F, M, S), where

F= _J (o<p)S„

	

(V CAI" ; i-i< ;)-

Every subset of S of cardinal m has a subset of cardinal in' which is cofinal with
S and which, therefore, is not contained in any of the sets F,, (v E M) . Hence, there
is no ( , in)-complete subset of S of cardinal in . Also, if x E S, then there is iI <
such that x E Sµ . Hence, x E F,, if v ` U (It < o i . e . {x) is not (f, n)-free .
This proves (6 . 19) .

Less obvious than (6 . 19) is

( ) ) THEOREV 6 . 4 . # in - o , then m

	

[In 1, m]", + .

PROOF . Let it=m(m), z=co(m--) . Let S be a set of cardinal in + and let [S]"'=
={B,, . . ., fi n), . Let M=[µ, 1r) . We will define a (in+, m+)-system f=(F, M, S)
in the following way . Let QEM. Then we may write {B o , . . ., fij={C O , . . . . Cµ) á .

Since each of the sets C; (; < II) has cardinal m, there are x, y, for ~ < it such that

f ;"YJ,(--C;. U(6<ti){x,,yo) .

Now put F_ = fx, : ;. <µ) . This defines the set system f. Since x, E F„ n C, and
y; E C; -F_ it follows that

(6. 20)

	

F, n B Q = 0, B o -FRO

	

(6 < o C M) .

Let B be any subset of S of cardinal m. Then there is u < n such that B =BQ . Hence,
by (6 . 20), F, nB 0 (u < o ( M) . Therefore, S does not contain a (f, m+)-free
subset of cardinal m. Let T be a subset of S of cardinal m+ . Then there are T < 71
and x F T such that B, c T and

(6.21)

	

xCT- U(z~oEM)F, .

Put X= Br '- {x) . Then 'X =III . Also, by (6. 20) and (6 . 21), X~-_ F (o CAI). Hence .
T is not a

	

m)-complete subset of S. This proves the theorem .
We do not know the answers to the following questions .
PROBLEM 1 . (?)

	

(a= fi r or

PROBLEnr 2 .

PROBLEMi 3 .

	

j " .

Ad .r .l ;atbcnx~~

	

A-dc.iiiae Srir ;+timrni H,uraricrre r . JO6
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§ 7 . Preliminary results for denumerable ordinals . The results of this section
are required in 5 8, where we give a complete analysis of the symbol a --[/3, y] o v

for co, . Most of the theorems in this section are special cases of Theorem
8. 2, but we do not restrict ourselves entirely to the denumerable case .

We remind the reader that if f=(F, M, S) is an infinite system of sets, then
P( )= . (x ES : ffiEM:x Flh ;

LENIDIA 7 . l . Let f=(F, M, S) . J'= (F, ,4 I', S), irbere FE [S]'"[-''ti'

	

M =
_ ; M' = m o . !f 'M' - M, < m, then P(f) e PV ') .

PROOF . Let x E P(f) . Then M - M (t) -- ;n . where M(x) = ffF E M : .1- E F, } .
Put N=(M'-, M)U(M-M(x)) . Then !N --m and M'-NcM(x) . Hence, x-F.,
if fiEM'-N, i .e . xEP(f') . This proves the lemma .

LEMMA 7 . 2 . Let S be an ordered set and let S; c S ( E L), where IL' i N oJ .
S; i'1S„=0 if f a .f r } $ cL, tpS;_=oJ'' ; and o;>0 (EEL). Let f=(F,M, S) he a
(,, ; o , tp S)-srstenr such that (i) tp FF , U S; uJ"' (p E M, EL), (n) tp P(f') U S; < w

o ) . Then there is a (f, o)-free set Xc S szrclJ that 'X ;1 S;' _
= ;Z, ( ;.C L) .

PROOF . If L=O there is nothing to prove . Therefore, we assume L -O . We
can assume that M=[0, w) . There is a function coCL' such that ff1EM: (P(f')=
=i.) (i. E L), i . e . the sequence (P(0), (P(1), . . ., 0((o) repeats each element of
L infinitely often .

Let a < w and suppose that we have already chosen x}. E S and ft,. E M for r < a
in such a way that

M,, = M ^- U (6 < V) M(X Q )
is infinite for i,- 7, where M(x) = fµ : a < w, x E Fj . Let f, denote the sub-system
(F, M x , S) of f. From the hypothesis (i), (ü) of the Lemma, it follows that there is

xaES"(, ti (1'<a)Fu, . I`i fx")UP( 0
(because tp S P( , ) is indecomposable) . With this choice for xx we notice that M, + , _
=M- U(a y)M(x a)=M, M(x,) is also infinite since x,--P(fx ) . Hence, we
can

	

choose

	

f ,xEM«+i

	

{ft o , . . ., ü') .

	

Therefore,

	

by

	

induction . there is
X= f.1,F ,

	

S and M'= fµ o , . . .,

	

}# c M such that 2

x4 F"

	

(vEX,ftEM') .

Thus the set X is

	

,yo)-free. Moreover, since x a E S,,, ( ,, and fa : a ,-w ; (P(a) -
= i.}, _ y o for each i. E L, it follows that X U S;j _ o (). E L) . This proves the lemma .

As an immediate deduction from Letnma 7 .2 we have

THEOREM 7 . 1 . ff o >0 and ,, < w,, then

	

, [w", ~Y]xo

PROOF. Let L = [0, ,,), S= U (), E L) S; (tp) ; tp S; = w' (i. E L) . Let f _ (F, IV, S)
be an ( ;~ o , w`- i)-system such that tp FF, < ml) (It E M) and tp P(f) < co° (f' -- f :
i f' Then, by the last Lemma, there is a (f , Z~ 0)-free subset Xc S such that
JX U S;j _ ',~9 (i. EL) . Hence, tp X---coy . This proves the result .

'Suppose

	

If /i<7, then x,~ Fµ„ by the definition of x- Also, if a-_ /3, then
ur a1Fr ., Mz r, . Hence, u 1 é,V1(x,), i. e . xx .F„ F, .

A,, 1 M,1 :/ -11 tn :v A"de ;n" - Sue~etam~air Htregar;'a" 17, 1966
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THEOREM 7. 2 . If* r<_co, y<co,, then oq=->[r,

PROOF . The conclusion is obvious if r l . Therefore, we assume that r > I and
use induction on r, i . e. we assume that

(7 . 1)

	

(OT-[r" - 1, wY]so

Let

	

=(F, M, S) be a ( o , (oy)-system such that

(7 . 2)

	

tp Fr,<r

	

(11 M) .

We want to show that S contains a

	

t;,)-free subset of type coy .
Suppose that there is an element xES such that Al(x)={µCM :x( F.)is

infinite . Put Fµ=F1,-{x) for it EM(x) . Then J'= (V, M(x), S-{x)) is a ( o , (oy)-
system such that tp F,,<r-1 (pEM(x)) . It follows from (7 . 1) that S-{x) contains
a (,f', o)-free subset of type coy . Hence there is S' c S- {x) and V c-. .. M(x) such
that tp S'=- coy, jM'' _ o and S'[ - ! F -0 (u E M') . Since x~ S', it follows that
S' n F„=0 (µ E M') . Therefore, S' is also (~~, ;Zo)-free . Consequently, we may
suppose that

(7 . 3 )

By (7. 2) and (7 . 3) it follows that each element xE S is joined to only a finite
number of elements of S by edges of the graph 2(A. Since P(f*) is a complete
subgl-aph of `4i 2 (,f) if J, * -t;, and f* c J (see (2 . 4)), it follows that

(7.4)

	

tp P(f*) < co
By Theorem 7 . 1, we have that

orY ^ [o), O)AsO-

This relation, together with (7 . 2) and (7 . 4), implies that there is a (f, ,Z,)-free
Subset of S of type coy . The Theorem now follows by induction on r .

THEOREM 7 . 3 . Let r < co, y < w, , P = cot, o > 0. Then

Ilo)y [P 60 zyb.
PROOF . We can assume that r, y>0. Let =(F, M, S) be a ( o , f oq)-system

such that
(7 . 5)

	

tp Fµ < f3r

	

(µ E M),

( 7 - 6)

	

tp P(J') < flr"

	

(f, C f ; f'I = o) •
Since tp S= fl(oy, we may write S= U (~ < c ) y) S,, (tp), where tp S, _ f (~ < ca y) .

Consider the ( o , coy)-system J* =(F*, M, L), where L=[0, coy) and

Fµ= J) E L : tp Fµ (1 Sa, =/3)

	

(µ E M) .

By (7 . 5), tp Fµ < r (p E M) . Therefore, by Theorem 7 . 2, there is M o E [M] H o and
Lo c L such that tp L o =coy and

,M(x)i < o

	

(x E S) .

(7 . 7)

	

tp Fµ (1 S z <

Put ~f o =(F, Mo , S) .
(P E Mo ; ~ E LO) .

_'

	

A,ta A1ntGrnuu
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Suppose that Y : Ichenever f'cfo , L'cLo , ~Y'l= o ,tpL'=(oy, then there
is ) E L' avul an infinite subsystem f " (-- f' such that tp s, n P v-) _ /l .

Since the removal of a finite number of elements from L o does not change
the order type of Lo , it follows from the assumption Y that there are 4.1, , ~~2, , . . ., fir} r c
cL o and infinite set-systems f, , f2, . . ., ő r such that fo -D f , . . . D d r and

tps, Q UP(,fo)=f

	

(I-o- r) .

By Lemma 7. 1, P(f) (_ PVr) ( I-o- r) . Therefore, tp P(f, .) fr . This contra-
dicts (7 . 6) and proves that the statement Y is false .

Hence, there is ' c,fo and L'(-- L o such that ~f'j = zy o , tp L' =coy and

(7 . 8)

	

tp s,,nPcon,/1

	

(;~EL' ; f„(--f, ; ~"I= o) .

Applying Lemma 7.2 to the set S'=UOEL')S,.,it follows from (7.7) and (7 .8)
that there is a (f', zo o)-free set X c-- S' such that X U S, i _ o (~ E L') . The set X is
also (f, o)-free and tp X C92 j. This completes the proof of Theorem 7 . 3 .

The next theorem shows that, in a certain sense, the results given by Theorems
7. 1 and 7. 3 are best possible .

THEOREM 7 . 4 . Let ,, < co I , fl = co°, o < w, . Then

o~y+ 1]á p •

PROOF . If fl7-(oy the result is obvious . Therefore, we assume that 7 ::-0 and
/~=Qo+ . . .+1t,1, where w-& -.= /l,

Let S= U (~ < y) S z (tp), tp S,. _ fl (), < y). Then tp S= fj , . Since 0 < y < w t ,

we may write [0, y)- %j , where O---R-w . Put T.=S)_ (x ,) . Then
S= U (x < v*) T, and tp T. (x < 2) . Therefore, T_= U (It < ( o) T,, (tp), where
tp T,u =flµ (x < x ; µ < m) . Since w - (1„ < co, , we can assume that

Txµ

	

lxxpo, . . ., x,,,W}

	

(x <7r ; p< 0,» .

Now consider the

	

fl ,,))-system f =(F, M, S), where M=[0, w) and

F1, = ixr,1V : x, u < n < v < (o)

	

(n < w) .

Let S' be any subset of S of type /3 . Let x, =x„µ , v , E S', where x, , x ; µ I , v, - w.
Then there is x z« and µ z 1 v z < w such that x, =x,~ zrz E S' and either x z _ v t
or It,

-- v, . Otherwise, we have S' c U (x, p < v,)T,µ and this leads to the contra-
diction fl=tp S'--(flo+ . ..+<f. Since {x,, xz }# ~F„ (n«), it follows
that the graph ~If'(f) does not contain a complete subgraph of type [3 .

Now let S" be a subset of S of type coy + 1 . Then there is x < x and ,u < w such
that tp S" U T,µ '- w . Let no = max {x, µ}. If n=-no , then there is v >n such that
x, I, v E S" . Therefore, S" U F„ 0 (no < n < o)) . This proves that S does not contain
a (f, o)-free subset of type wy+1 .

The next theorem gives two ways of obtaining new relations of the form (2 . 8)
from known relations of this kind .

THEOREm 7 . 5 . (i) Let 0 < i +j < co ; Y -- [f, i]" . Then a + (i +,j - l) [fl + i, .&~ . .

(ii) If fl' < f ; a [Íl, Y]~o ; Y'-- [t3', Y ]~~ then a +,-x',;, [i3', y +

Ar,s ~lln ;brnratica A'- d'1-ae S1i"'1ti-- IL~ngaricne n, 1966
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PROOF . (i) Let S=S,

	

U152 (tp) ; tp S t =y ; tp Sz =i+.j-1 . Suppose f=
=(F, M, S) is a set-system such that IM I = o and

(7 . 9)

	

tp FI, < # + i

	

(/ I E M) .

Suppose also that S does not contain a subset of j elements which is o )-
free. Since S z is finite, there is X c Sz and M' E [M]-ii such that FI, n S2 = X (µ E M') .

Since S2'-X is (f, Ro)-free, it follows that IXj- i . Therefore, by (7 . 9),

tp F„ n S, < fl

	

(11 E M') .

It now follows from the hypothesis a N [(3,

	

that there is M, E [M']`° such that
tp S, II P(f,)-_/3, where )`,=(F, M„ S). Since XcP(X,), it follows that
tpP(f,)-f3+i . This proves (i) .

(ü) Let S=TUT' (tp) ; tp T=y ; tp Y== á . Then tpS-==y+y'.LetfS)
be a system of subsets of S such that M' -_ No and

(7. 10)

	

tp FN < P,

	

( h E M),

(7 . 11)

	

tp P(f')--Í3 '

	

(f'CX ; J1, 1= 1,y(0 .

Since y N [/3, y] tio , it follows from (7 . 10) and (7 . 11) that there is M' E [M]`- and
C(- T such that tp C=y and CF F,=0 (µEM') . Similarly, since
it follows that there is W E [M]' o and a set C' c- T' such that tp C' = y' and C' I'l FI, = 0
(µ ( W). The set C U C' is (X, o)-free and has type y + y' . This proves (ü) .

For negative relations of the form (2. 6) we have

TuIEOREM 7 . 6 . ]f a,, y c,]m k (o</) and if f3, y are such that f>F(o<a)f3e
and y > 2; (o < 1)yá tcheneuer /3É < 13, and y, < y . (o

	

then

REMARK . The theorem remains true if < k is replaced throughout by k .

PROOF OF THEORE%i 7 . 6 . Let S= U(o ti)S„ (t p), where tp S„=y„ (o< ).) .
Let IM I=m . By the hypothesis, there are set-systems f„=(FQ1 ), M, S„) (o< ). )
such that S, does not contain a (f,,, k)-complete subset of type f3„ or a (X , in)-free
subset of type y,, . Consider the set-system X = ( F, M, S), where FI,= U (.o _ ~) F„E''
(it E M) .

If X is (f, - - k)-complete, the X (1 S„ is (f(„ _ k)-complete (o < ) . Therefore,
tp X=E(o =t) tp (X,11 S„) </3 . Similarly, if Yis (f, m)-free, then Y(1 S„ is (f,,, In)-
free (o - ;) and hence, tp Y= F(o < ;) tp (Y(1 S„) < y, This proves (7 . 12) .

LEMMA 7 . 3 . Let r < w ; tp S __ (0y. If f o is a countable system of subsets of
S such that

tp P(,/- ) -~ o)y

	

(f'Cfo ; if'I = o)

then S contains a subset of 'r elements Irhich is (f o , N o )-free .

REMARK . The lemma clearly implies

(7 . 13)

	

wy -:~ [coy, I-],,

	

( r --_ (o ; a

	

0).

A-, M, .`brmoncn .lertdrmiur S~irn(mrune Ilun,"-;,-
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PROOF OF LEMMA 7 . 3. The hypothesis implies that x>0 and that S-P(f)
is infinite if 'c o, If'j= o . Let n<r and suppose we have already defined
x, , . . ., x„ E Sand f„ =(F, M,,, S) c_fo such that Then there is

x„+, ES-
--

	

„) lJ (x, , . . ., xj . Let
M„+,

= fit E M„ : x,,+, J Ft,} . Then ;M

	

o since
P(f„) . Now put f

e+
,=(F, Me+ ,, S) . By induction, it follows that there is

X= fx,, . , x r } r c S and infinite set-systems f,,=(F, M,,, S) such that M o . . . D M,
and v,, úF, (it EM„ ; 1 o-r) . Hence X(1 F,, =0 (µEM, .), i . e. Xis a (fo , 1,~ o )-free
subset of type r .

LEN,IMA 7 .4. Let r<co ; (~'< fl=con ; 0>1 . Let
f

=(F, M, S) be cut ( o , +
svstem such that (i) tp Fu < 13' (µ E M), (ii) tp P(f') <

13
( ' e f ; If' : _ N o) . Then

there is a (f, „o)-fti'c'e subset of S of type co + r .

PROOF . The hypothesis implies that there are indecornposabie ordinals (3,, (v < (o)
and s to such that g j)' o s and

Therefore, S= U (r' = (o)S,_ (tp), where tp S„= f3 v (r Put Fü = ,r : i, -w ;
tp F1 , , 5, =- f~j (µ E M) . Then, by (!), tp F„ < s (p E M). Since co a [s, co] s~ by Theorem
7 . 2, it follows that there are infinite sets Lc[0, w) and Al,(---M such that

L(1 F'=0 (µE M,), i . c .
(7. 14)

	

tp S ;.

	

E L ; It e MI ) .

Put f , =( F, M, , S), L= {/-o,

	

}<
Suppose that Y : irhenever i E L, J' c j, , , J f' j =

o
, then there is f " c f'

such that If° I = o and tp S, O P(f")= fl; . Then there are infinite set-systems
=(/-, M,',, S) (~ < co) such that f, _)fó fí D . . .

	

and

(7. 15)

	

tp S;.„(1 P(fE,) = f,

	

o «) •

Choose it,) for ~t « so that it„E M,' - ft,, . . . , Et„} . Put f'=(F, M', S), where
AV_ (µ o , . . . , P u,), . Since M'- M, c f µ o , . . ., fit„}, it is a finite set and hence,
by Lemma 7 . l, P(,f,) c P(f') for o < w . Therefore, by (7 . 15), tp P(f')

E(~ < co)(3,.„ _ /i . This contradicts the hypothesis (ü) . Hence,

	

is false .
It follows that there is some ). E L and an infinite set-system ~; c f I such that

(7 . 16) tp s,nP(f')<f3,,

	

( ' cfi ;

	

;= o) •

By Theorem 7 . 1,

	

[13,, co1,, o . Therefore, in view of (7 . 14) and (7 . 16), there is
a set X(-- S, of type w and an infinite set-system f~ _ (F, Mz*, S) c ~; such that

X(1 Ft , =0

	

(pEM2) .

Put T= U(;l< r<(o)S, . Then tp T= /3 . By (ü) of the hypothesis and Lemma 7 . 3
we deduce that there is YE [T]' and M3 E [Mz1'0 such that Yf1 Fµ =0 (µ E M3) .
It follows that the set X U Yis (f, Ro)-free and has type co + r . This proves the lemma .

LEMMA 7 . 5. Let r, s, t<co ; xZ [/7, y]~ o . Let tp S=x(r+s+t) and let f _
_ (F, M, S) be an infinite set-system such that (i) tp Ft, < f (r + 1) (µEM) ; (ü) tp P(f') <
<f(s+1)

	

~f'j= o) ; (iii) there is no (f, 1,1Z 0 ) -free subset of S of type

A,t, Alallema,eea A,aden-'e 1urluinruul I-flurgmialr r, 1966
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7 (t + 1) . Then there is an infinite sub-system f* _ ( F, M*, S) c

	

such that (i)'
tp F,--fir (µEM*) ; (ü)' tp P(f*)'/is ; (iii)' tp (S- U (µ (M*)FN ) yt .

PROOF . Put rt=r+s+t . Then we may write S= U (v-n)S, (tp), where tp S,=a
(v -n) . We shall define infinite set-systems f, _ (F, M„ S) c J (0 v n) and
a partition of [0, n) into disjoint sets A, B, C in the following way .

Put Mo =,V. Let v < n and suppose we have already defined M, E [M]`u . Put
N,, := {µ E M, : tp S,, n F, ' /i} .

Case 1 . I N, ;'_ R, ) . Then we put .M, . , = N,, and put v in A .

Case 2. . N,,,' < ~ o . Then M;. =M,.-N,, is infinite and

(7 . 17)

	

tp S, ri F1 , --- 11

	

(11 E MÍ,) .

Let f;, =(F, M;,, S) .
Case 2a . There is an infinite set-system

	

such that tp S,, FI P(f1) /i .
Then we put f,.+, _ ,, and put v in B .

Case 2b . tp S,, F P(,f") - fl ( "cJ', ; f By (7. 17) and the hypo-
thesis a~[fl, y]~ o , it follows in this case that there is a (dú, ,t o )-free subset of S,,
of type 7 . Thus, there is a set M," F [M, ]`o such that tp (S, ti U (µ E Mv')F,,I y .
In this case we set M,+, =M,," and put l, in C .

This procedure defines the partition [0, n) = A U B U C and the set systems

Let ;A ; =a, B, =b, Q =c . Since M„ c M, (v --n), it follows from (7 . 18) that

(7. 21)

	

tp F,, ---fla

	

(µ E M„) •

Also, by Lemma 7. 1 and (7 . 19), we have

(7 . 22)

	

tp P(f„) -- fib .
Similarly, (7 .20) implies

(7 . 23)

	

tp (S- U (µ E M„)FrJ -- yc .

By (i), (ü) and (iii) of the hypothesis, it follows from the above inequalities that
a-r ; b-s ; eat . Moreover, since the sets A, B, C are disjoint, a+b+c=n=
=r+s+t. Hence, a=r ; b=s ; c=t. If we put N=M,,, then (7 . 21), (7 . 22), (7 . 23)
coincide with the conclusions of the lemma .

A consequence of the last lemma is

THEOREM 7. 7 . If a ~[/3, y]~„ and s, t-to, then

(7.24)

	

Y (2s + t + I ) [/i(s + 1), 7 (t + 1)] a .

181
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_ (F, M,,, S) (v -` n) so that M = Mo D M, D . . . M,, . Moreover, we have

(7 . 18) if' E E A, then tp S, P FI, /i

	

(µ E M, + , ),

(7. 19) if vEB, then tpS,,(1P(fv,+1)--fl,

(7.20) if veC, then tp(S,-U(pCM,+I)F,.)'Y
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PROOF . Let S= U () = 2s + t) S, (tp), tp S, = x (~ -2s+ t) . Then tp S=
=a (2sA-t+1) . Suppose (7 .24) is false . Then there is a countable set-system _
=(F, M, S) such that (i) tp F,- f3 (s+1) (µEM) ; (ü) tp P(f ')</3(s+1) (f

= o) ; (iii) S does not contain a (f, N o)-free subset of type y(t+l) . Now
consider the set-system f o = (Fo, M, So ), where So = S- Sts+r and F° = So n FI,,
(µ E M). By (i), (ü), (iii) and Lemma 7 . 5, there is an infinite set-system

(F, M* S) c f such that (i)' tp So n FI, _-fs (µ E M*) ; (ü)' tp So (AP(,f*) -/3s ;
{iii)' tp(So - U(µEM*)FJ - yt . From (i)-(iii)' it follows that

tp S2s+InFg <f3

	

(µEM*) ;

tp S25+r n P(f) < f if f' cf * and

tp(52 .,+I-U(µEM')FJ<y if ME [M*]K0 .

These last three statements contradict the hypothesis x [f3, y] o . This proves (7 . 24) .
We need also the following lemma which resembles Lemma 7 . 5 .

LEMMA 7 . 6 . Let q, r, s, t<(J) ; Q=0)Q ::_m0 ; B>0. Let S= To UT1 (tp) ;
tp To = f3 (r + s + t) ; tp TI ~ co0. Suppose that f _ (F, M, S) is a countable set-
system such that (i) tp F,,< f1r + 0)0 G' EM) ; (ii) tp P(f) If' I =
=Z~o ) ; (iii) S does not contain a (f, N o)-free subset of type co(t+1)+q . Then there
is * (F, M*, S) c

	

such that _M* = o and (i)' tp To n Fµ far (µ E M*)
tp To H P( *)-f3s ; (iii)' tp (To - U (µEM*)FI)=cot .

PROOF . We proceed as in the proof of Lemma 7 .5 . Put n=r+s+t . Then
To = U O< n)S,. (tp), where tp S, _ (3 (), < n) . We define infinite set-systems
=(F, M,, S)cf (R- n) and a partition of [0, n) into disjoint sets A, B, C in the
following way .

Put Mo=M. Let <n and suppose we have already defined M, E[M]`~ . Put
N;={µEM, :tp S,nFIB =(3} .

Case 1 . ~N)J = ty o . Then Put Ma, +i = N, and put ~ in A .

Case 2 . IN,I < N o . Then Mj,=M,-N, is infinite and
(7. 25)

	

tp S,nFµ<f

	

(PEMÁ) .
Put f,.=(F, M.,, S) .

Case 2a . There is an infinite set-system fz c f, such that tp S, (1 P(,f';) =fl .
Then we define f,. ,., =fz and put ti in B.

Case 2b . t p S,n P(f')<# (fv'c f,,, ; I f,I = Z~ o ) . Since f1

	

by
Theorem 7. l, it follows from (7. 25) that, in this case, there is M, E[Má]~ o such
that tp (S,- U(µEl1'1'á,')FI,) (o . 1n this case we define .M, +I =M . and put ), in C .

This defines the set-systems f,=(F, M) , S) (~ -_n) and disjoint sets A, B, C

Ad¢ Prf~r~I rnztlicn ~lcndrmine Scicnii-- fíun~aricae i-, 1966

such that [0, n) =A U B U C ; M= Ho -DMI . . . M„ E [M] x o . Also, we have
(7.26) if )EA, then tpS,nF,,=P)

	

(1IEM;+,) ;

(7.27) if a,EB, then tp S,nP(f,+,)=f3 ;

(7.28) if íIEC, then tp(S,- U(pCM, +i)Fp)

(7.29) if' ;.EC, then tp S,nP(f')</3 (f(- f" ; If 1I== Z0 .
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Let Í A = a, IBI = b, Í C1= c. By Lemma 7. 1, P (,f,,) c P(f) (~1 n) . Therefore,
from (7. 26), (7. 27) and (7 . 28) respectively, we deduce that

(7.30)

	

tp To n Fu, - f3a (µ E M„);

(7 .31)

	

tp To nP(fn)-/lb ;

(7.32)

	

tp (To - U (µ E M„) Fµ)- coc .

These last three statements coincide with the conclusion of the lemma with M* =M,,,
provided that

(7.33)

	

a=r ; b=s ; c=t .

To complete the proof we will assume that (7 . 33) is false and deduce a contradiction .
Since the sets A, B, C are disjoint, we have that a + b+ c = r + s + t = n .

Also, (7 . 30)-(7 . 32) and the hypothesis (i)-(iii) imply that a ~_ r, b -_s ; c t + 1 .
Therefore, since (7. 33) is false by assumption, we must have

(7 .34)

	

c= t+l ; aE{r, r-1} ; a +b = r+s-1.

Suppose that a = r-1 and b=s . Then, by Lemma 7 . 1, (7 . 31) and the
hypothesis (ü),

tp Tr nPv')<w9

	

V(--f. ; I~'i = o)
Therefore, by Lemma 7. 3, there is a (f,,, ',~ o)-free set YcT, such that 1YÍ=q .
Put X = 'To - U (y E Mn) F. . Then X U Y is (f,,, tto)-free and, by (7. 32) and (7 . 34),
tp X U Y-co(t+ 1) +q. This contradicts (iii) of the hypothesis .

Therefore a = r and b = s -1 . By (7. 34), 1 CI = c - L Let i denote the largest
element of C. Suppose that

(7.35)

	

A c [0, rc) .

Then, since D = U (it E A) S, precedes Sn in the ordering of S and tp D U Fµ -/3a = /3r,
it follows from (i) that

(7. 36)

	

tp Sn (1Fµ < w0

	

(u E M") .

Since 7r E C, it follows from (7 . 36), (7. 29) and Lemma 7.4 that Sn contains a
(f„, R,)-free subset of type co+q. Thus, there is NE [M„] 0 such that tp (Srz -
- U (y E N) Fµ) - co + q. Since 7r is the largest element of C, it follows from (7 . 28)
(7. 34) that

tp(U(~EC)Sti--U(pEN)F,,)-w(t+1)+q .

This contradicts (iii). Hence, (7 . 35) is false and there is a. E A such that 7T < x. This
means that the set

Z = U (~ C C) S A - U 0i E M„)FI ,

precedes the set Sa in the ordering of S. By (7 . 28) and (7 . 34), tp Z-w (t+ 1) .
Therefore, by (iii), S a U T, does not contain a (,f„, o)-free set of q elements . There-
fore, by Lemma 7. 3, there is an infinite sub-system

	

such that

tp (Sa U T,) n P(f')-a+co© .
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Since P(f„) C P(J'), by Lemma 7. 1, it follows from (7. 28) and the fact that
x E B that

tp (To U T,) n P(J')--/3b+fl+wo = /3s+(A

This contradicts the hypothesis (ü) . Hence, (7 .33) holds and the proof of Lemma
7. 6 is complete .

§ 8. The case of denumerable ordinals continued . In this section we show that,
for given /l, y < w, , there is ao < w, such that

(8 . 1)

	

xo -'

(8 . 2)

	

x

	

/ ]2 0 (x- )( o) .

Our results also show how to evaluate ao in terms of the given /3, y .
If fl - 0, the above relations hold trivially with a o =0. we have

the stronger statement of Theorem 8 . 1 . The more general case when w < w,
is dealt with in Theorem 8.2 .

THEOREM 8 . 1 . If 0 < /3 < w and y < w, , then there is x o such that

(8 . 3)

	

ao-[/1, 7b.'

(8.4)

	

(a - go ; In

	

1) .

The value of xo is given by

(8 . 5)

	

a o = Y if Y=7 - ,
YI+i if Y=Y,+I .

PROOF . If xo is given by (8 . 5) and a<ao , then a

	

y)' . Now (8 .4) follows
from Theorem 5 . 1 .

Let y =wy o +j, where j < w . We define d as follows (i) 5-0 if j =0, (ü) (J_
=(j-1)+/3 if .i>0. Then (8 . 5) gives a o =wyo +b . Let f=(F, M, S) be a (to o , a o )-
system such that tp F, < fl ( p E M) . Then S = So U S, (tp), where tp So = wyo,
tp S,=6 . Since S, is finite, there is M'E[M] K o such that S, AFµ =X (It CM') .
By Theorem 7. 2, wyo -=> [/3, wy o ],,~ o . Hence, there is M"E[M']`'o such that Y=So -

U (p E M") F,, has type wy o . The set YU (S, -X) is (f, o)-free and has type
wyo +j = y . This proves (8 . 3) .
Lemmas 8 . 1 and 8. 2 give special cases of the positive and negative parts of

Theorem 8.2 .

LEMMA 8 . 1 . Let b, c, i, j < w --Q < w, ; /i = w°. Then

(8.6)

	

ao [f(b + 1) + i, w(c + 1) +j] xo ,
There

(8.7)

/3(2b+e+1) if i=j=0,

__ lí(26+e+2) if i=o~.j,
a0

	

fi(2b+c+2)+w if i--0=i,
f (2b+e+2)+w+(i+j-1)

	

i,j>0.
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PROOF . By Theorem 7. 1, Q [(l, co]go . Therefore, by Theorem 7 . 7,
(8-8)

	

a (2b+c+1) [a (b+1),w(c+ 1)la,
(8.9)

	

fl(2b+e+2)(b+1), Eo(c+2)l~0

The relations (8 . 8) and (8 . 9) respectively imply (8 . 6) in the cases (i) i=j=0 and
(ü) i=0<j .

For the remainder of the proof we assume that i_-0 . If j=0 we put 6=0 ; if
j > 0 we put 6 = i +j -1 . Then, for the remaining two cases of (8 . 7), we have
a o = /i (2b + c + 2) + (o + b . Suppose that (8 . 6) is false . Then there is a ( o , x,)-
system f=(F, M, S) such that
(8.10)

	

tpFµ</3(b+1)+i

	

(y IM);
(8.11)

	

tpP(f')<fl(b+1)+i

	

(~ C~ ; ~~ = o)
(8 . 12)

	

S contains no (f, o )free subset of type w (c + 1) + j .
We may write S=So U UU V (tp), where tp So=#(2b+c+2), tp U=co and
tp V=6 . We consider separately the cases fl=co and fl> o) .

Case 1 . fl = m . Then tp (S o U U) _ /3 (2b + c + 3) . It follows from (8 . 10)-(8 . 12)
and' Lemma 7. 5 that there is an infinite system f* _ (F, M*, S) C f such that

From (8. 10) and (8 . 13), it follows that tp V n Fu, < i (y E M*) . Also, (8 . 12) and
(8 . 15) together imply that V does not contain a (J*, o)-free subset of type j . This
is a contradiction, since Theorem 8. 1 implies that tp

Case 2 . /i >w . In this case (8 . 10)-(8 . 12) and4 Lemma 7 . 6 imply that there
is * =( F, M*, S)C such that If* I _ Ro and
(8.16)

	

tpso nF,-fl(b+1)

	

(yCM*) ;

(8 . 17)

	

tp s o np(f*)-(l(b+1) ;

(8 . 18)

	

tp (So - U (p E M*) Fµ) ~- coc .

From (8 . 10)-(8 . 12) and (8 . 16)-(8 . 18), we deduce that

tp(UUV)nFµ <i

	

(µEM*) ;

tp(UUV)nP(f')<i

and U U V does not contain a

	

N,)-free subset of type w +j. This is a contra-
diction since

w+b,[i, Co +j]ho

by Theorem 7. 5 (ü) (for w [co, co], I . and b N [i, j], o) . This completes the proof
of Lemma 8 . 1 .

a Apply Lemma 7. 5 to the set So U U with r = s = b+1, t=c and a=ff=y=co .
4 Apply Lemma 7. 6 with To= So, T, =UU V, r = s = b+1, t=c, q=j and 0=1 .

185
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(8 .13) tp(so UU)nFµ ~/3(b+1)

	

(µEM*) ;
(8 .14) tp (So U U) n P (f *) -- fl (b + 1) ;
(8 . 15) tp (So U U- U (p E M*)Fo) --w (c + l) .
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LEMMA 8 . 2 . Let i, j < co - Q < wI ; # = oA Then

(8 . 19)

	

7-t-[#+i, w+j]xo

	

(a<do)

where ao has the value given by

a if i=j=o,

(8 . 20)

	

ao = P2 rf t = 0 <j,
j32+w if i>0=j,
,/l24-o)+(i+j-1) if i,j>0 .

PROOF. Case 1 . i = j = 0. Clearly (8.19) holds with Y,= j3 .
Case 2. i = 0 --j. By Theorem 7 . 4,

	

w + 1] H o, and, if fl'-fl, clearly
1]2 O . Therefore, by the remark after Theorem 7 . 6, /3 ~ ~'

	

w + 1] 2
This implies (8 . 19) with ao =P2 .

Case 3 . i > 0 = j. Let a < #2+(o . Then there is q < w such that a j32 + q .
Let S = B U B' U Q (tp), where tpB=tpB'=/l, tpQ=q . Let B={xo, . . .,'U}41
B' = {xó, . . ., xw} Let M= [0, (o) and consider the set-system f =(F, M, S),
where Fi = {x, : ~l < µ} U {xr . : > µ} (y E M) .

Suppose S'(--S is (f, 2)-complete and J S'J > L Then S' n Q =0 . Suppose
there is Q < w such that x,, E S' . Then S' n B c {xo, . . ., : pJ. Hence, tp S'-- L) +
Thus, there is no (f . 2)-complete subset of S of type j3 + 1 .

Suppose that S' is (f, No)-free . Then there is {µo, . . ., µw}~ c [0, co) such that
S" n Fµv = 0 (v < c)) . This implies that S" C {x~ : ti < µo} U Q, i . e . S" is finite . We
have proved that

(8.21)

	

jig+q--[fl±1, w] x,

	

if q<w.

Hence, (8 . 19) holds in this case with ao = j32 + o .
Case 4. i, j>0 . By Theorems 8 . 1 and 4 . 1 we have that

o)+i+j-2--[i, co+j]2a

Therefore, by (8 .21) and Theorem 7. 6,

j32 ' w+i+j-2-+-[fl+i,(,)+j]2o •

This proves that (8 . 19) holds i n this case with ao = /32 + w + i +j -1 and concludes
the proof of Lemma 8 . 2 .

THEOREM 8 .2. Let Í3a = co°z (~ - k) ;
Qo'Ql--_Qk>~0 ; y=wyo+j<wl . Then (8 .1) and (8 .2) both hold if ao
has the following value :

Case 1 . yo = yo . Then

#oyo if' j=0,
xo= Qoyo+Q if i=0-j,

t#070+/3+j-1 if i,j--0 .
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Case 2 .

	

, -i- l . Then a o = /3 oy, + 2:O. < k)#;.2 + 6, where

flk if i=j=0,
&2 if i=0<j,

d= /3k2+co If 1::-O=J,

fk2+w+i+j-1 Zfi,j>o .
PROOF- . Case 1 . y o =y 0 . Then yo= coy' and, by Theorem 7 . 3,

(8 . 22)

	

#,Yo- [I'o(k+2), wyo] i 0 •

Case Ia . .j=0. Then y=coy, and since /fo(k+2)>/l, it follows from (8.22)
that (8 . 1) holds with a. , = Qoy, .

If u < l1oy, , then there is y" < y' and q < o) such that o, -/i o(coy" + q) . By Theorem
7. 4,

130_j-P0, w+ 1] 0 .
Using Theorem 7 . 6 and the fact that /3o is indecomposable, we deduce that

powy +foq [fo, (t) 2y" +wq+l]Ro .

Therefore, by Theorem 4 . 1,

	

y]r o . This proves that (8 . 2) also holds in this
case with ao = ioyo

Case lb. i=0 < J. In this case /3 is a multiple of w and, by (7 . 13), fl
Therefore, by (8 . 22) and Theorem 7 . 5 (ü),

flay°+/3~[II, «)yo
Therefore, (8. l) holds with xo=/io,/o+/3

By Theorem 7 . 4,
(8 . 23)

	

foyo
--~[flo, wyo+ 1]2 0 .

Therefore, by Theorem 7 . 6 and the fact that /l' á-[f3, 1%,, if fl'--</3, we deduce that

~oyo+~

	

wyo+1]2 0

	

(fl - ÍIo)
Hence, (8 . 2) also holds in this case if ao=/3oyo+/f •

Case IcI i,j>0. Put J3=/3*+i. Then /i* is a multiple of w and, by (7 . 13),
[fl*, i],, 0 . Therefore, by Theorem 7 . 5 (i),

Therefore, by Theorem 7 . 5 (ü), this last relation and (8 . 22), we have

fo lio+9+(.i -1)^á[Q, y]g 0 .

Therefore, (8 . 1) holds with a, = fl,y, + f + (J - 1) .
Clearly, /3*+(i+_i-2) Therefore, by (8 .23) and Theorem 7 . 6,

f,yo +/3* + (i+j- 2)-+'[l3, o)yo +j]x 0 •

Hence, (8. 2) also holds in this case with ao=flay,+Q+(j - 1) .
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Case 2 . yo = 7, + 1 . We must prove that both (8 . 1) and (8. 2) hold if a o =í0t't +
+Z(.-k)í;2+(S, where 6 has the value given in the Theorem .

We consider first the negative relation (8 . 2) . By Theorem 7 . 4-,

í0vt '[ío> coy, + 1] 0 .
Also, by Lemma 8. 2, we have

í;2

	

1 , áo] á
Ok+J] o

Therefore, by Theorem 7 . 6,
íoY, +E(ti<k)/l ;.2+(J'-i---_ k) í,+i, coy, +co+i]2 o

if J'< 6 . This proves that (8 . 2) holds if a o has the value given by the Theorem .
It remains to prove (8 . 1) in case 2 . It is more convenient to re-write the standard

representation for í in the form
f3 = f3ób o + í, b, -+ . . . + ít b, + i,

where l< (o ; 0<b;,<w

	

{íó,/3í, . . .,f;í},=ío .í1, .,

	

í3 k )- There is
c o < w such that

YI =0)Ya + co .
We put

	

=0 (0< ).-/) . Then we may write
y=w2yz+co(co+cl+ . . .+c,+1)+ .

and
ao = íoO)Yz + 2: (~ < 1)í', ( 2b ;.+ c)) +fat (2b, +c, -2.) + (J .

Let

	

==( F, M, S) be a ( o , Y O)-system and suppose that

(8 .24)

	

tp F„ < í

	

(EI E M) ;

(g • 25)

	

tp PV) < í

	

(f' f ; If' : = "~ 0) ;

(8 . 26)

	

S contains no (f, %` ,)-free subset of type y .

We will deduce a contradiction .
Since tp S= a o , we have S= So U To U T, U . . . U TI (tp), where tp SO = &(") '12

tp T;. = í ;. (2b ;. + cj (ti < t), tp TI = ít (2b, + e, - 2) + b .
By Theorem 7 . 3,

tp So =ío(OYz v [ío(k +2), (0 2 72h o •

Therefore, since í o(k+2)>í, it follows from (8.24) and (8 .25) that there is
Mo E [M]" such that
(8.27)

	

tp ( So _ (j (µE MO) F1,

	

W 2yz .

We will prove by induction that there are infinite set-systems ~ a =(F, M;, S)

such that M o -) M, D . . . D M, and

(8. 28)

	

tp (U (v < ;,)T,, n Fµ) 2:(1, <

	

b,

	

(11 E M ;),

(8 . 29)

	

tp (U (v < ),)Tv n P(f;)) _- S(ti' < ),)í, bv,
(8 . 30)

	

tp ( lJ (v - ~) T,, - U (p C M;,) F,) ~~ 2:(r -:~ )~ )wc,,

all hold for ).

	

l.

A' I, MW-, - ~ I, ndcnnnr Scientrarum []uig"r "' , . Iy66



ON THE COMPLETE SUBGRAPHS OF GRAPHS DEFINED BY SYSTEMS OF SETS

If 1 0 there is nothing to prove since (8 . 28)-(8 . 30) merely assert 0 -- 0 .
Now suppose l>0 . Let ),<l and suppose that we havre already defined fti=(F,
MA , S) so that the above statements hold . Put

Zo =T Z, = U (~ < v 1) T, .
Also, let 0 be the least ordinal satisfying

coo=l3a =E() _v-1)/1~, h,+i .
Since flA + + 1) is a multiple of w which is strictly greater than /f,, it follows
from the definition of 0 that
(8. 31)

	

liz-li;+I(b).+I + I)-coo .
We note also, that
(8 . 32)

	

tp Z, -_ago .

To see this consider separately the cases (i) ), = I- I and (ü) J < l-1 . If J = l -1,
then fl,, =,o,b,+i and tpZ,=tpT,-(3í(2b,-2)+ó . If i=0, then 6-f, =Pi and
tp Z, -131'b, -coo by the minimal property of 0 . If i 0, then b -(i ,2 and again
tp Z, -i3, (2b,) -coo . Thus (8 . 32) holds if . = Z-1 . If ), < 1-1, then by (8 . 31),

tp Z ; ~_ tp Ta+i =fl ;.+i(2ba+I) ~ ;.+ I(bz+I+1)-coo .

This proves (8 . 32) .
By (8. 24) and (8 . 28) we have

(8 .33)

	

tp(Zo UZ,)UFµ <E(ti-vh,+i=fl b .~+w0

	

(µEM,) .

Also, by (8.25), (8.29) and Lemma 7 . 1,

(8.34)

	

tp(ZO UZ,)UP(f')-fl b,+coo

	

(f'c~,, ; !~'!= o)
Similarly, by (8 .26), (8 .27) and (8.30,),

(8 . 35)

	

Zo U ZI contains no

	

o)-free subset of type w (c,, + I) +j.
By (8. 31), tp Zo = /f. (2b,, + c,) > co0 . Therefore, by5 (8 . 33)-(8 . 35) and Lemma

7. 6, there is an infinite set-system fa+ ,=(F, M,.+ ,, S)(=fz , such that

tpZonF,-Í,.b .,

	

(µEM;, i),
tp Zo UP(f;.+I)----Q,',ba,,

tp (Zo - U (It E Mz+ I) Fj _- wc, .

The last three inequalities, together with (8 . 28)-(8 . 30), imply that (8. 28)-
(8 . 30) remain valid when we replace ) . by ~+1 . Therefore, by induction, there is

(F, M,, S) c f such that ! M,! _ Ro and such that (8 . 28)-(8 . 30) hold with
a=1. These three inequalities (with =l) together with (8 . 24)-(8 . 27) imply that

tp T, (1 Fµ </fb,+i

	

(µEM,),

tpT,UPv)<fl,b,+i

	

Ij'I = o)

We apply Lemma 7 .6 with f= fl, ; q=j; r=s=b, ; t=c, .
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and T, does not contain a (f,, o)-free subset of type co(c,+ 1) +j. This is a contra-
diction, for, by Lemma 8 . 1 and the definition of d,

tp T,=f,(2h,+c,-2)+ 5 7~*, [/3,b,+i, w(c,+l)+I],o .

This concludes the proof of Theorem 8 .2 .

§ 9. The case of denumerable ordinals concluded . By Theorems 4 . 2 and 4. 4
(and the continuum hypothesis ( )), the relations

a

	

and u

are equivalent if )(< w, and m - o . Therefore, if in= t~,, [3,

	

(t), and '7, has
the value prescribed by Theorems 8 . 1, 8. 2, then a o -

	

y]„ 11o and ay]„ if
,x

	

go .
In this section we examine relations of the form

(9 . 1) a

	

[/i, Y]1<11'

for rn'> o and denumerable a, fl, T . Assuming (+) it is only necessary to consider
the case m = , . For, if m' -21* • o (a not necessarily denumerable), then a simple
argument shows that (9. 1) is equivalent to

a - (fl, Y)' .

Thus, for denumerable ordinals, it suffices to discuss (9 . 1) in the special case m= ~, .
We show (Theorems 9. 2, 9 . 3) that for given f, y < w, , there is a r < w, such that

(9.2)

	

a i -[Íi, Y] "
(9 . 3)

	

a +' [/i, T ]2
,

	

(a < a' )
LEMMA 9.1 . If f, y<w l , then wy/3~[wfl, co7] K , .

PROOF . Let f_ (F, M, S) be a (t, , (o Íp)-system such that tp FN, < w/l (µ E M) .
Since tp S= w7/l, we may write S= U (~ < /3) S, (tp), where tp S, = wy (.l < /3) .
If It E M, then there is A(µ) < fl such that FF,U S,. (µ) is finite . Hence, there is M' E [M] "
such that 411)= ;, (µEM') . Since S,, contains only countably many finite sets, there
is M"E[M'] 11 1 such that FF nS,,=A (11EM") . The set S, -A is (f, ,;,)-free and
has order type wy .

LEMMA 9. 2 . (i) 1j'0 < i w and y < w, , then y + (i - l) -[i, y]

	

(ü) If r, s < w
and y=wP<w i , then wy(r+s)-~.[wr, wy(s -1% i* .

PROOF . (i) Let f _ (F, M, S) be a , y + i-1)-system such that tp Fr < i
(µEM) . Then there is M' E [M] x such that Fµ= A (µEM') . Then tp (S-A) -- y
and S-A is (f, ,)-free. (ü) Let S= U(~ -r+s)S,, (tp) ; tp Sl= wy (~ <r+s) .
Then tp S=wy(r+s) . Let f=(F, M, S) be a set system such that M = , and
tp Fµ < wr (µEM) . Then there are sets M' E [M] `, and Nc [0, r+s) such that X >s
and Fµ (1 S, is finite for µ E M', ;l E N . Since T= U (~ E N)S, has only countably
many finite sets, there is M" F [M']"j such that Fµ n T=B (µ E M") . The set T-B
is

	

,)-free and has type -wy(s+l) .
The negative result Theorem 9 . 1 is given in more general terms than we im-

mediately require in this section .

A,/~, Mwhen Ii,, Acadeur,ae Sueni,w-m Ilin~g~nicoe T. 79G6
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(~é) THEOREM 9.1 . Let a~0 ; 0< f3< OJa+2> 0<YO~7I~ • • • ~ ~cu~<wa+2s
Y=yo+y,+ . . .+^i~a. Then yf-+of d-1,y]ra+, •

PROOF . Let S= U(,, < waf3)S, (tp) ; tp Sti= T,( ,. ) where 7T(.i) -<o), and
+ n (~)

	

Then tp S = y f3. Now consider all sets B(-- S such that tp B=0)"
and ! B n 5,. = 1 (i < oo,f3) . Since 1-- I S,1

	

waf) and «+ i = a+ by
( ), it follows that there are ,+r such sets B, say B0 , B,

	

B,,, + , . Let M=
_ [0, (o, +,) . We will construct a set-system f_ (F, M, S) such that

(9 .4)

	

FIB n By ; 0

	

(V - It -: 0)a _"),
(9.5)

	

1Fu nS,,!_ - 1

	

(lI<wx+ i ; n.<coaf3) •
Let it <coa+I • Then {Bo , . . ., Bµ}={Co , . . ., 0,),, where 0 --a) . Since each

C is a B, there is {%o , . . ., Jo } # c[0, oj) such that c,n s,,, O (0<0) . Put Fu,=
= U (o < 0)C n S .,, . Clearly, FI, has a non-empty intersection with each set C, (o < 0) .
Therefore, (9 . 4) holds. Also, (9 . 5) holds since ? o , . . ., ~, are distinct .

If S' is a complete subgraph of ~V (f), then 1 S' A S ti 1--1 (~ < c ) a t) . Therefore,
tp S' -z wa ll + 1 . If S" c S has type -- y, then there is T < wa+ I such that Bn c S" .
Therefore, FI, ( 1 S", 0 (7 <h i . e. S" is not (f, N,+,)-free . This proves
the Theorem .

Theorems 9 . 2, 9 . 3 show how to find the ordinal aI such that (9. 2) and (9. 3)
hold for given /3, y < co, . Theorem 9 . 2 deals with the trivial case of finite y . In this
case (9. 3) can be replaced by the stronger relation (9 . 6) - we omit the proof.

THEOREM 9.2 . ff Q < co, and 0--7-o), then

aI -[N, A,"
(9.6)

	

a -+ - [Íi, y] ,

	

(--«I),

i1, here

x,

	

Íl, 4_7 if P = fl l + 1 .

THEOREM 9. 3 . Let b, i, j, k<w ; fl =w- ffo +cob+i<co, ; y=yo + . . .+ y,;+)
< o), ; y ;. = w"~ (i -- k), go - . . . = oA > 0 . Then (9 . 2) and (9 . 3) both hold if a, is
l iven by .

yowf3o if i=b=0,

x, _ Yo(wf3o+b - 1)+y if i=j=0, b>0,
yo((ef 0+b-1)+y+o_) if i=0, j, b>0 ;
yo(wf3 o +b)+y+(i-1) if i 0 .

PROOF . Case 1 . i = b = 0 . By Lemma 9 . 1,

(9.7) Yow~o ~[w~Í~o Yolk - ;- 1)]~ .

This implies that (9 . 2) holds with xI = ,/ 0(,)& .
Let x < yowfjo . Then there is 13, < f3o and r < w such that x -- y o(wf3, }- r . By

Theorem 9 . l,
yowpi -_t.[wzf I + 1, Yo] 22

yo -f-[wr+1, y0] 2

Acta Dlatbe-,u;ca A-demia, Scic~rtim~enr Ilungmica, ~,, tg6ó
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Therefore, by Theorem 7 . 6, a- [co2 /i, -u)I

	

yo]

	

This implies that (9 . 3) also
holds with a, =y our/3o .

Case 2 . i-i-b_'O. There is c-k such that

	

Put

	

+

Also, we put
1, if

	

0

	

I If 1 f 07~ -- {
b- 1

	

I=0

	

Q) If r=0.

With these definitions for y', (> and 7r we have, by Lemma 9 . 1 and Lemma 9 . 2 (i),
that

(9 . 8)

	

15-[x, y'+.i],, .

Let S= So U S, L S2 (tp) ; tp So .-- y o o,/i o ; tp S, - - y o(h' +O ; tp S2 = I) . When,
by definition of b', e, (J we have tp S=a, , where a, has the value given in the state-
ment of the Theorem for the case i +b ~ ,-0 . Let f -=(F, M, S) be a ( , , a, )-system
such that tp FI, < /3 (FI E M) . We will assume that S does not contain a (, , , )-free
subset of type y and deduce a contradiction .

Since 1,(k + 1) >y, it follows from (9 . 7) and our assumption that there is
M'E[M]` , such that tp F1 , ' I So -co 2 /i (FIE M') . Therefore,

(9.9)

	

tp FI, A (S, U S 2 ) -== wb + i

	

(µ E M') .

By Lemma (9 . 2) (ü), we have

yo(b'+c)~[wb',yo(c+1)],,, ; T,(b'+c)+l),Yoc]s, .

Therefore, since o)(b'+1) wb+i and T o(c+1)>y, there is M"E[M']" , such that

(9 . 10)

	

tp FI, n SI -cob'

	

(µE M"),

(9. 11)

	

tp (SI

	

U (p G M") FI,) -'= yoc.

(9. 9) and (9 . 10) imply that tp F, A S2 < (µ E M") . Also, (9 . 11) implies that there
is no (f ", R,)-free subset of S2 of type y'+ .j, where f"=(F, M", S) . This contra-
dicts (9 . 8) . Therefore, (9 . 2) holds if a, has the value stated in the Theorem .

It remains to show that (9 . 3) also holds in the case i + b 0 . We consider
the various sub-cases separately .

Case 2a . i =,j =0 < b . If a < yo(w/3o + b -1) + y, then there is y* y such that
a-yo(wfo +b- 1)+y* . By Theorem 9 . 1,

(9 . 12)

P. ERDÓS, A . HAJNAL AND E . C . MILNER

II

	

I -== .1= O ;
O=

	

(1) If i=0
l ,'

1

	

- ~- J -- 1)

	

i%

	

I "1O .

y o (co/i o +b-1)-1+02 /3 o +w(b-1)+1, yo]2, .
Since y*

		

it follows from Theorem 7 . 6 that

y o(w/3 o +b-1) } y*-+-[W2/lo+a)(b-1)+1, y]s, .

Hence (9 . 3) holds with a, = y o(wj3 o + b - 1) + y .

A,t, A1,11,, - Inwz,a A-l-i- S,ientimum //„ngmirar 17, 1966
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Case 2b . i = 0 -J, b . Let a < a, = y joofi o + b -1) + y + w . Then there is 0 < w
such that a-yo (wfl o+b-1)+y+0. From Theorem 7 . 6, (9 . 12) and the trivial
relations

Yo+ . . .+ykTO + . . .+A+1] s
and . i+0-+-[w, 1]2" we deduce that

y o(wÍ1 o +b-1)+y+0--[co'/3 o +cob, TO+' . .+yk+l] , .

This implies (9 . 3) .
Case 2c . i /- 0. Let a < a, = y o(wfl o + b) + y + (i -1) . Then there is cp < y +

+(i-1) such that a =y o(wf3 o +b)+(p. By Theorem 9 . 1, yo(o)/lo+b)-[_ [w 2&+
+(ob+1, y o]K, . Therefore, by Theorem 7 .6 and the trivial relation cp Y] ,
x-+-[f3, y] , . This completes the proof of Theorem 9 . 3 .

§ 10. Non-denumerable ordinals . Although some of our results are expressed
in more general terns, the discussion in this section is mainly directed towards
the relation
(10. 1)

	

a~[/3, y]H,

in the case when a is an indecomposable ordinal of cardinal , . Even in this restricted
form, our discussion is incomplete. We are able to decide the truth or otherwise
of (10 . 1) if a is indecomposable and a=w1+F The first relation of this kind which
we cannot decide is

PROBLEM 4 . (?) w1 }1w

The section is concluded with a discussion of relations of the form

ay[Q, y] '~ o

when dal _ Zt, . Essentially we consider only the case when a is a power of w, and,
even for this case, our analysis is incomplete . In Theorem 10. 9 we show that

wl - [wI wln If w = ~ < w2

and this result is best possible in the case cf (a.)=w by Theorem 10. 10. 1n Theorem
10. 15 we establish the stronger relation

wi-[wi 7]20

	

(y<w1 +1 )

provided cf (~) w and (9 < < w 2 . Also, in Theorem 10 . 14, we prove the negative
result that

- I+2]Ho .
However, we do not know if

(~) wi ~[wh wl+1]2 o
for any )'-<0)2 (Problem 6) .

All the negative results of the form (10 . 1) in this section derive from Theo-
rem 9. 1 and the next three theorems .

(+) THEOREM 10 . 1 . Let V "; 0 < a/3 < w v+2 ; -: 0M7 + 1) . Then
+-[wvY -} 1, awv] 2

13

	

Ador tl •1atlemrrtira A,ademiae S,ietttiw-am Autr,raricae 17, 1966
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PROOF. There is S < w„ such that Q - co v y + S . By Theorem 9. 1, aw„y 4-
-++o'y + l, acoy] y+ , ; also, aco,,]2„ + , . Therefore, by Theorem 7. 6,
a. (w„ y + S) _4-[wyy + 1, acoy] 2„ + , . This implies the Theorem .

THEOREM 10. 2 . Let v 0 ; 0 < 06f3 < wv+z . If y > _Y(o < f3)2, whenever 2e<
< (ov+i (o < f3), then ap-+~[acov+, , y] ,,

PROOF. If fl < wv+ , the result is obvious . The result is also obvious if a < uJ v+ ,
since, in this case, af3 < y . We shall therefore assume that a, a -1wv+ , .

Let tp S=af3 . Then S= U (o < f3) S, (tp), where tp Se =a (o < f3) . Let M=
_ [0, co v+ ,) and let cp be a (1 -1)-mapping of M onto [0, f3) . Put TQ = 5'~ ( , ) _
_ Ix,, : i < co,, + , }, (a < wv+ ,) . Consider the set-system f_ (F, M, S), where

Fµ={x,, :6<µ«<wv+I}

	

(ft EM) .

If S'(-- S and tp S'= aaJv+ , , then there is M'E [M]K'- , such that s, n T,,,, 0
(µ E M') . Let x,, E S' . Then there is o E M' and 7c < o)v+ , such that c< and x,„ E S' .
The elements x,t and xe , are not joined by an edge of the graph S (f) . Hence T (~)
contains no complete sub-graph of type aw v+ , .

If S" c S and tp S" = y, then there is o < Q such that i s- n Se i _ tt„+ , . If µ E M
and µ > a = cp - ' (o), then there is z such that µ < z < wv+ , and x,,E S" . Hence,
s- n F„,z 0 if it-a. Thus, there is no (f, tt„ + ,)- free set of type y. This proves
the Theorem .

( ) THEOREM 10. 3 . If 2 ,o),, then

	

o)-1 1',,, .

PROOF. It has been proved in 6 [7] that

-+'(O),, wI, . . ., wI) .
Therefore, if tp S=2, there are disjoint sets Sv c S (v < w) such that S= U (v < w) S,,
and tp Sv < w 1v +' (v--:(o) .

We assume that 2 -cool . Then there are ,, sets, say Bo , ._J., such that IB,J _ o
and ~ B. n s i - I Q o < w i ; v < c )) . Let M=[0, u),). Using the same construction
as in the proof of Theorem 9 . 1, it is easy to see that there is a set-system f _ (F, M, S)
such that I F,, n Sv I -_1 (µ E M; v < (o) and FN, n B o z 0 (o < y < o),) .

If S' is a complete sub-graph of

	

then i S' 6 4 --1 (v < w) . Therefore,
S is countable and tp S'-,: (o, . If S" c S and tp S" = coy, then S" intersects infinitely

PROOF. Let f _ (F, M, S) be a (m, f3)-system such that tp Fµ< a (µ E M).
Then S= U (o < v) Se (tp), where tp S, = f , (o < v) . Let Fú = {o : F,, n S, 0}
(,u E M). Then tp Fl,, < a (µ E M) . By Theorem 6 . 2, v =:>~ [ a, v],,, . Hence, there are
sets M', N' such that '; M' J = JN' J = m, M'(-- M, N' c [0, v) and o ~ FF, (Q E N' ; µ E M') .

The set U (o E N')S, is (f, m)-free and has type 13 .

6 [7], Theorem 5 .

A,la d4athematica Acrzdendae S,i-i ;-un, H111,— ;cae 17, 7966

many of the sets S„ (v < c)) . Hence B. c S" for some o < w, and F,, n s, 0
(~ < µ < o),) . Thus, S" is not (f, R,)-free. This proves the Theorem .

The next Theorem generalizes Theorem 6 . 2 in one direction .

(+) THEOREM 10.4. Let ma<co(m)=v ; f~=E(o<v)ff, ; 0<f3o ~
/~, -	v . Then f3=~[a, Q]n, .



(10.4)

13*

ON THE COMPLETE SUBGRAPHS OF GRAPHS DEFINED BY SYSTEMS OF SETS

	

1 9 5

( ) THEOREM 10. 5 . ]f R µ

	

a, 0=0 ;

	

<Vi', then

Ow Ya~3~[uw/3, Ow~.a],~ .F
PROOF. By Theorem 4. 6, it is enough to prove that

(10 . 3)

	

co Va=44(0" co v a]~ k

Let f=(F, M', S) be a (R F, , w va)-system such that tp F,< co v (~E M) . We may assume
that S is the set {(o, 6) : o < co v ; 6 < a} ordered anti-lexicographically . For E M, put

F",~ = o : o < (o y , ( o, 6) E F, for some 6 < oc) .

By (6 . 2), we have co [co v, co y ] µ . Therefore, since tp FÁ < w U (), E M), there are
M' E [M] `o and A c [0, (ov) such that tp A =co y , and F,', (1 A =0 (µ E M') . The set
{(0, 6) : 0 E A ; 6 < a} is (f, 1t µ)-free and has type w,m This proves (10 . 3) and hence
Theorem 10 . 5 .

Although not required for the discussion of (10 . 1), we include here the following
result .

THEOREM 10. 6 . If v 0 and a < w, , , then
w~,+zap 0 ~+I, coy+aa N ,,, z •

PROOF . Let M;=m= +z and let S={(~l, ~) : «~+zi 0<a} be ordered
anti-lexicographically . Let f _ (F, M,S) be a (m, w v + z a)-system such that tp Fµ < (O()V+1
(µEM). Since

	

it follows that there is r < co and ME [M]`" such that
tp F" < cov + I (f1 E M') .

Suppose that 9 : lrheneuer S' c- S and tp S'=

	

then there is X E [S']
such that j {µEM' : FF n X= 0}1 < m . Then we define ordinals u, T.< O),,+2 and
sets Xo c S for 0 < w ;, + , by induction in the following way . Let 0 < wÚ+I and suppose
we have already defined 6,,, T,,, < cov+z and X,, c S for cp < 0 . Then we can choose
60<(Ov+z Such that o-,, E, <6, ((p<0) . Put To ={(J, o)160<A<(j),.+z ; o<x} .
Then tp To= w,. .+ za . Therefore, by 9, there is Xo E [Td" such that

tit cm' : Fµ (1Xo =0} i <m.

Since jXo j < m', there is To < (ov+z such that

(10.5)

	

X0 C :10" 0) :60- ), <T O ; 0<a} .

It follows by induction that there are 60 , T o < co,. + , and Xo c S for 0 < (1)"-, such
that (10 . 4) and (10 . 5) hold . Moreover, by the constriction we have
(10.6)

	

6,~<T',<6a<TO

	

((P-=0«;•+ I) •

By (10 . 4), there is some p F M' such that Fl, (A Xo 0 for all. 0 < w'+i . Therefore,
by (10. 5), there is ~o and oO such that 6 0 < ~ 0 < TO; oo < a and (IOC o,) E FF , (0 < c)v +
By (10 . 6), we see that tp i~O :0<coy+I}=w,+i •

It has been proved in [7] that, for a < w v+ , ,
r

	

,

It follows from this partition relation that there is ó < a such that tp {tio : 0 < (ov+ ;
oO=61=c)y+, . Since {() o , ó) : 0« v+ , ; o o =b}c FF„ it follows that tp FF, _ (Or+I
This is a contradiction .

A'"k' .Ilalbenrrurc.e A-d--le s,ieniia -n FburK~rrirr~; r, '96('
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Hence Y is false and there is a set S'c S such that tp S= (0,,,a and
(10.7)

	

{µEM' : Fµ nX=q=In

	

(XE[S']") .

Let A = {t < a : ~ {(íl, o) : < (o,,,) n S' l = m}. Then tp A = a . Consider any sequence'
~0 o , . . ., 0, z which repeats each ordinal, Q E A Nv+2 times, i . e. such that
(10 . 8)

P . ERDŐS . A . HAJNAL AND E. C. MILNER

I{Q,, : Y«v+2 ; c y = ~o }j=m

	

(QEA) .
Let E < wv+ 2 and suppose we have already defined x,, E S' and µ,, E M' for y < s .
Then we can choose

(10.9)

	

x,ES'n {(,l, ee) :),< (Ov+21- U(y<e)Fl,,U {x,}.
Also, by (10 . 7), there is µE E M' - {µ y : 7 < a} such that

F,,,n {x o , . . ., xE}=0 .

This defines by induction X={x E :E<o)v+2 } * cS and M"={µE :E<(0v+2}#(-M'
such that Fµ nX =0 Cu E M") . Hence, X is m)-free. In addition, if ~0 E A, then
by (10.8) and (10 . 9),

'Xn{(~, Q) :~COv+2}I=m .

Therefore, tp X=wv+2a . This proves Theorem 10.6 .
By the last Theorem we have, in particular,

(10. 10)

	

0) 2 06 á10(0
, 0)0) 21L2

	

(a < 0-0,

This is not the best possible relation when a=1 since, by Theorem 10 . 4, cot =01 02]Rz
(~ < 0 2 ) . We do not know if (10 . 10) is best possible in the case a = Co . Thus, we have

PROBLEM S . G) 00X0 =7~[Q)i + 1, 0) 2 0)1,\, 2 ,

Incidentally, the condition a < 0) v+i in Theorem 10 . 6 cannot be relaxed. For,
by Theorem 10. 1, we have 0 2 0), -+-[co l + l, 0

	

1 ] z .
We require the following two lemmas .

LEMMA 10.1 . Let s,n<co ;(3=o)°;n-#<(o2 . Let SDB=U(~<#)Bx(tp) ;
tp B; = co, +s (~ < fl) . If _' _ (F, M, S) is a set system such that I MI _ I and"

(10. 11) BcQ(f),

then either (i) there isa set X(-- S which is a complete subgraph of S (f) and iX n B ; j = i
(íl < f3), or (ü) there is a (f, t) -free set Yc B such that tp Y=coi+sn

PROOF . We shall use induction with respect to n . For n=0 (ü) holds trivially .
We therefore assume that n -0 and that the result is true with n -1 in place of n .
We will assume that (i) is false and deduce (ü) .

We will show that there is some ~ < Q and a set M' E [M]' I such that

(10. 12)

	

tp (B z - U (µ E M') Fµ) = w l, + s .

' We may assume a 0 .
$ We remind the reader that Q (f) _ {x E S :I {tc E M: x E Fjj = M~}.

Acia Matbematica Acaderniae Súentiarum Hungaricae 17, 1966
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Suppose this is not the case . Then, by the hypothesis (10 . 11),

tp (B, - V(x)) < co, +s

	

(ti < fl : x E B),

where V(x) = U (it ( M; x E Ft ,) F, fx1 is the set of points of S joined to x by edges
of the graph ~(f) . Let % 0 , . . ., 1. , be a sequence of ordinals such that ~ .~ <(3 (,0 <(0,)
and

Let 0 <- o), , and suppose we have already defined x„ E B for o < 0 . As we have already
remarked,
(10 . 13)

	

0)j +s y(w ~+s)Io
Therefore,

tp U(o<0)(B,-V(x,,))«) ;+5

	

O-<f) .
Hence, there is x, E B;, Í1(o <0)V(_r„). The set X= {.v,: 0 a), } is a complete sub-
giaph of f(f) and X r1 Bz1= , This contradicts our assumption that
(i) is false . Hence, there is some ), < P and M' C [M]~ , such that (10 . 12) holds .

If n=1, then (ü) holds with Y=Bz -U(Et-AF)FI,=Y0 . Suppose n>1 . Then
the hypothesis #- n implies that # (o . Hence, tp [),, (l) =fl, since f is indecomposable .
Let f'=(F, M', S) and let B'= U (~ < o < p))B,, . Then it follows from the induction
hypothesis and the assumption that (i) is false, that there is a (f', ,)-free set Y'C B'
such that tp Y' =o) ; +'(n -- 1) . Then the set Y= Y0 U Y' is (f, Zt,)-free and has
type w, +'n . This proves the Lemma .

LEMMA 10.2 . Let r<0) ;0<V0)2 ;B=U(~- P)Bz (tp) ; Bc-S ;tpB;,=coi+'
(a < f3), If I MI _ I and f _ (F, M, S) is a set-system such that B n Q (f) = 0 and
tp B), n Ft, < o)', +r (J < (~ ; µ E M), then there is a (f, 1t ,)free set X(-- S such that
!XnB,I= ,

PROOF . Let be a sequence of ordinals such that ~ o < Í1 (0 < w,)
and such that Let 0--o), and suppose we have
already chosen x„ E B and u. E M for o < 0 . By (10. 13) and the hypothesis that
tp B,, n Fµ < (,)~+ r (A < fl ; u E M) it follows that there is

Ap E B,o - U ( 0̀ < 0) Fµe U {x,).

Also, since each xE B is a member of only countably many of the sets F,, 7 there is
po E M - fµ,, . . ., µ a } such that

F,, o n {x,, . ., xa}=o.

Put X={x o , . . ., zw,} and M'= {µo , . . ., Pj. Then X(1 Fµ =o (uEM') and
JX FI B ti ! _ ,

	

This proves Lemma 10.2 .

THEOREM 10.7. Let n, r, s-v) ; a=o)2 ; n-_/l <C02 . Jf a=>[a, 1] 1 ,, then

wi+s+I /) . [~~+Ia wi+ r 2n] .

PROOF. Let f=(F, M, S) be

t

a (fi r , a)~+s+ i#)-system. We will assume that
there is no complete sub-graph of I.N (f) of type cwi+ I a and deduce that S contains
a (j, ,)-free subset of type w ,+In
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Suppose that tp Q(f)=w;+'+'# . Then Q(J)= U (A</l')B;,(tp), where /3'=wif
and tp B,l = Ml + I O, < Q') By the hypothesis f3' is indecomposable and n- fl' ,z 0-) 2
By the assumption that W(f) does not contain a complete sub-graph of type w I

+ Ia
it follows from Lemma 10. 1 that there is a (f, t~ j-free subset of Q(f)

of order type coi+'n
Hence, we may assume that tp Q (f) < tp S. Since tp S is indecomposable

we have (e . g . see [7]) that
tp S -- (tp S, tp S)'.

Therefore, B=S-Q(,f) has type a)r+s+ 1f Therefore, B= U(~<f3)B,'~ (tp), where
tp B~ = (Oi+s+ 1 For µEM, put F, _ ( n < f3 : tp B'.n

F"
- co i+ I } . Since

Fµ (y E M) is a complete sub-graph of it follows that tp Fl', < a (y E M) . The
hypothesis fl => [a, 1] k , implies that there is M' E [M]k , and 7r-_l3 such that n J F'
(u E M'), i . e .
(10 . 14)

	

tp F,, (1 B,, < wi+ 1 ;

	

(µ E M') .

We may write B', = U (o < (o; )Te (tp), where tp Te= o),+ 1 (o < ari). By (10. 14),
tp Fµ (1 Te < wi+ 1 (o < w ; µ E M') . Therefore, by Lemma 10 . 2, there is a set Yc Bn
such that Y is (f, R,)-free and i Y n Ted _ , (o < are) . Hence tp Y~ a),+1 . If n =1,
there is nothing more to prove. If n 1, then Q -co and the set U (n < ~ < a)B~
also has type (oi+s+ 1f Now a simple induction argument on n achieves the result.
We omit the details .

The results we have proved so far are sufficient to analyse (10. 1) for inde-
composable ordinals a < a)1. The case a < co l has already been dealt with in § 9 .
The case col -a < co`l is summarized by the formulae (10 . 15)-(10. 24) . In these
formulae, r+s=m<co; n<co ; ~, µ, v<co 1 .

P . ERDŐS, A . HAJNAL AND E . C. MILNER

(10. 15) follows from Theorem 10 . 4 and (10 . 16) follows from (6 . 15) . (10 . 17)
follows from Theorem 10 . 7 and the fact that 1 =>[I, 1] k , . (10. 18) is a consequence
of Theorem 10.2 since a) I +1+1>E(o<cn +1)án if ), e «1 (o<coi+ 1) (10. 19)
is an immediate deduction from Theorem 10 . 1 . Since co, =:> [~, 1] by (10 . 15), Theorem
10. 7 implies (10. 20) . (10. 21) follows from Theorem 10. 5. The negative relations

Acla Mrtbematica Academiae Scientiaruni Hungaricae 17, 1966

(10 . 15) 09~+1 wll+1] k .

(10. 16) m+1OJ 1

	

=- [w1, 1 ]k1 .
t r+1 s+ 17 2(10.17) m+

~1 . 1k1
m+1 r+1 2s+l(10 . 18) ~l [~1 ~1

	

+ 1 ]k1'
(10.19) ~1

+1
>

	

1

	

, •[~1+1 + 1 ~ s~]k

(10.20) U)m+ 1
1 ~ co s n 2[(,)r + '1

	

1 ]k1 k1-

(10.21) 0)1 1+µ+V - [col+v CO m+1 0) 1+11] k

(10.22) ~m+1~I+ +v
1

	

P ~1+v
[ + 1 (0m+1~1+12

1

	

1 ]kl •

(10.23) wi+ 1 0) 1 +µ+ V [wi+1~1+,1+v co,+1n]2 .

(10 .24) ~i+1~1 . +µ+v1+1.~1 +µ +v+1 UJs«)]2l .



(10. 22) and (10 . 24) both follow from Theorem 9. 1 . Finally, (10 . 23) follows from
Theorem 10 . 7 and the fact that w 1+ µ + . ~[wt+µ+, 1],, (in fact, by Theorem 10. 5,
wl+µ+v~[wt+µ+v w] ,)

The relations (10 . 17), (10.20) and (10.23) refer only to 2-graphs and we cannot
prove the corresponding results for 3-graphs . For example, we cannot prove either

(?)

	

Co 10) 2 _[wtw2, w1]
or
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(~)

	

wi _ [wÍ, wt] ,
However, we can prove
(10.25)

	

0)n1+1 - [w
wm+1]<x o1

	

1,

	

1

	

1

and
(10.26)

	

w1+tw - [wtw w', +1n], x o

which respectively strengthen special cases of (10 . 17) and (10. 23). We omit the
details of (10. 25) and (10 . 26) since the method used to establish these results is
rather similar to that used in the proof of the next theorem .

THEOREM 10. 8 . If n -z:(0, then wi' -[wi, wi] ° •
PROOF . Let f= (F, M, S) be a , co)-system . We will assume that there

is no (f, N 1 )-free subset of S type wi and deduce that there is a (f, < o)-complete
subset of type w .

Since Fu, (y E M) is (f, - o)-complete, we may assume that tp F"< cool (y E M) .
Hence, there is r < w and M' E [M] s , such that tp F1, < wi (p E M') .

Suppose there is a sub-system f" c J'= (F, M', S) such that Ij"I = NI and
tp(S,_Q(,f")) w1+n Then, by lemma 10. 2, S contains a (f", N 1)-free subset
of type MI . This is a contradiction since such a set is also (f, ttj-free . Therefore,

(10.27) tp(S-Q(f„)) -coi+n

	

V„(-- f', ~f"'= 1)

Since tp S=wi, we may write S= U(~ -z(o)Sti (tp), where tp S z = ojr+n
Let

	

If xES we write M'(x)={µEM' :xEFµ}.
Also, if Xc S, we put M' (X) _ n (x E X)M'(x) _ 11, c M' : Xc Fµ) and we write
x=(F, M' (X), S) •

Let © < w, and suppose we have already chosen Y, E S for o < 0 in such a way
that IM'(X)I= , for every finite set Xc Ix,, . . ., ~,1 . Then, by (10 . 27),

tp (S-QVx))-(0 i+t'

	

(IXI - o ; Xc {xo , . . ., za }) .

Since there are only countabl many finite sets X(-- r

	

'+"Y

	

Y

	

{, o , . . ., za and since w 1
-((O,+ ")W it follows that we can choose

xoE s,nQ(fx),x
where the intersection ranges over all such finite sets X. If X is any finite subset
of Ux o , . . .,z}thenxo EQ(fx), i .e.I1pE M'(X) :xo EFµ}1= , and IM'(XU{x a }I= 1 .
This defines, by induction, a set Y={xo , . . ., zw ,}(-- S such that

IM'(X)I=N1

	

(YE[Y]` °) •

Acta Matbematica Acade"üae Scientiartim Ilungaricae 17, 1966



20 0

	

P. ERDŐS, A . HAJNAL AND E . C . MILNER

Thus Y is (f, < o)-complete. Also, since x,C-S,o (0<c)i ), we have tp Y=wi .
This proves the theorem .

The relation given in Theorem 10 . 8 is clearly best possible since

(10.28)

	

co`;-1>[co+1, Coj']2

by Theorem 9 . 1 . In contrast to this we have by Theorem 10. 5

(10.29)

	

co" [co, 0)"]` .

In addition, if µ, v<co,, n is finite and n -M, then by Theorems 10. 5 and 9 . 1 we
have respectively

(10.30)

	

+P+V

	

CO 1+ (01) (91 + 1 1

(10.31) (1)
(0 (1)l+p+v -í . [0)I+v

	

1 cU co cU1+p 2
1

	

,1

	

ni ,
These relations,' together with (10 . 15) (10. 24), give an analysis of (10 . 1)

for indecomposable ordinals a<0,"+' . In fact, the analysis can be extended slightly
to include the case a=co,'+' . By Theorem 10 .4,

(10.32)

	

=~- [a , w(1)+` ]K,

	

(,«,),

and Theorem 10 . 3 gives

(10 . 33)

	

wu,+'
+-[(0,, t ]n,-

We will prove that

(10 . 34)

	

wi+i- [CO
I),, ~~i]N,

	

(~<w, ; n< ( o) .

This is best possible since, by Theorem 10 . 2,

(10.35)

	

(01 +'
+~[ co1 >+i 0_)l+ 1]2 .

Finally, to complete the discussion of (10. 1) for the case

	

we will also
show that

(10.36)

	

COt +1 _, [coi+i , co1 ]2 .

This seems to be as far as we can go using the present methods . We omit the details,
but we can analyse relations of the form

0) +1 W Y]K,

if Q < o) ,,O+ i and Theorem 10 . 2 shows that

However, as we remarked at the outset of this section, we cannot prove or disprove

(2)

	

cow+J CO _[cot +i (,,_)J(,)]2
i

	

]R, .

B and (10. 33).
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PROOF OF (10 . 34) . Let f=(F, M, S) be a (`,, (o +')-system and suppose
there is no complete sub-graph of S ( ) of type w; íl . Then tp F,, < w`,'), (It" M) .
We may write S= U (o <w,)S,, (tp), where tp S„=-w` (o<w,) . Since w, [~, w,
by Theorem 10. 4, we can assume that

(10 . 37)

	

tp F,, n S„ w;

	

(fi CAI ; o < w, ) .

Suppose that there is some o<w, such that tp(S„-Q(f))=w ; . By (10.37)
there is r < w and M' C [M],,, such that tp F,, n S~ < o ;i (ft E M') . We may write
S„-Q(J) _ L)(;, < wi')B ti (tp), where tp B;= w;+' (% o_)") . Therefore, by Lemma
10. 2, there is a (f, t,, ,)-free set Xc S such that ',XU B, I =ti, Therefore,
tp X---(Wi' . We may assume, therefore, that

tp(S~,-Q(f))- OJT

	

(o<w

Since w;' -> (w;')z, it follows that tp S,, r) Q(f) =w,' (o < w,) . Therefore, Q(~) _
= U (i, < w;'+')A, (tp), where tp A, =w' ; +'(1 < w +i) Since there is no complete
subgraph of of type (o"+', it follows from Lemma 10 . 1 that S contains a
(f, Z~,)-free subset of type w;+' . This proves (10 . 34) .

PROOF of (10 . 3b) . Let j = ( F, M, S) be a ( , , w +')-system and suppose
that there is no complete subgraph of %J(f) of type We must deduce that
there is a (X, R,)-free subset of type w, .

Suppose tp(S-Q(f))=wi+' Then S-Q(f)=U(A<w,)B,(tp), where
tp Bz = w`,' (~ < o-),) . Since tp F„ < w, +' (µ E M), it follows that there is ~ (µ) < w,
and s(µ)<(,) such that

tp FI,UB,,<wi(µ)

	

(µEM; 40-)

	

-(00.
There is M' E [M]1 ~ and s < w such that s(µ) =s (µEM') . Therefore,

tp F,,nB;,<wi

	

(µEM' ;

Let 71 < w, and suppose we have already defined x I, E S and µ„ E M' for o < 7r .

There is some < w, such that ).> (µ„) for all o < n . Therefore,

tp U(o«)Fµ,,UBz<(o'+I

and we can choose x, E B, - U (o < n) FI,,, U {x, } . Since each element of S- Q(f)
belongs to only countably many of the sets F}„ it follows that there is µ.E M'-

- {µ o , . . ., P.) such that Fµ , n {x,, . . ., x.j=0. By induction, it follows that there
is a set X= {xo , . . ., z~ }# c S and M"= {µo , . . ., µu„} # c M such that X U F„=0
(µ E M"), i . e . X is a (f, R,)-free subset of cardinal N, .

We may therefore assume that tp Q(f) =w,+i It now follows from Lemma
10. 1 that there is a set YcQ(f) which is (f, R,)-free and tp Yew, . This proves
(10 . 36) .

We conclude this section by studying relations of the form

x(-Ii, 7]I~I o
in the case ja ; = t~, . We essentially consider only the case when a is a power of w, .
It is convenient to use another symbol in our discussion,
(10. 39)

	

a

	

[[/l, Y]] n o
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which is related to (10 . 38) . The statement (10 . 39) means the following is true .
Let f _ (F, M, S) be any (R o , a)-system of sets such that (i) tp Fµ < fl .for all tr E M,
(ü) each element of S belongs to only a finite number of the sets F µ . Then there is
a (f, o)free subset of S of type y . If a system f satisfies (ü) we will say briefly
that f has the finite property . It is easy to see how the symbol (10 . 39) can be gene-
ralized but we have not investigated such problems .

If fl is indecomposable then (10. 38) is stronger than (10 . 39) . For suppose that
a is indecomposable and that (10 . 38) holds. Let f=(F, M, S) be any ( o , a)-
system satisfying (i) and (ü) . These conditions imply that each point of S is joined
by edges of 5(f) to a set of order type less than fl . Hence, there is no complete
subgraph of w(f) of type P . Now (10. 38) implies that there is a (f, 1y 0 )-free subset
of type y .

It is an easy deduction from the partition relation
(10.40)

	

(oi ---(c)i)w

	

(n<co)

that

(10.41)

	

0)1=:> [(o'1, 0)1]'x .

	

(n<(o) .
Since (10. 38) is stronger than (10 . 39) for indecomposable f3, our Theorems 10. 9-
10. 15 together with (10 . 41) and (10 . 49) give a complete analysis of the symbol
(10. 39) in the case a = cod (), < o-),) . We are unable to analyse (10 . 38) with the
same completeness and there remain several open questions .

THEOREM 10.9 . ]f a is indecomposable, coi-_a<w 2 , then

a ~ [a, w 11 o .

PROOF . Let f=(F, M, S) be any ( o , a)-system of sets such that S contains
no (f, *,1~ o)-free subset of type wi . We will deduce that there is a complete subgraph
of <_6(f) of type a. We can assume that

tp Fµ <a

	

(µEM).

Suppose that whenever f'= (F, M', S) is an infinite sub-system of f and
S' is a subset of S of type a, then S' contains a (f', o)-free subset of type coy,
for any n < co .

Let n < w and suppose we have already defined Tv c S, My E [M] o and µ, E M
for v<n so that tpT„=co;,M --DMO :D . . . and so that Tv nFµ =O if v<n
and µ E M„ U fµ,, . . ., µy } . The set S' = S - U (v < n)T,, U Fµ „ has order type a . There-
fore, by the assumption contained in the last paragraph, there is T„ c S' and
M„E [M,-,]"O such that tp T,, =w 1 and Tn n Fµ =0 (fir E M„) . Now choose µ„ E Mn
- {µo , . . ., µ„} . The set T= U (n < co)T, defined inductively in this way has order
type at least cow and is (f, o)-free since Tn Fµ =0 if µE {µ o , . . ., t2 Ú } . This contra-
dicts the initial assumption that there is no (f, o)-free subset of type 0) -, .

We may therefore assume that there are n < co, M' E [M]a0 and S'(-- S such
that S' has type a and does not contain any (f', o)-free subset of type co ;, where
'=(F, M', S) .

If N is any finite subset of M', then VN =Ix ES' : {µEM' :xCFj=N} is
(f', o)-free and therefore has type less than &I . Therefore, in view of the relation
(10. 40) and the fact that M' has only countably many finite subsets, the set V=
= U (NE [M']"~ 0) VN has type less than co l . Therefore, tp (S' - V) =a and each
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element of S'- V belongs to infinitely many of the sets F,, (µ C AF). Therefore,
since there is no (f, o)-free subset of S' with type col, each element of S' -V
is joined to all the elements of S'- V by edges of the graph W(f) except for a set
of type less than col . We may write S'-V= U(~ <a)B,~ (tp), where tp B;, =01 1

Let f be any (1, 1) mapping of [0, (o,) onto [0, a). Let 0 < co i , and suppose we have
already chosen elements x v E Bfwd for v < 0 . Since each point x„ (v < 0) is joined
to all the points of Bf( , ) by edges of the graph !§(f) apart from a set of type less
than cot, it follows from (10 . 40) that there is xe EBf(0) such that {x,,, x,) is an edge
of (f) for all v < 0 . The set X = {xo : 0 < w I } defined by induction in this way
is clearly a complete subgraph of 5(f) . Also, tp X=tp (f(0) :0-(0,)=a. This
proves Theorem 10 . 9 .

The last theorem gives the best possible result in the case cf (a)=co .

THEOREM 10. 10 . If a -: co y and cf (a) = o), then

a-i'[[a, w + I]]R o

PROOF . By the hypothesis, a = ao + . . . + i,,, where 0 < ao - a ll . . . á w < a < (0 z .
Let S= U (íl < a)) S, (tp), where tp S, = a, (~ < (o) . Then tp S= a. In view of the
partition relation

a,-~-(w, , coi, . . ., wi) 1

	

(~< w)
already referred to in the proof of Theorem 10 . 3, it follows that there are disjoint
sets A, c Sz (v < w) such that tp A,. v< coi (v < w) and Sa, = U (v < co)A z~ (~ < co) .
Let M = [0, w) and consider the set-system f _ (F, M, S), where

Fµ=U() <µ<v)A,y

	

(u<co) .
Clearly, tp F,t < ao + . . . + au < a (y < co) and each element of S belongs to only
finitely many of the sets Fµ . Suppose that C is any subset of S of type coi + 1 . Then
C is not cofinal with S and there is some ~ < co such that tp C n S,, -_co i . Let
{µ o , u I , . . . }< be any infinite subset of M . Then there is k < co such that µk --2 .
If C n Fµ, = 0 then C n S), c U (v uk)A z „ and we obtain the contradiction that
tp CnSa ,<col. This proves that C is not (f, ,,)-free and completes the proof
of Theorem 10 . 10 .

The condition cf(a)=co in Theorem 10. 10 is a necessary one .
THEOREM 10.11 . If

	

<coz , then col+I - [[co2.I coi+ I ]] so

PROOF . Let =(F, M, S) be any ( o , (o '14 +')-system which has the finite
property and is such that tp Fµ < coll+i (µ E M) . If x E S we write M(x) _ {u E M :
x E FJ .

Let n < co and suppose that we have already defined N,,, µ~), T, for g < n so that
N,E [M]<x o

µ~EM-U(o-

	

NQ ,

TP (-- S- U(6< o)Fµa ,
T, is a cofinal subset of S of type coe+ i

M(x)=No

	

(xET,)) .
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S-v U(o<n)F„"

	

' (v -- :~ w,)P,(tp),

where tpPv =u)', (v<w,) . For each v<co, there is, by (10. 40), a finite set NM „cM
and a set Q,, c P,. such that tp Q,, =co'i and

M (a) = Nn "

	

(x E Q,.) .

Hence there is some finite set N„(77 M such that N,,,,=N„ for `, values of v . Put
T„= U(N„"=N,)Q,. . Then tp T„=wv'+' and T„ is cofinal with S . Now choose
µ„EM- U(o-n)N„U Jp o , . . ., fij . The formulae (10 .42)-(f0. 47) also hold if o=n
and we can assume, by induction, that these hold for all o <w.

If o- < ), then F nFµ = 0 by (10 . 45) . Also, if a o, then µQ ú N ;, by (l0 . 43)
and (10.47) again implies that T„ 6 Fµa =0 . Hence, by (10. 44) the set T= U (o -(o)T
is (f, o )-free. Moreover, (10 .46) implies that tp T3co`i+' . This proves Theorem
10. 11 .

The next theorem shows that the result of Theorem 10 . 11 is best possible
in the case cf(1)=co .

THEOREM 10 . 12 . If ~ < wz and cf (1) = w, then

wl +' -,

	

> w1+1 + 1 11 n 0 -

PROOF . Let S= U (v < c ),) S v (tp), where tp Sv= (o i . By theorem 10. 10 there
is, for each v < a (N O , co)-system f v = (F ( v) , M, Sv) which has the finite property
and is such that tp F,,=óµ < wi (µ E M) and there is no (f,,, tt o)-free subset of
Sv of type w, + 1 . Consider the set system f_ (F, M, S) where

F1,= U(v <c),)F'' )

	

(it EM).

Clearly f has the finite property and tpFµ =6 µw 1 <wi . Also, if C is any subset
of S of type (o + I + 1, then there is some v < w, , so that tp C n Sv -wi +I . Therefore,
C is not (f v , R,)-free and this implies that C is not (f, tt o)-free .

In contrast with the last result, it is possible to strengthen Theorem 10 . 11
in the case cf (~) co .

THEOREM 10. 13 . If' y < w, , w < ~ < o),, cf (~) w, of O,- ) w, then

wi 'ILwi 04 711

PROOF . The hypothesis implies that

(01= Z(v<w,)wl +I

where Let f =(F, M, S) be any ( o , w i)-system such
that tp Fµ < o)' (µ E M) and f has the finite property. We want to prove that S
contains a (f, o)-free subset of type coi+ ly We can assume y ::-O .

We may write S= U(v<(o,)S, (tp) where tp Sv =coi"+i There is some 6 w
such that

(10.48)

	

tpFµ (15,,<wi"+ E

	

(d`=v< w, ; µEM).
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We can assume that if y' < y , S' is a subset of S of type co, and f' is an infinite sub-
system of f, then S' contains a (f, to o)-free subset of type wi+ly which is not co-
final with S.

Case 1 . y = y'+ 1 . There are, by assumption, c) E [S, w,), Mo E [M]'o and Tc S
such that tp T=w, + 1 7, Tc U (v < Q)S, and T U FF, = 0 (p E MO ) . By (10. 48) and
Theorem 10 . 11 it follows that there are T'(-- S. and M' C [Mo]H0 such that tp T' _
=wt+', and T' n F, -0 (µEM') . Then the set TUT' is (f, o)-free, is not cofinal
with S and has type o)"1 + 1 7 .

Case 2. y = y o + . . . + yw , where yo=-y,-_ .y,-<y. Our assumption implies
that there are TQ , MQ, µ Q for a<w such that tp T,=wi+l y o TQ precedes T, in the
ordering of S if 6 <-r, MQ E [M1 11 0, Mo _-) M 1 --) . . ., µQ E MQ - fµ0,} and

TQ UF,=0 if pEM,U{µo, . . . M.
Then the set T = U (a < w)TQ has order type (o +' y and is disjoint from the sets
F,, if µ E {µ o , . . ., P.) and is not cofinal with S . This completes the proof of Theorem
10. 13 .

It follows immediately from Theorem 10 . 13 that
(10.49)

	

wi >[[wi wi +t Yl1~ o ~f w<µ+1 <~ <w z i y<w l .

We will prove (Theorem 10 . 14) that wi +' y cannot be replaced by co-,+ a in (10 . 49) .
We need first a lemma .

LEMMA 10 . 3. Let tp S=wM=[0, w) and let Mo , . . ., M be countably
many infinite subsets of M. Then there is a set-system f =(F, M, S) such that
tp Fµ < w (µ < w), f has the finite property and

tp (S - U (µ E M) Fu) < o'

	

(i< (0) .

PROOF . Let i, j < w . Suppose that m i ; . < w has been defined for all pairs (i', f )
which alphabetically precede (i, j) and such that i'+j'~i+j . Then we choose
na ij E Mi so that mi; is larger than all the m i ., so far defined. Then Mti =
_ {mid : j < (o}, c Mi and the sets Mti are mutually disjoint .

Since (o', . . ., a ')1 , it follows that there are disjoint sets C,,(-- S
(n < w) such that S= U (n < w)Cn and tp Cn < wI . Ifµ = mi; for some i, j < w with
J--I, then we define
(10.50)

	

FF,= U (mi , ;_, =n `tn i;)Cn .

If the integer µ ~,`m i; for any integers i, j (with j --1), then we put F,,=0 .
The system f=(F, M, S) so defined has the properties described in the lemma .

Since tp Cn < w;, it follows from (10. 50) that tp Fµ < w, for all µ E M . Also, since
the sets Cn are disjoint and the inequality

rni,;-i ~n`lni,i

for fixed n is satisfied for only a finite number of pairs it follows that f has
the finite property. Finally, for i < w we have

U(ilE M i) FµD U(i c w)Fm . . = U(miO-n<w)Cn
so that tp(S-U(µCMi)F,,)<wi`°<wi •
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( ) THEOREM 10. 14 . If a<co,, then (y _
I_ [[wi, mi+2]] so .

PROOF . There is no loss of generality if we assume that a = ma and that m i- 1 < (3<
-<m,. We are going to assume that if 7--# then the following is true :

„ : If M=[0, m) and tp S=mi, then there is a set-system f=(F, M, S) such
that has the finite property, tp FF, -<0,' (it -<o)) and such that there is no (f, o)free
set of type 0,0 +a

The statement .)O y clearly implies that

(10. 51)

	

m _~' [[(oí', mi + ]b.-

We want to deduce that Yu is true .
Case I . cf ((3)=m . Let S= U (v <(o) S, (tp), where

tp S„=Co"", +i <ma=tp S.

By our assumption, there are set systems fv =(F ( ° ) , M, Sj for v<m such that
d v has the finite property, tp Fl,'-: mi (it < m) and there is no (fv , o)-free subset
of type m;'+ 2 . Now put Fu= U (v < m)Fl'v ) (y < m) . The system f _ (F, M, S) clearly
has the finite property and tp Fµ < m; (p < m) . Also, if Cc-- S has order type mi +2 ,
then there is v < m such that tp C U S v =- m`i +2 . If follows that C is not (f v , o)-free
and hence not (f, o)-free . This proves that , holds in this case .

Case 2. cf (oh,) =m, . Then we may write S= U (v < m,)Sv (tp) where tp S v=
_ wll' < m; = tp S. Let Mo , M, , . . .,

	

be all infinite subsets of M.
By the assumption 9P,, (y < J1) it follows that there are sets F,,,, c Sv (v < m,

Et-<m) such that each point of S v belongs to only a finite number of the sets F', F,,
tp F;, F,<m;, and such that

(10.52)

	

tp(S - U(µEM')F;.) <m + 2 (v<m, ; M'E[M]'O).

Also, by Lemma 10. 3, there are sets F~,F, (- S v (v < m, ; µ < m) such that points
of Sv belong to only a finite number of the sets F , ,, (µ < m), tp F,7 1, -- Coll, (Y -< 0))
and so that

(10.53)

	

tp (Sv -U(itEM)F,',,,)<co

	

Qo<v<m,).

Now Put Fo =0 and Fµ+ , = U (v <m)F, F, F,F, (µ<m).
The set system f =(F, M, S) so defined has the finite property and tp Fµ< (0

(It < m) . Also, if M' E [M]"°, then M' = M, for some o < m, and therefore, by (10 . 52)
and (10 . 53),

tp (S- U (11E M')FF,)=So+ó, + . . . +b,,,=6,

where S,, m, +2 if v n and 8,, < m1 if

	

v < m, . Hence d < m`, +z and so there
is no (f, ,,,))-free subset of S of type m`,'+ 2 . This proves that 9. holds in case 2 .

By induction ~)', holds for all 13 -:w, and hence (10. 51) holds with y=f3 . This
completes the proof of Theorem 10. 14 .

The next theorem gives a strengthening of Theorem 10 . 9 in the case a=m,
and cf n / o) .
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THEOREM 10. 15 . If y<Cool +i, w< <wz , cfW"'w then

c0i ~[wi Y] 0 ,

PROOF. Let f=(F, M, S) be any (No , w,)-system. Suppose that there is no
complete subgraph of W(f) of type w', . Then tp Fu < 0) ) (,u E M) . We will deduce
that S contains a (f, o)-free subset of type y .

If tp (S-Q(f))=coi, then Theorems 10. 11 and 10. 13 imply that S contains
a -(f, o)-free subset of type at least w,+ i Therefore, we may assume that

Let n < w . Suppose that there is a set S' C Q (f) such that tp S' = wi and S'
contains no (f, Is~ o)-free subset of type w nI . Then each point of S' is joined by edges
of the graph §(,f) to all the points of S' except for a set of type less than w, . We
may write S'= U (v < w,)S,, (tp), where tp S„=wi. Let f be a (1, I)-mapping of
[0, wi) onto [0, (o,) . Let 0 < w, , and suppose that we have already defined x(P E Sf(0
for cp<0 . By (10.40) it follows that there is some xo ESf(o) so that {x(,,xJ is an
edge of W(f) for all cp < 0 . The set X {x,: 0 < w, } defined by induction in this
way is a complete subgraph of S(f) of type w,. This contradiction proves that
any subset of Q(f) of type w, contains a (f, o)-free subset of type wi .

Using a simple inductive argument it follows that if S'(-- Q (J) and tp S'= w~,,
then there are µ„, N„, T„ for n < w such that N„ E [M]IO, NoD N, . . ., u„ E N„ -
-{µo , . . .' űij, tp T„=wi, T„c S'- U(o<n)F,, and

T„nF,,=0

	

(pENJ.

The set T= U (n < w)T„ is (,f, o)-free and has order type at least w, . Therefore
any subset of Q(f) of type wi contains a (f, t~ o)-free set of type w, .

There is S < (o, such that 7--w -j6. Suppose that any subset of Q (f) of type
wl contains a (f, o)-free subset of type w,E for all g < S . Our proof will be complete
if we deduce that any subset S*cQ(f) of type wi also contains a (f, Jto)-free
subset of type 0,96 .

Case 1. 8 =r + 1 . By the induction hypothesis there are A c S* and M' E [M]`~o
such that tp A = w,a and A U F„ =0 (,uE M') . The set A is not cofinal with S* and
so there is a set S** c S* such that A precedes S** in the ordering of S and tp S** _
= w' . There are B c S** and M" E [M']"° so that tp B = w, and B (1Fµ = 0 (µ E M") .
Therefore, the set A U B is (f, Zt o)-free and has type w,8 .

Case 2. b = bo + . . . + öw , where 8, < 6 (v < w) . Using a similar argument we
find successively K,,, M,,, p,, for n < w such that M„ E [M]l 0 , Mo D M I 7) . . ., tp K„ _
=w,6„, K„U Ft,-0 if µEM„U{y o , . . ., ű„}, EI„EM„-{p o , . . . . ű„} and K„ precedes
K„+I in the ordering of S. The set K= U(n<w)K„ has order type w,8 and is
(f, o)-free . This completes the proof of Theorem 10 . 15 .

There still remain a number of unsolved questions in connection with the
symbol (10. 38) . For example, we do not know if the last theorem can be improved
to strengthen Theorems 10 . 11 and 10 .13 to similar relations of the form (10 . 38) .
Thus we do not know if the relation

(?) wi ~[wi> wi+I]2o

	

(w<~< (0z cf (~) w)

is true . In fact we cannot even establish the following weaker result
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PROBLEM 6 . (?)

	

[CU t, OJi+1]1o

	

(0) '< ~ «2 ) .

We have proved (Theorem 10 . 14) that

(0 i_} , [wi wi +2 ]2 a

	

0' «z)

but there is still a gap between this negative result and Problem 6 . For example,
we formulate

PROBLEM 7. (?) &,+1 - [ o)i+v , 0 + 106]2"

	

(v=1 or 2) .

§ 11. The relations (2 .9) and (2 .10) . In this section and the next three we study
the relations

(11 . 1)

	

(a, m, n, c)`k--, s

and

(11 .2)

	

(a, m, n, c) `k -;s

defined in § 2 . Our discussion is not complete and we shall mention a number
of unsolved problems of this kind . In this section we establish a few general results .
Finite and denumerable problems are discussed in § 12 and § 13, and in § 14
the symbols (11 . l) and (11 . 2) are discussed for arbitrary cardinals .

Theorems 11 . 1 and 11 . 2 remain valid if -, is replaced throughout by ,~ .

THEOREM 11 . 1 . Let m-in, ; n--n, ; c--c, ; s-s, ; k k, . Then (a, m, n, c)` k _S
implies (a, m,, n, , c i)` ki -, s, .

This follows immediately from the definition of (11 . 1) .

THEOREM 11 . 2 . (i) If m = o and (a, m, in, c)<' -s, then (a, m', In" c)`k _S .
(ü) If a = R o and (a, m, n, a)`k _ s, then (a', m, n, á) ` --s.

PROOF . (i) Let f=(F, M, S) be any (m', a)-system of subsets of S such that
there is no (f , nn)-free subset of S of cardinal c . Let N= U (µ E M)N,, where the
sets Nt, are mutually disjoint, 0 < ; N, 1[ <m (µ E M) and IN; =m. Consider the (m, a)-
system f * _ ( F*, N, S), where Fy = Fµ if v E Nt, (p E M) .

If X(-- S is m)-free, then there is N' C [N]m such that Fv n X=0 (v E N') .
Put M' _ {µEM: N'nNF, 0} . Then M'!= m' and Fµ n X = 0 (µEM'), i . e . X
is also (f, m')-free . This shows that there is no (f*, m)-free subset of S of cardinal c .
Therefore, by the hypothesis (a, m, in, c)" -s, it follows that S= U0)A a,,
where l0Í<s ; A,!1 <a and the sets A z (0< ), --O are (f*, <k)-complete . This
proves the result since any (,f*, -_k)-complete set is also (f, < k)-complete .

(ü) Let f =(F, M, S) be any (m, a')-system such that S contains no (f, n)-free
subset of cardinal á . There are mutually disjoint sets Tz ,ES) such that T=
= U (~ E S)T, has cardinal a, I TA I < a (~ E S) and such that

(l1.3)

	

ÍU(aES')TA l=a

	

WE[S]") .

Consider the (m, a)-system f* =(F*, M, T), where

FN* = U (~ E F,)Tz

	

(µ E M).
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[b,

	

[d),

. 1

lb1

	

e e
h

	

' . I

(x, i',) E X

	

(x E C) .

14

	

A,ta d(atbri;uvir-~ A~ndemi~r~ S,i, , wi--, ILur~<ric<rc r, t96G

20 9

I f X c-- T is (j1*, n)-free, then there is NE [M]" such that X n FF = 0 (u E N) . This
implies that the set Y= f). ES : T,nX,,0) is (f, n)-free, since Y(1 Fµ =O (µEN) .
Therefore, J Y~ < a' and jX', -<a . Hence T contains no (f*, n)-free subset of cardinal a .
By the hypothesis (a, rn, n, a)`k - s, it follows that T= U(q-0)A e , where 10~ <s ;
A o ' < a and the sets A, (0 < n 0) are (f*, --k)-complete. Put Bo = {). E S: T, (1
(1 A„ 0) (0 < o 0), B o = S - U (0 < _o - 0)B, . I f 7 E B a , then T, n A, = 0 (0 < o ::--~ 0) .
Therefore, U(;.EB0)T,.cA(, . Since A o <a, it follows from (11 .3) that B0 1--a' .
Let 0--L)-0 and let UE [B„] `k . Then there is a set V E [Ao,] `k such that V (1 T,, -71 0
for all ti E U. Since A e, is (,X*, -<k)-complete, it follows that there is some µ E M
such that Vc FF = U (;,E F,)T,, . Hence U(--F,, . Therefore, B„ is (f, <k)-complete
i170-:42-0. The result now follows since S=U(0-0)8,, .

The next theorem establishes certain connections between (H . 1), (11 .2) and
the polarized partition relation (2 . 14). We write

if the following is true . Let A, B be disjoint sets, ~Aj=a, ~Bj=b ; [A, B] I,1 =
Kt, FI K, = 0

	

Then there are 7E< ),, C E [A]`, DE[B]' such
that [C . D]I' ~1 K,==0 . 1n the particular case when ;.=2 it will be noticed that
(It . 4) is equivalent to the polarized partition relation

The first part of Theorem 11 . 3 is expressed in terms of (11 . 4), but we only apply

e girl talent .
I,I

PROOF . (i) Let =co(s). Suppose that [a
=1=-> c

	

Let A, M be disjoint sets
m

	

n n
such that jA ; =a, !M ; =nn. Then there is a function y : A X M ---[0, 7~) such Tat

(11 .5)

	

{z(,lr) :xEC,li'N)=[0,n)

	

(CE[A]° ;NE[M]") .

Put S= U(-EA)S,, where S.-«Y, v) : v=_ ) . Then ~S~=a .s=a . Consider
the system of sets f=(F, M, S), where

F„=U(xEA){'Y,X(u,1r),)

	

(p EM) .

Let X - [S]`, NE [M]" . It follows from the hypothesis c' >s that there are
P, < ;- and C` [A]` such that

the result when %=2 .

THf;Oaevr 11.3. (i) Let a=°c

	

o ; c'>s. 11'(a, ni, n, c)' _s, then
ni

[a] c

n

1,1

~„ r r

are(II) If a c __ Via , then the relations (a, m, n, c)~ y 2 and
t am

~ c c
rr n

I,I
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By (11 . 5) there are a I E C and u, E N such tha'- x(ai , µ,) = r, . Therefore, Xn Fµá 0 .
This proves that S does not contain any (,,r, n)-free subset of power c . Let TE [S]`° .
Then Sa c S , ., 7 for some a E A . Since Sx is a complete subgraph of the complementary
graph of ~ z ( f), it follows that S-T is not the union of fewer than s complete
subgraphs of z (f) . Therefore, (a, in, n, c)'-!--s . This proves (i) .

1,1

(ü) if a-c

	

~ and (a, in, n, c)' --2, then by (i) a
J

	

c
J

	

As we have
na

	

n
2

1,1

already remarked, this is the same as ~aj_~c c
m

	

n si
Suppose now that a c- o and that (a, rn, n, c) 2 -~- 2 . Then there is a (na, a)-

system f=(F, M, S) such that S has no (f, n)-free subset of power c and such
that S-A ,i, =a whenever A I is a complete subgraph of z (f) .

It follows by transfinite induction that there are disjoint sets {x,, y>a ) # c S
(a.<m(a)) which are edges of ~* the complementary graph of

	

Let W=
[0, o)(a)) and put W X M = Ko U K,, where (a, p) E Ko if and only if a E W, µ E M

and x, ~ FI, .
Let UE [W]`, NC_ [M]" . We want to show that UX NT K(, (o=0 or 1). Since

the sets fxa : aE U) and {)., a : aE U} have cardinal e, they are not (f, n)-free . Hence,
there are a, , a z E U and µ, , µ z E N such that xa , E Fµ , and y~2 E F„ z . Therefore,
(a, , µ,)E K I . Also, since {x,,, jr,}, is an edge of *, it follows that x., C, FF,,, i . e .

1,1

(az , µ z ) E Ko . This proves that a
~n

	

n
c

n
c

	

and completes the proof of Theorem

11 . 3 .
Since Theorem 11 . 3 is the first occasion that we have mentioned the polarized

partition relations it is convenient to collect here the known results which we employ
in § 14. It is proved in [2] that

Q
_ (a a~' , I
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~a
alja

a

(a

	

(a a
a*

~
a a J

f
. ~

Also, if Z(a)={a, a'

	

, (a')*}, then

J
l

.i

for any a=' ;~ 0 .

If alaCi only lf Z(a) q 2(i7) _ 0 .

§ 12 . A finite problem . If a' t~ o and m, n, k., s are finite, then the relation
(a, in, n, (-)k ->s does not essentially depend upon a and c. In fact, as we show in
Theorem 12 . l, the last relation is equivalent to (2 . 11) .

THEOREM 12 . 1 . Let a ~ t~ o , a = c -- i ; k, nt, n, s < t~ o .

	

Then the relations
(a, m, n, c)'-s and (in, n)' --s are equivalent .
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PROOF. Suppose (a, m, n, c) k -+-s . Then there is a (m, a)-system =(F', M, S)
such that S contains no (,f, n)-free subset of cardinal c and such that S is not the
union of a set of cardinal =_a and s-1 (f, k)-complete sets . Put

S'=U (S^'U (It(N)F,')

where the outer union extends over all sets NC [M]" . Since the sets S- U(11 C N)F F,
are (f, n)-free, it follows that S' ; <a. Therefore, S S' is not tile union of s-!
(j, k)-complete sets . Since S-S' is covered by the union of any

it
of the m sets

FF, (µ( M), it follows from the definition of (2 . 11) that (m, n) k -+-s .
Now suppose that (m, it)' -s . Then there is a set S, and a system of m sets

j", =(F M, S,) such that S, is covered by the union of any n of the m sets F„
(11CM) and such that S, is not the union of s-1 complete subgraphs of
Therefore, the complementary k-graph `~ of P k (f,) is not (s- I)-chromatic .
It follows from a result in [1] that there is a finite set Sz c S, such that «í is not
even (s- I )-chromatic when restricted to S z . Therefore, there is no loss of generality
if we assume that S, is finite . Let A =a and let T=A X S, . Then T; =a . S, I =a
Consider the (m, a)-system

	

M, T), where

FF , = A X F,

	

(/I ,- M) .

Then T is covered by any n of the m sets F,, and, since c i, T contains no (J', n)-free
subset of power c . Let T= U (%<s)T;,, where ',To ; -a . Then there is some a(A
such that

ti.) XS t c U(0-á:-

If T;, is a complete subgraph of Sk(f ' ) then D;,, the projection of T;, on S, , is a
complete subgraph of 1,(J,). Since S, = D, U . . . U 1)„ it follows that not all
of the sets T I , . . ., t, are complete subgraphs of V, (f) . Therefore, (a, m, n,
This con;pletes the proof of Theorem 12 . l .

It is clear from the definition that (m, n) k -=s if n -s . In the more interesting
case 11 - -s we have the following result .

THEOREM 12 . 2. Let

	

It, k, s--,: o , n s . Then (m, n)k -_s holds if m
k(n-s+ 1)+s- 1 .

PROOF . We establish first the special case

(12 . 1)

	

(kn -k +- 1, n)k --2 .

Let; F„ c S (II -kn-k+ 1) and suppose that S is covered by the union of any n
of these sets fF , . Then, if zd S, {x) is disjoint from at most n- I of the FF , . Hence ..
if K ([S] ' k then there is some it --k(n- I )~- I such that Xc FF, . This shows that
the /.-graph (S, F,) is complete, where E --

	

Hence (12 . 1) .
Let M-= [0, n1), where In --k(n-s-fi- 1)+s-- 1, and let f'= (F, .h9, S') be a

system of sets such that S' is covered by the union of any n of the sets F„ (It ~- m) .
Let T=S'-F,IJ . . '_; F,- .- 3 . Then T is covered by the union of any n-sá-2 of
the sets F„ (s-2-_II<m) . Therefore T is a complete subgraph of t~ k( y'

) since

(m-s ;-2, n-s-2)r'--2

211

14'
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by (12 . 1) . Hence, S=TUFO U . . .UFs_ 3 is the union of s-1 complete subgraphs
of

	

This proves that (m, n)'--s .
We conjecture that Theorem 12 . 2 gives the best possible result, i . e .

PROBLEM 8 .

	

(?) (in, n)'-+-s if In =k(it-s+1)+s-2 and n~ - s .

For k= 1 this conjecture is clearly true . In Theorems 12. 3 and 12. 4 we confirm the
conjecture in some other special cases .

There is a certain connection between Problem 8, in the case k=2, and a
conjecture of KNESER . Let S=[ f l, 2, . . ., 2n +p)]" and let S=(S, E), where

E= f1H I , 17 2) : 17 1 , 17,E S ; 17, X117 2 =0) .

KNESER [6] conjectured that the graph ~e is not (p+1)-chromatic . This means that
S cannot be expressed as the union of p + I complete subgraphs of *, the comple-
mentary graph of (Pl. Put M= {t, 2, . . ., 2n +p) and

F,= fHES : iEH)

	

(iEM) .

Then the graph ,f) associated with the set-system f=(F, M, S) is the same
as ~6'* . Also the union of any n -p + I of the sets F i covers S . We know by Theorem
12 . 2 that

(2n -p, n- p+l)2 -gyp }-3

and this implies that KNESER'S graph

	

is (p+2)-chromatic . KNESER's conjecture

PROO! . Let S=[0, k) and let f be the system of kn-k subsets of S given by
F, (i < kit -- k), where

Fi =S-fj) if j~k and ,/(n-1)'=~ <(.l+l)(tt-1) .

Each element of S is disjoint from exactly n- t of the sets Fi and so S is covered
by the union of any n of these sets . Since !S, =k and Sc F, for any i<kn-k, Sis
not a complete subgraph of T !,( ) . This proves (12 . 2.) .

Let it? =2n - i ; S'- M= [0, m) . Consider the system f' = (F', M, S'), where

F!,-_- f ;. : a <m ; i!-1.n+i (mod n?) for all i -- n)

	

(11 < 111) .

Each element DES' is a member of exactly n-1 of the 2n-1 sets F, and so the
union of any n + 1 of these sets covers S'. If % -- - ,, 17 -1 and p < m, then I),, ;.+ 1) c~ F,, .
Otherwise i! would be incongruent (modulo m) to the numbers ).n+i and (; + 1)n +i
for all i < n, which is impossible . Similarly, f0, m -1) is not an edge of the graph
5Hence, 0, 1, . . ., m-1,0 is a cycle in * the complementary graph of

Since in is odd this implies that K* is not 2-chromatic . Therefore, S' is not
the union of two complete subgraphs of

	

This proves (12 . 3) .

let,' dlmb.mwi~ ;~ it icmi e Scianti'-"' I-Ren, ;nrrcae n, 7906

is equivalent to showing that p 3 cannot be replaced by p+2 in the last relation .

Tii[:oizFM 12. 3. Let 2-n, k, s< mo o . Then

(12. 2) (kit-k, n)'`- ;-2,

(12. 3) (2n-1, n+1)''-+>3,

(12.4) (s+2, s+1)2 -4-s .
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Let M,={l, 2, . . ., s+2), T,=[MS] 2 and let ft''=(Ftst, MS , Ts ) be the system
of sets given by

Fr',' ) ={{i., p) : .l EMS fp))

	

(N EMS) .

Each element of T, belongs to exactly 2 of the s+2 sets Fµ' ) and so TS is covered
by the union of any s+ 1 of these sets . Therefore, in order to prove (12 . 4) it is enough
to prove

(12 . 5)

	

T, is not the union of s-1 complete subgr•aphs of 'e (f ( s)) .

We will prove (12 . 5) by induction on s . Clearly (12 . 5) holds if s--2 since
the elements {1, 2) and {3, 4) of T, are not joined by an edge of ~J(,ft 2 r) . Now
assume that s=2 and that T,,--, is not the union of s-2 complete subgraps of

Let T,=A, J . . . JA S_, and suppose that A, is a complete su'graph of
for 1-_i<-s. Since 'T,'==z(s 1)(s+2)=-3(s-I), at least one of the sets A contains
4 or more elements. We can assume that {X,, _t:,, X 3 , XJ 1 cA,_, . Since ',X;j==2
and X, (1 X r ,- 0 (1 a si'7ple argument shows that (l (l i-=4)X O .
In view of the symmetry of the graph on T., we can assume that s+2 EX, (1

i . e . X,={).,, s-}-2) (1

	

i-4) where {i., , i.,, i_ 3 , i.,), c [1, s-f-2) . Since

	

is a
conplete subgraph of ~'/'(J"), it follows that T,_, EIAs _, =0. Hence T,_, _

U(1 i<s-1)T, , JA ; . The grap_II ~(,y °) restricted to T,_, is identical
with <<r( r' - ' ) and so T,_, J A, is a complete subgraph of •6•( ,jc('-)r) . This contra-
dictsthe induction hypothesis . Therefore, (i2. 5) holds for s- :2 and this implies (12 .4) .

By Theorem 12. 2 we have that Gin -4, r.)'-->3 for any integer n. We can snow
thal this result ;s best p c rble in the í:ósí`5 r1 -=3, 4, 5 but 1ve give dc.tarls cidy for
the case n - -

Tlir=oREM 12. 4 . (10, 5) 3 -+-3 .

Erzoot- . Lei: S=[{0, 1, . . ., 9)]'r . Ccrsider the system E' of 10 subsets of S given by

F, - IX-- S : i -1

	

jXI

	

(i

	

10).

Since eac!i el ;;rnent X E S is a member of exactly 6 or the sets f-,, it follw,vs tl itt
S is covered by any 5 of these scts . We will assume that S- U' j V and that U, V
are completc stibgraphs of 1(; j f) and derive a contradiction .

`aVe Iirs( shoev that if X, , X z F U tl erg Xr '1/2 0. if this is not the case i:hen
U contain;; 2_ elements of S which are disjoint . In view of the symmetry, we rnay .
suppose that {0, 1, 2, 3) and f4, 5, 6, 7 } E t . I f ;i, .j) c [C, 8), then the three elements
{O, 1, 2, 3), {4, 5, 6, 7), {i, .j . 8, 9) of S do not form an edge of i 3 ( ) . Therefore,
{i, .j, 8, 9) E V (0=_ i j- 7) . Similari , the elements {0, 1, 4, 9), {2, 3, 5, 9) and
{6, 7, 8, 9) do not form an edge of < 3 ( I) . Since V is a complete subgraph and
{6, 7, 8, 9) E V we can assume, by symmetry, that {O, 1, 4, 9)E U. Since {0, 1, 2, 3),
{0, 1, 4, 9) E U, it follows that {5, 6, 7, 8) E V. Also, {2, 3, 4, 8) E V since {O, 1, 4, 9)
and {4, 5, 6, 7j E U. Hence, {2, 3, 4, 8), {5, 6, 7, 8) and {0, 1_, 8, 9) E V. This contra-
dicts the assumption that V is complete .

Thus, we may suppose that if X, Y are disjoint elements of S, then one of these
is in U and the other is in V . Suppose {0, 1, 2, 3) E U. Then {4, 5, 6, 7) E V ;
{8, 9, 0, 1) E U ; { 2, 3, 4, 5) E V ; {6, 7, 8, 9) E U. This is a contradiction since {0, 1 . 2, 3) n
rl {6, 7, 8, 9) = 0 . Therefore, (10, 5)' -3 .

Ada AIa~Gcnuvira Acaden;i«r $,ir :~ihuu~a llur~mira~ r - , : y (i
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The simplest problems which are not answered by the above theorems are"

(') (g,6)' -.'4,
(?) (13,6) 3 -+-3 .

13. The denumerable case . From Theorem 6.1 we have, in particular, that
~o1+o - [ o, \011 0

The next theorem is a strengthening of this relation .

THEOREM 13. 1 . (,0, 1,~0, 0,

PROOF . Let =(F, M, S) be any (,o , ;~ o )-system which is such that S contains
no infinite (f, o )-free subset . We will assume that S cannot be expressed as the
union of a finite set and a finite number of (

	

o)-complete sets and deduce
a contradiction .

Put 111,=M . Let . -<w and suppose we have already defined M; E [M] `° and
elements x,. E S and y,, e M for v < )• . Let

T=S- U (, < ~.) F,,, U {.v,. ; .

If TcP( ";), where ti = (F, M;,, S), then T is (f, A,)-complete by (2 . 4) . There-
fore, S is the union of the finite set {x,,	vj and the (j, <"n ') )-complete sets
T, This contradicts our assumption . Therefore, we can suppose that
T Q - P(f j) Hence, there are A- ;.E T and M,,+ , E [M ;] 0 such that x,,h F„ for all
,/I '1l ;.+ Now choose p ;_ E M; , {tl o , . .,, Iii this way we define by induction
X-{x; : i.<w} c S and M'={µ ; : ).<w} -M so that X(1 F, =0 for all BEM' .
This contradicts the fact that S does not contain an infinite (f, ~; o )-free subset
and the theorem follows .

It will follow from Theorem 13. 5 that

( ;3 . t)

	

( o "" o

	

o, o)

	

n

	

(n< o)

so that Theorem i3 . 1 gives the best possible result . However, if instead of (< o) -
=raphs we consider only k-graphs where k is finite then we obtain the following
much stronger result .

TriLOrcFM 13.2 . If' 1-k<lro , then ( ;20, o, o, o)' -- 3 •

PROOF . Let f = (F, M, S) be any ( o , () )-system such that S does not contain
an infinite ,~; O )-free subset . Suppose that S is not the union of a finite set and
two complete subgraphs of ~,Vj ) . Then, if T is any finite subset of S, the /,-graph
r' complementary to

	

is not 2-chromatic on S- 1 .
Let i -< w and suppose the finite sets K o , . . ., K;, c S have already been defined .

Since (~ is not 2-chromatic on A = S •-- U (v < ;,)K,, it follows by the theorem of
ERDŐS and de BRUHN [1] already referred to, that Cel* is not 2-chromatic on some
finite subset & c,4 . Hence, there are disjoint finite sets K; C S O. < (o) such that
n* is not 2-chromatic on each K ; .

10 R. K. Guy has now settled these relations and, in collaboration with E . C. MILNER, has
confirmed the conjecture contained in Problem 8 in a number of other cases .

A,I, dfatlrneanc
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There are sets K;. c K, and M;, E [M]'o for < co such that M7) M o M, D . . . and

K;fnF -K'

	

(ti-(0 ; it EM;.) •

Since Ká. is a complete subgraph of ~~ k(f) for <r~ and since 1:9* is not 2-chromatic
on K;,, it follows that there is P, = fy„ , . . ., Y-U ) c K, - K which is a k-edge
of "4* . Therefore,

P;~-F,,~- O

	

(~«;µEM) .

For < w choose µ E f; - {µ o , . . ., P A ) and write F~, = F,,, . Consider the
partition

[W]2 =L, U . . . U Li ,

where W--- [0, w) and J), i,}< E Ln if and only if y vn E P, F. . Since o -( o)k by
RAMSEY'S theorem [8], it follows that there are o f fl, 2, . . ., k} and NE[W] S ° such
that [N] 2 c L,, .

Let ;, I, E N. If 1 < v, then yye E P„ - F,, and so y,,,, ú F;' . 1f - v, then µz E M,, (-- M,,
and therefore K, 1 FÁ = K, and yv„ F,. . Thus, if Y= If -v,, : v E N} and V'= fjl ; : E N),
then YU Fü =O for µEM'. Therefore, Y is an infinite ( , íV` o)-free subset of S .
This contradiction proves Theorem 13 .2 .

Trivially, of course, we have that (ty o , ;; o ~o

	

o) i ->2, but for k > 1 the last
theorem gives the best possible result . In fact, we have the following negative theorem .

THEOREM 13 . 3 . If in --ty O , then (m, in, in, m)'--4 .2 .

PROOF . Put x=w(m) . Let M= [0, a) and S=

	

o<2, ? <x} and consider
the system of sets f=(F, 11, S), where

F,,= f(0, ;,) : a.<Ei}U f(1, ;,) : ; msµ}

	

(y <)).

Let 1W E [M]" and let T= U (p E iW)FI , . If ti - x, then there is µ E M' so that
i<ta . Therefore, {(O,7) :á.<x}c T. Also, if yCM% then
Thus I S- Tj <m, i . e. S does not contain any (f, m)-free subset of power in .

If A c S and IA < m, then there are 1, µ < a such that J. < µ and (0, µ), (1, ).) E
E ,S .- A . Since f (0, It), (1, 1)} $ F,, for any v < a, it follows that S- A is not a complete
subgraph of

	

This proves the theorem .
The next two theorems are included here by way of contrast with Theorems

13, 1-3 .
THEOREM 13 .4. If n < o, then ( o, tio, o, n)` ` o -2 .

PROOF. Let _( M, S) be any ( o , o)-system of sets such that S does not
contain a (j, ?N, ,)-free subset of n elements . Suppose that S is not the union of
a finite set and a (

	

< Z;,)-complete set .
Put Mo = M. Let 7 < n and suppose that Nve have already defined x, ,I- S for

I , <% and an infinite set M,c M. As in the proof of Theorem 13 . 1 we can assume
that T=S fx o , . . ., ;.}U P(,X;,), where f;. =(F, M,, S), otherwise S is the union
of the finite set fx,„	} and the (f, < o )- complete set T. Hence, there is xz E T
and M),,-, E [M;] `° such that x, J Fu (µ E M;,,,) . After n steps we obtain a set
X==fx o ,	„}CS and an infinite set M,, CM such that XU F1, = 0 for all pG: M,, .
This contradiction proves the result .

Acna dfalGenerrli

	

rdrmiac Sci~ .ntinr ^~ liangasicne - i966



2 1 6 P . ERDŐS, A . HAJNAL AND E . C . MILNER

THEOREM 13 . 5. ]f I - n < o , then

(13.2)

	

( o, No, it, o)` a° -n +1,

(13. 3)

	

( o, o, n, t~,)`0-i-n .

REMARK . Theorem 11 . 1 and (13.3) imply (13. 1) .
V6 'e prove first a simple lemma .

LEMMA 13 . l . Let n` t < w and let K be a set x'ith t
I
elements. Then there

n
are t sets A J , . . ., A r (-- K such that K is covered by the union of any n+1 of' hese
sets but not by the union of any n of them .

PROOF . Let K={lc

	

kp) , where p-
t

	

[( 1, 2, . . ., t }] -(B,

	

B ). . .,

	

#

	

- J. Let

	

"-

	

, . . ., r

and let
A,=K-U (cCB, ; l J, =p)(k,)

	

( 1 `i'==t) .

Since each element of K is disjoint from exactly n of the sets Az , it follows
that K is contained in the union of any n + i of these sets . On the other hand, for any

n (I - o `p), U (T E BJA r = K - (h,_,',, so that the union of any n of the t sets A,
has a non-empty complement in K.

PROOF OF THEOREM 13 . 5 . Let f =(F, M, S) be any ( ; o , z ; o)-system such
that S does not contain a (J, n)-free subset of power , . Let N E [M]" . Then S

U (p E N)F,, is finite . Hence S is the union of a finite set and n sets which are
(f, < t, o)-complete. This prevcs (13 . 2) .

171

	

~

Let T= L' (n in < co)K where K,,,, = 1 - 1 ! and the sets K,,, (n - n1 -- c;)

are dISJOint . By the lemma, there are in sets A,",,, . . ., A,,,, .,,C=Kr„ such that K,,, is coVeICd
by the union of any n of these but not by the union of any n-- 1 . Put A,,,,, =0 if
n1-µ< (o . Let M- --- [0, e)) and consider the set-system '*=-(F*, M*, T), where

r,.

	

(J' «) .

Let NE [M]" . Then, by definition of the sets F,", it folloyvs that K,,, c U ( E id)F
provided n1 - i, for all N. Therefore, T- U (r E N)F, is a finite set and so T does
not contain any ( *, n)-free infinite subset' . Let Y be any finite subset 'of T and
suppose that T - Y=XI U . . . U X„ , , where each Xi is a (,/ 1-, < 1,~o)-Complete
set. There is an integer r such that Yc U(n!m<r)K,,, . Therefore, K, .-
_ i--i1)l! .1-Xi . Since Xi (1 i°=-77) 1S ~,,)-COmp1CtC, it iJIIOWS iiitt
there is some l , i E A11- such that K,. U X i C

	

K,. _= A,	Let N' _- ( i , i : I = i 11) . Then
K,.c U(i,EN')A,.,, . This contradicts the definition of the sets A, .,, since 'N', n . I .
This proves (13 .4) .
i

§ 14. The general case. In this section we study relations of the forms (2 . 9)
and (2 . 10) for arbitrary Cardinals. Most of our results refer only to 2--graphs and
the methods we employ do not seem to extend to k-graphs for k >2 . For example,
it follows from Theorem 14 . 1 that

but we cannot answer

A ln Almbenurt<<c ,L1drnrinr Snr:rt .'rvaun ]lun, ;rr,ic«. n, jO6
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PROBLEM 9 . (?) (NJ, t` l, i , R1) 3 ~ 1

THEOREM 14. L Let a be any cardinal, in

	

~ . If m =n+ or if in = o , then

(14. 1)

	

(a, m, m, m)2_ In .

PROOF . Let =(F, M, S) be any (m, a)-system such that S does not contain
any (f, m)-free subset of power in .

If a < m, then (14. 1) is obvious since each element of S is a complete subgraph
of S(f) . Therefore, we can assume that a-m. Also, an examination of the proof
of Theorem 13. 2 reveals that (14. 1) holds in the case in = o . For the argument
used there was essentially that if m = o and S is not the union of a finite set and
two complete subgraphs of W(f), then S contains an infinite ( f, na)-free set . Since
this is not the case it follows that S is in fact the union of a finite set and two complete
subgraphs of ~Pf(f) . Since each element of S is a complete subgraph of ~Pf(f), it
follows that (14 . 1) holds for m= , and any a. Therefore, we can assume thatt
a=-m> .

For the rest of the proof we will assume that S is not the union of fewer than
na complete subgraphs of W(f) and deduce a contradiction .

I f x E S and M' c M, we write

M'(x)= fµ E . M' : xCFu} .

Case l . In = n+ . Let So = fx E S : V (x) J --in) and S, = S - S, . Since there
is no (f, m)-free set of power m, it follows that each point of S, is joined by edges
of ~( ) to all the points of S apart from a set of power less than m . Therefore,
each connected component of *, the complementary graph of restricted
to S, has power less than in . Let T„ (o < 0) be the connected components of the
graph ~4; * restricted to S, . Then S, is the union of these disjoint sets T ,) and
0<~TJ n (,,,)<0) . Also, [T,,, I'1]' , '-- U(uEM)[FJ' (Q«-0) . For f2<0, let
T„== f.r„ n. : ti<w(n)} (we do not assert that the x,, ; are distinct for different values
of ;,) . .Put X), = n < 0} for ), < w(n) . Then Xa is a complete subgraph of ( ) .
Therefore, S, = U (J < co(n))X ; is the union of fewer than m complete subgraphs
of ~fif' (%) .

Let cp < w(m) and suppose that we have already defined x,, E So and It,, F M
for

	

--- cp . If
T= So U(;,<cp)FI, a U

is empty, then So (and hence .S) is the union of fewer than m complete subgraphs
of ( ) . This contradiction proves that there is some x, E T. Also, since each
x, (). -(p) is contained in at most n of the sets FI, (.It EM), it follows that there is
FI 9 E M fF~o > . . ., ű~} such that t v,, . . ., x~ I 1F,0=0. It follows by transfinite
induction that there are sets X=- fxu, : cp < w(na) }# c So and M, = fu,: cp < w(Iii)1 # (--
c- M such that A 'A FI , =0 for µ E M, . This contradicts the fact that there is no
(f, in)-free subset of S of power m. This proves that (14 . 1) holds in the case m=a1+ .

Case 2.. in'=,< o . By the earlier remarks, we can assume that na

	

Therefore,
we may suppose that

m = mo 4- m, ~- . . . -I- ni,

where o < mo < in, < . . . < jáa,,, < m and mk = in, for k < w.

{c ,,7 ,l(atGrmrrNen llnn[nmiae Srire(ro~iun l~ungm :cne n, 19ó6
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Let k < w, S'c S, M'E [M]"' and let f' =(F, M', S) . We will show that if
S' does not contain a (f', m)-free subset of power mk , then S' is the union of fewer
than mk complete subgraphs of

Put Só = (x E S' : IM'(x)! < m} and Si = S' - So . If S' does not contain a
m)-free subset of power In k , then each point of Si is joined by edges of the

graph N (f') to all the points of S' except for a set of power less than III, . Since every
edge of P(,J') is also an edge of S (f) it follows that the connected components of S',
the complementary graph of Sn(f), when restricted to Si each have power less
than m k (we use here the fact that mw =n7k) . Using an argument similar to that
applied to the set S I in case 1, it follows that S, is the union of fewer than In k complete
subgraphs of

Suppose that Só' ; -_111k . For each x E Só, there is an integer n(x) such that ; M'(x) .
Therefore, since nip. ==n7 k >,t o , there is a set Ső c Só and an integer n such

that j Ső = and M(x) ; < m„ for all x E Ső . The set Ső intersects at most nI • r>>„
of the sets FF , ( It E1f1') and is, therefore, (f', m)-free . Hence, if S' does not contain
a (f', m)-free subset of power "n k , then ISól -:111k- It now follows that S' is the
union. of fewer than n~ k complete subgraphs of S(f), and this proves our earlier
assertion .

Put Mo = M. Let k < m and suppose we have defined already Mk E [M]"' and
sets S* c S and A4, ','c- A4 l or i -!, such that S ; = M,*,', =n1,, (r - k) and

(14.2)

	

S UFF,==O if It EM* and ő,r<k .

Put Sk=S- U(µEM ; i- k) F,, and let fk -- (F, Mk , S) . Clearly, Sk is not
the union of fewer than m k complete subgraphs of flf) otherwise, by the definition
of St., S is also the union of fewer than mk complete subgraphs which is contrary
to our initial assumption . Therefore, in the light of our remarks above, St, must
contain a (f k , m)-free subset of power m k . Hence there are S C_ Sk and Mk +I c A4k
such that ';Skl, =m k , jAJ,.+i =Fn and

Sk '_' ,,=0

	

(it EMk+A

Now let Mk be any subset of Mk+i of cardinal power In, . It is easy to see that (14 . 2)
remains true if we replace k by k -+- 1 . Therefore:, by induction,, there are sets Sk c S
and Mk (:::M for k<w such that ;Sk ;= ;Mkj== III, and (14. 2) holds for all k--a) .
I f S-1 = U (k < (o)Sk and M -' = ',-'(k -(o)A1,, it follows that S* U F, =0 for all 1.1 EM*- .
This contradicts the fact that S does not contain a (J, m)-free subset of power m .
This proves that (14 . l) holds also in the case nt'=,to and concludes the proof
of the theorem .

We do not know if (14 . i) holds also in the case In

	

Thus we formulate

PROBLEM 10 .

	

('~)

	

( 1co s1 0,, co

	

mi) 2 -' \ o ; .

In sonic cases the next theorem gives stronger results than Theorem 14 . 1 .

( ) THLOREM 14. 2. if m, n - ,~o , then the relation

(14 . 3) (n, m, Irr, n)'

holds if and only if {nn, í7i+, jn', (en')+} U {n, n+, n', (ti)+}==0 .

A-',1 :U«l,5un~rN~a :',radrniinr Sciriatiaruui lburv~ricar r

	

íy66



and

(14.4)

ON THE COMPLETE SUBGRAPHS OF GRAPHS DEFINED BY SYSTEMS OF SETS

	

219

PROOF . This is an immediate consequence of Theorem 11 . 3 (ii) and (H . 8) .
The next theorem shows that (14. 3) can be extended to more general graphs

if m, n satisfy more stringent conditions .

( ) THEOREM 14. 3 . (i) If'

	

then (n, m, m, it)""' -2. (ü) If m' > n *,
then (n, m, m, n)" - 2 .

PROOF . Let J'=(F, M, S) be a (m, n)-system such that S does not contain
a (,f, m)-free subset of power n .

(i) By this assumption, we have that

S U (It E M')Fµ 'á, -n whenever M' E [M]'" .

Since M contains only rn+ distinct subsets of power in and

	

it follows that
the cardinal of the set

T= U(S ,-• U(u E M')F,,)
M'

is less than n (the outer union extending over all subsets M' M of power m) .
Therefore, IS-Tj=n . Let X be any subset of S-T such that Xj m', . Suppose
X F, for all µ E M. Then there is Mi E [M]"' and an element x E X such that x J F~,
for all µEM; . This contradicts the hypothesis that X(7 S-T. Hence S-T is

< m')-complete and the result follows .
(ü)ifrn'>n ,then there is Ac Sand Mz E[h"]"' such that F,,=AforailµEM z .

Since the set S- A is (f, m)-free, it has power less than n. Now (ü) follows since
A is (41- , n)-complete .

From Theorem 14. 2 it follows that

, ,2 W ) 2 2 if 2 n < to

(.;, „ „ 1, i , 1,,„) -1-2 if i=0 or I .

Theorem 14. 5, which is a partial strengthening of Theorem 14 . 1, also shows that
(14. 4) is best possible in the case i=0, i . e .

(14. 5)

	

(RG„ O, o, ~2 w ) y3 .

III Theorem 14 . 5 we obiain an even stronger result that (14 .4) in the case i=1 .

( ) Ti-!EOREM 14. 4. If m'_- o ak, then (m, m, m, m)k ->3 .

REMARK . 1n particular we have

	

, `,,,, ;~,,,)' -3 and this implies (14 . 5)
by Theorem I1 . 2 (i) .

PROOF or THEOREM 14.4. The case in = o has already been dealt with in
Theorem 13 . 2 . We therefore assume that in > o . Then there are cardinals in;,
(1. _t0) such that in -m,+in,+ . . . ail d in, =mz>( o+nio+ . . .+ih,)+ (k<co) .

Let f=(F, ELI, S) be a (In, in)-system which contains no (f, m)-free subset
of power m. We will assume that S is not the union of a set of power less than in
and two complete subgraphs of ~, ()') and we will obtain a contradiction .

The first part of our argument is similar to that used in the proof of Theorem
13 . 2 . Our last assumption implies that '*, the k-graph complementary to §Jf),

A,l' d(ai/rmn - A-d-n;-

	

J1,-gmi'- r, '966



22 0 P . ERDŐS, A . HAJNAL AND E . C . MILNER

is not 2-chromatic on any set S' c S if S S'; < m. It follows that there are nr
disjoint finite sets K, (oCR), where IRi=m, such that ~§* is not 2-chromatic on K,, .
We can assume that the index set R is disjoint from M .

For ). < o,) there are R A c R and n;, < w such that !R ;, =m 2 ;, and I K,, ; =n;_ for
t)E R ;_ . It follows from (11 . 8) and the fact that , -na g =m2 i á111, that

(14.6)

	

na 27

	

1712 :,, • , m 27 1
na

	

m, . . ., tn

where t,, =2"'- is the number of distinct subsets of K„ if o E R ;, . It follows from (14 . 6)
thatt there are sets M ( ` ) c M and R,, c7 R; for), --o) such that M-1 MIO )J M"'	
1M ( ' ) =m, R;. __=1)72 ;, and such that

K„ U FF, = K;;

	

(o E R,. , f1 E M(') ;

Choose sets M;, (- M ( ~) such that W'=-l722 ;.+1 for ). < o) . Then
(14.7)

	

K„(1 Ft,==K`,

	

(oGRá ; It 7Al;. ; o- -- ;, --- a)) .

Put R'=U(;.---o)R ;. and M'=U(ti<w)M; .
Since K,, is a complete subgraph of k (J) for oCR', and since '.F' is not

2-chromatic on K„ it follows that there is a set

R„ {Y„ I . . . , Y,k) ' - K K,_,

	

(Q E R' )

which is a k-edge of *. This means that

(14 . 8) (!)ER ;I1EM) .

Plat T2 =R ;. and T2;+1

	

M ). for

	

u) and ptit T=

	

(D 1,7"
Now consider the partition

[T] 2 =Jo UJ

where o == [R'] ,- [M') 2 and {ti, pt , E J, if 1

	

r =1c, -o(-R' p C áyí' and
In view of (14 . 8), every element of ITJ I 2 is iii at least one of the sets J j (i =k) .

By Lemma 6. 1 there are disjoint sets Tt c 'T for %-co such that T;, ; ==1u ,, tend

1TÍ v T;1
J 1,1 c J"(a .(J)

	

f , F

	

_: PJ

	

Q),

rwhere n(x, ~J)=-k (for Y<~3 cu). Now put R;
r
= F, ;, and M" -- F, i-

	

for ~. o~ .
Then R°cR;,,M cM for ti- cu and IR;,'-m2i.,,Mz!,=15, . 111 if oER acid
liEM where 1., o --:co, then {2, h} r ~Jo , by definition of Jo . 111 fact, if {x, /i}
_ {2i. . 2u -1- 1 } , then (L), p} EJ, and

where r=n(o., fl) E,1 1, k

	

) .
By RAms y's Theoren-i [8j, there is w integer q (1 -= q - k) and an infiliite

set Nc [ú, o,) such that

(2rj-1

	

i.}< c N .

By the last paragraph, this implies that

(14.9)

	

Y_, Fu

	

(Q E R,. ; E1 E M ,

	

, % c N) .

Jrir:eNm ;un llu,,,rrri~cr r . ,c,ú0
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Let R* = U (~ E N)R~'and M* = U (A E N)MQ . Then R* j =1M* j =m. Suppose
o E R* and Ft E M* . Then o E R" and p E MQ for some ;, u E N. If < o-, then

(14.10)

	

ycq q FF ,

by (14 . 9). On the other hand, if then (14. 10) again holds since, in this case
y(, q E P e c K, - Kó and (14. 10) follows from (14 . 7) . Therefore, (14 . 10) holds for
arbitrary t) E R* and it E M* . This implies that the set Y= {y, q : o E R*) is (f, m)-free .
Since I Yi =In this is a contradiction and the theorem follows .

By using a very similar method to that used in the proofs of Theorems 13 . 2
and 14 . 4, we can prove that

(14. 11)

	

(m, m, III, 1n)'-3

	

(k < c))

if m is an inaccessible cardinal satisfying the Ramsey-type of partition relation

(14. 12)

	

71_(117 , m)2 •

It is well known' [5] that if m satisfies (14 . 12), then 7n is inaccessible and there
is a non-trivial 2-valued in-additive measure function defined on the subsets of
a set of power 7n . We cannot prove, however, that if there is no such non-trivial
measure for the cardinal n7 then (14. 11) is false.

For inaccessible cardinals we have also the following result .

(-)K-) THEOREM 14. 5 . If m is a regular limit number, then

(m, z7z +, 117 1 , In) z

REMARK . This gives, in particular, that

(~o' t~ > > ;Zi , ` 0)2

Therefore, by Theorem 11 . 2 (ü),

(14. 13)

	

"t l , "~ , , "~ w)z -~- o

and this is stronger than (l4 . 4) when i= l . We do not know if (14 . 13) is best possible .

PROBLEM 11 . (!)

	

( m

	

i , 7 > co) Z

	

i

PROOF OF THEOREM 14 . 5 . Let 7=cu(ln) and

	

Since in is a regular
limit number,

7n'=m=mo+ml+ . . .+/I,,

where 111,

	

171, -

	

1h, -Z In .

Let S= U (% < a)5 ;,., where S;. =m,_ (1. < a) . Then S ; =7n . Let {B o , B, , . . ., BP }
be the set of all those sets BcS such that I,Bj=m and jBnS;~;-1 for all f<7.
There are in+ = n7o • m, . 7h such sets by ( + ) . Let M= [7., /l) . By a method similar
to that used in the proof of Theorem 9 . 1 we will show that there are sets FF, c S
(p E M) such that ; FF, n Sa,i -1 ()< x) and _. 6B, 0 (if o < FI) .

" to the notation of [51, the property P z implies P3'F .

l1<11 M11Le1,'1d1rz deadenrz~c S1 i, 11111—11! FL~n„a~i,11 17, rgó6
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Let p C- M and let {Co , . . ., Cj, _ (Bo , . . ., fij . Since 1 C,': =m for o--:: a (and
each C is a B), there are ordinals ).(,o)-<7 such that i.(0) < i.(1) < . . . < (a) < a
and

C„ (1 S,. ( „ ) 0

	

(o < a) .

Put Fu = U (o < a)C, n S„„) . These sets F,, (la E M) have the properties described
in the last paragraph .

Consider the set system f=(F, M, S) . If S'E [S]"', then there is U< f3 such
that BQ c S' . This implies that S' '1 Fr 0 if is >6. Hence there is no ( , m)-free
subset of S of power an . Now suppose that S is the union of sets T, To , T,, . . ., To

where 0 < a and T < m . Then there are ti < a and y < 0 such that !S,, q T.= > 1 .
Otherwise, we would have the contradiction that S,,' ',T, + ,0' for all i. < a . Since
Fr, n S, = I for all It e M, it follows that T„ is not a complete subgraph of N(J') .
This proves that S is not the union of a set of power less than m and fewer than
m complete subgraphs of W( ) .

We use the next lemma to establish further negative relations of the form (2 . 9),
but the result seems to have an interest independently of the problems discussed
in this paper ."

( ) LEMMA 14. 1 . Let ',S =m+ >t2 o and let =[S]'- be the set of edges of
the complete graph on S. Then it is possible to colour the edges e E 6" with in + colours
in such a wav that whenever X, YcS, IXj=m, Y;=rn+, then there is some xF X
such that all the m+ colours occur among the edges [{x), Y]' •t which join x to the
elements of Y .

PROOF . Let a=w(m), f3=co(m+) and let S= {x,, . . ., a R } $ . We will colour
the edges by assigning to each e(r an ordinal number 0(e)< f3 .

Put M=[0, f3), F= Ms , D---[S]"'XF. If K=(B,f)ED, then B(- S, ,Bjz-m
and f is a function

f: S--M.

We write S(K)=B and fK =f Let Ko , K, , . . ., Kt, be a well-ordering of the elements
of D. We now describe the colouring of the elements of 4" in the following way .

Let h < f . Then the power of the set

J= {). : ; -- It , S(K)) c (x" . . ., x„))

it at most an . Therefore, there is some s _ a such that {K,, : i E J)= {L,,, L I	Ls }$ .

Since ',S(K)',=na for each KF_D, it follows that we can choose elements zQ (o- < s)
such that

E S(Lj {zo , . . =")

	

(6 s) .

We colour the edge {z", xa,) , E (1 with the ordinalfL _(z Q } for a s . The remaining edges
WhiCl1 have x' as a last eiei11erlt, l . e . {Z, C, ) , for z E IV,) , 	 • .̀,) {Z0, - -s).
may be coloured arbitrarily, e . g with the ordinal 0 . Since It is an arbitrary ordinal

this procedure defines a colouring of the elements of 6 . It remains to prove
that the colouring described has the properties stated in the Lemma .

"- Lemma 14 . 1 is a strengthening of Theorem 17A [2] .

A,/,r .llath,vmuic~~ A-d,,n

	

Scirier :nruw lCi ;r~

	

r,
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Let X, Yc S, !X j =m, I Y ; =7n . Suppose that for each element x E X there
is one colour o(:x)<(3 which does not occur among the edges [{x), Y]'°' . There
is some fE F such that f(x) _ .o (x) for x E X. Also, there is y < f3 such that K,, _ (X, f ) .
Since YI =m+, there is 6-:P such that b y, xs E Y and X C {x o , . . .,X,) . With
the colouring described above, there is some x' C X such that the edge {x', xó), is
coloured f(x)=o(x) . This contradicts the definition of o and the lemma follows .

We use Lemma 14 . 1 to prove the next two theorems .

(*) THEOREM 14. 6 . Let m- o , in >n . Then
(14 . 14)

	

(m+ m* 7n+ , m + )'~-- n7

and
(14 . 15)

	

(771+, n7+, m+, m)'-+>n .
PROOF . We wilt prove (14 . 14) and (14. 15) together . Where the details of the

two proofs differ we will refer to them respectively as cases (i) and (ü) .
Let JAI = I BI =m+, A UB=O. Put fl =FO(m+) . Suppose the edges of the complete

graph on A U B are coloured in the manner described in Lemma 14 . 1 . The m+
different colours being denoted by the ordinals less than /3 . If ), E A and µ E B, then
Z(~, µ) denotes the colour of the edge joining ), and p . For case (i) we define 7r=o)(m)
and for case (ü) we define >r=FO(n) .

Let S= U (% E A)5,,, where S~ _ {Q, v) : v < 7r) ( ;,C A) . Consider the (7n+, 7n+)
system f -_ (F, B, S), where

Fr ={()., v)ES:y(),µ)=v)

	

(It EB) .

Since there is no edge of the graph rj(f) in each of the sets S, ( .? EA), it follows
that S is not the union of a set of power less than m+ and fewer than 7r complete
subgraphs of «(f) .

Let B' be any subset of B of power m+ . Also, let S' be an arbitrary subset
of S such that ',S'I =m+ in case (i) and S'I=m in case (ü). In both cases rS'I >1nl •
This implies that the set A'= {ti E A : S' U Sti 0) has cardinal at least 7n . By the
property of the colouring on [A U Bf, it follows that there is ;,CA' such that
{Z II) : µ E B')=[0, /3) . There are o < 7E and h' E B' such that (a', o) E S' and

Therefore, S'UF} ,z0 . This proves that there is no (f,m+)-free
subset of S with power m+ in case (i) or with power m in case (ü) . This proves (14 . 14)
and (14 . 15) .

The condition that m >n for the relation (14. 15) to hold is not necessary in
the case of an inaccessible cardinal m . Thus we prove the following result .

( ) THEOREM 14. 7 . If 7n is a regular limit number, then
(in+, m+, 7n+, m)' +-m .

PROOF . Let a=QJ(m), /1==a)(m+) . There are cardinals m„<m (L)-:y) such that
111 0 < 1111 <n7 z

	

. . . ---- 7a7,<m .
Let A = ((L), e) : L) < x; a < /3) and let B be any set of cardinal m+ which is

disjoint from A . As in the proof of the last theorem, consider a colouring of the
elements of [A U B] 2 with 7n+ colours (the ordinals less than P) so that the condition
described in Lemma 14 . 1 holds . The colour of the edge joining E A and h E B is
denoted by , (n, µ) .

A,ita ilf~r[Icin~rNCa /lrndr,,-ie Scirn~iarunr Ikiir,„rnicrrr° -, '966,
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Let S= U (Q < a ; o--<#)S,,,, where S,,= {(Q, 6, i) :

	

Consider the
(m+, m+)-system f=(F, B, S), where

F„ = {(Q, 6, i) E S : x ((Q, 6), µ) = r }
for pEB.

The sets S_((Q, 6)EA) are complete subgraphs of the complementary graph
of ~P(y) . Therefore S is not the union of a set of power less than m+ and fewer
than m complete subgraphs of n(_X) . Let S' E [S]"' and B' E [B]" . Since m' =m,
it follows that there is A' E [A]"' such that S' U S, Tf 0 for (Q, 6) E A' . By the property
of y , there is some element (Q', 6') C A' such that {x((Q', a ), µ) : µ E B'} _ [0,
I t follows that there are i - = u) (m„-) and EI' E B' such that (Q', (T, i) E S' and

6'), µ')=r, i . e . S' U FF ,- - 0 . This proves that there is no (f, m+)-free subset
of S of power m .

We do not know if the last theorem can be extended to the case of singular
limit numbers .

PROBLEM 12 . (~) (~v+1 ~v+1

	

v+L

	

v) Z

	

1

	

(I,= (D Or (0,) .

We can, however, prove that the condition In >n for (14 . 15) to hold is a neces-
sary one in the case of a non-limit number m . Thus we have that

( v+a~ t~v+2~ v+21 v+ I) ' ' w+i
This is a special case of the following theorem .

THEOREM 14 . 8 . If ^_ -, ,,+, , then

(14. 16)

PROOF . Let f=(F, M, S) be a

	

a)-system such that there is no (f, ,)-free
subset of power v+, .

Let So= S-Q(~), i . e. each element of So is a member of fewer than t~,,
of the sets FF , ( EI E M) . If So contains a subset S' of power v+ , , then S' has a non-
empty intersection with fewer than ; of the sets FF, (it EM) since v+ , .
Therefore, S' is (f, 1,~,,)-free . This is a contradiction and proves that iSoj < v+I

If xEQ(,f), then x is joined by edges of the graph (f) to all the points of
S apart from a set of power less than N v+ , . This follows from the fact that there
is no (f, N;)-free subset of power Nv+ , . It follows that the connected components
of the complementary graph of ~e(f) each have power at most N v when restricted
to Q(f) . Hence Q(f) is the union of v complete subgraphs of The theorem
now follows since each element of So is a complete subgraph of ~~(f) .

In contrast with (14 . 16) we have that

>2 if a

This follows directly from Theorem 11 . 3 (ű) and (11 . 8) . Similarly, we have that

(a v

	

R ;.) 2 2 ?f a-

By Theorem 11 . 1 this relation implies

(14. 17)

	

(a,

	

>2 if a-=-~,,,

lda R11,W--t;"1 A-den-", Sncn

(a, ~z

	

:.

	

,, + I) y' v+, .
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The condition s > v+I is essential in (14 . 17) since

(14. 18)

	

(m+, In+, m, m+)2-+-m if m, o .

This last result is a direct consequence of Theorem 11 . 3 (i) and Lemma 14. 1 which
implies that

172+

	

J72+ 1,1

772+

	

~ [T7Z ] u,~,,,~

(in fact the suffix w(m) can even be replaced by co(in+)) .
If the final n7+ on the left side of (14 . 18) is reduced, then we obtain a positive

result. By (11 . 7) and Theorem 11. 3 (ü)

(111 + , T1, + , 777, 177) 2 --2 .

Similarly, using (11 . 6) instead of (11 . 7), we deduce the relations

(m+, Jn, In, n,1)2 -2 if
and

(177, N7 T , 117, 117) 2 -2 if m'= o .

However we are unable to establish either of the relations stated in the next problem

PROBLEM 13 . (?) (©z,

	

In,, a)2 -2

	

(a= 1~, or
We conclude this section by giving another proof of (14 . 18) which employs

a different idea to that used to establish Lemma 14 . 1 .

PROOF of (14 . 18) . Let u = co (777), ~ = w (rrr+) . Let S= U (~. < (3)S,, where S;,=
={x;,,, : v<a} . Then I S;=m+ . Put M=[0, [3) and let [M]°'---{N(,, . . ., Nfl ) $ . We
define a (Jn+, 777+)-system f =(F, M, S) by defining the intersection of the sets
F7, (f7 E M) with each of the sets S j (~ < j1) .

Let

	

Then there is some

	

such that {No , . . ., NJ=
: v < 7r}# . Since each of the sets

	

(v < R) has cardinal power 177, it follows
that there are ordinals

	

(r

	

i«) such that

and such that

	

unless v = v' and i -c . We define the sets Fµ for
so that

x;, E Fµ if and o171y, if µ = µ ; Vz for some v -- 7: (;,) .

From this definition of the sets Fµ (µ E M), it is clear that S;, (-- U (µ E M).v) F,
for v-<7-L(;-) . Therefore,

S) C U (µ E No)F, if ;, > B .

This implies that there is no (f, r77)-free subset of S with power Jn+ .
Since the ordinals EI ;.v , are distinct for v < n (ti), i < a and a fixed value of

it follows that

Therefore, the set S, (.l< fl ) does not contain an edge of the graph S(f). Hence
S cannot be expressed as the union of a set of power less than m+ and fewer than
m complete subgraphs of

	

This proves (14 . 18) .

15

µEM
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§ 15 . In this final section we establish a few results and state a few problems
concerning the symbol

(15 .1)

	

(in, a, fl)' --n

defined in § 2 . We consider only the case when a is infinite and indecomposable .
Clearly (15. 1) holds if Ifl I <n- iai since a set of type a (indecomposable) can be
decomposed into Jai disjoint sets each of type a. .

THEOREM 15 . 1 . If a is infinite and indecomposable and or _(a, fl) 2 , then . for
any in 1

(15 . 2)

	

(m, a, #)2 --3 .

PROOF . Let f=(F, M, S) be any (in, a)-system of sets such that S(f) contains
no complete subgraph of type /;. The hypothesis a.-->(a, fl)' implies that the comple-
mentary graph of ~q(f) contains a complete subgraph of type a, i . e . there is a set
T c-- S such that tp T=a and TU FI J -- 1 (µE M) . We may write T= To U T I ,
where To , T, are disjoint sets of type a. Put T2 =S. Then S is the union of the
three sets T (,o < 3) which each have type a and for each µ E M there is 0 (µ) < 2
such that F,,AT_(„ ) =0 . This proves (15.2) .

An immediate deduction from Theorem i5 . 1 and the partition relations (3 . 4)
and (3 .5) that, for arbitrary nn,

(15 . 3)

	

(171, 0, (0) 2

	

3

(15.4)

	

(1
1
1, 0)2, ~)2 3 if P < w .

SPECKER showed [y] that OJ'-+-(co3, 3) 2 , and a simple modification of SPECKER'S
construction gives that

(111 .(0 3 , 4) 2 --3 if qu

	

o

However, we cannot answer

PROBLEM 14 . (?) ( o , Q) 3 , 5) 2 r-4 .

The relations (15 . 3) and (15 . 4) are best possible in the sense that the number 3
cannot be replaced by 2. This follows from the following simple result .

THEOREM 15 . 2 . 7f m á ;aÍ ~-0, then (in, a, 3) 2 -A-2 .

PROOF . We may clearly assume iaj o . Let S be an ordered set of type a
and let x o E S . Consider the graph =(S, E) formed by joining xo to all other
points of S by edges . 14 does not contain any triangle . Let f=(F, M, S) be any
(m, a)-system which is such that U (µCM){FJ} E. Such a system exists if
in = JEi = iai .

Suppose that S= So U S, and S„ 1,`0 (E < 2) . Since x o is in one of the sets
Sf„ there is some µ E M such that I, n S, 7'0 (o < 2) . This proves the result .

The next result should be contrasted with (15 . 3) and (15 .4) (and Problem 14) .

THEOREM 15 . 3 . Let 1 < i < co l ; n < o in . Then

(In, c )y, (U) 2 -- n .

AUa Mathcnniiira A,ademiar Scicntia~ttot IDur,garirne 17, 1966



ON THE COMPLETE SUBGRAPHS OF GRAPHS DEFINED BY SYSTEMS OF SETS

	

22%

PROOF . Let tp S=co l . Since 1 < ~ < o) I we may write S= U (v < (o) S, (tp),
where I S,J = ,,,s o for v o). Let Sv = {x,, : o < co},, . Let f= (F, M, S) be a (In, (o')-
system which is such that {Fµ : it EM} coincides with the set of all finite subsets
of S of the form

where k < w ; i , , < v, < . . . < v, and go > Q, ::- . . . o, It is easy to see that the graph
does not contain an infinite complete subgraph .

Suppose that S=Ao U . . . U A,,, where tp A, = co' (i < n) . Then n >0 and we
can choose integers v, (i < n) so that vo < vI < . . . < v n and 15,,, U A E I _ o (i < n) .
Now we can choose integers o„_ I , . . ., o, , o o successively so that o„_, -- . . . < o0
and xy ,,, E A, (i < n) . The set {x,,,, : i < n} belongs to the set-system f and intersects
each of the sets A, (i< n). This proves the theorem .

The integer n in Theorem 15 . 3 clearly cannot be replaced by

	

In fact for
any cardinal a ;~ o we have the trivial relation

(m, a, a)' -a.

We have the following stronger result in the case of singular cardinals .

( ) THEOREM 15 . 4 . If a > á, then for any in,

(in, a, a)' -'(a')+ •

PROOF . Let a=co(a') . Then there are cardinals a;,-<a for ;. < )c such that
a=ao +a, + . . .+áa and a a,=az>(á +ao+ . . .+d,)+ for ) <a. Let f=(F, M, S)
be any (m, a)-system such that ~N(f) does not contain a complete subgraph of
power a . Let P = w((á)+) . We want to prove that there are sets To E [S]" for 0 < Íl
such that S= U (0 < )T, and each set Fµ (it E M) is disjoint from at least one of
the sets To (0 < fl) .

Suppose there is some <a such that 4(f) does not contain a complete sub-
graph of power a;, . Since"

a-(a;,, a C,) 2 (o < a)

it follows that the complementary graph to N(f) contains a complete subgraph
of power a, for each o < a. Hence there are sets S, E [S1 for o < a such that

(15.5)

	

1Fµ ns,,í-1

	

(µEM; o<a) .

Each set S,, (o < a) can be expressed as the union of (a')+ disjoint sets S,,o (0 < ~)
such that S`,oI = a, . Put To = S and TI +o = U (o < a) S,o for 0 < / . Then
S = U (0 < (~)T, and each set To has power a . Also, by (15 . 5), if µ E M and o < a,
then there is 0(íl, o) < J3 such that

F,t U Sfo =o if- o >o(µ, o) .

There is cp = (p (µ) < sLich that cp > 0 (it, o) for all o < a. It follows that F,, U T, = 0 .
Therefore, we may assume that there are sets Sá c S for < a such that S)

is a complete subgraph of el(f)-(S, E) of power aA . By Lemma 6 . 1, there are

1, E. g . see [31, Theorem 34, Corollary 2 .

15*
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disjoint sets S~ c Sá, (1 < a) and a function f :[[o, a)1z -> f0, 1) such that IS') ~ =a,
(~ < a) and

1 [S , S,-]',' n E = 0 if 1'( ;•,

v) = 0,

(15.6)
[Sa, S']I'IcE

	

if fO., v)=1 .

Put To=S for 0E[a, f3) and Ta= U(0--)~ <a)Sá'for B<a . Then I T,~=a for 0< f .
Let µ E M. Suppose that ^Fµ A ; 0 for all 0 < a . Then there are ordinals a,y < aa
such that ~, < ~, < . . . < tia < a and

(15.7)

	

Fu n S" 7` 0

	

(1-7) .

Put S* = U (v<a)S;_,, . Then I S* ; =a and S* is a complete subgraph of T(~) by
(15 . 6) and (15. 7). This contradiction proves that Fµ is disjoint from at least one
of the sets To (0 < a) and completes the proof of Theorem 15 . 4 .

The next theorem shows that the relation given in Theorem 15 . 4 is essentially
best possible in the sense that (a')+ cannot be replaced by a' .

( ) THEOREM 15 . 5 . If ni > a > á = spa, then

(ni, wx , wü + 1), - f, .

PROOF. Let S = U (~ < wi,)S (tp) ; tp S;. < tp S=wa ()< w~). Let _ (F, M, S)
be a system of sets such that f Fµ : µ E M) is identical with the set of all sets Fc S
which are such that IFI_`,, and ~FnS,,1 1 for all Clearly, there is no
subset of S of order type w,, + 1 which is a complete subgraph of (f) . Suppose
that S= U (; < w#)A ;,, and ;A~ = , for ti < wR . Then there are ordinals v, < w„
such that vo < v, < . . .-::::v,,,,,,< wp and such that A,, n Sv,, o (n < (oü) . Choose
x;. E A;, n S, for ). < wa and let F= f x;, : ), < w,) . There is some Ez E M such that
F" - F and so r,,, n A,. -0 for all ). < w, . This proves the theorem .

We do not have comparable results to Theorems 15 . 4 and 15 . 5 for regular
cardinals . Thus, if a= b+, then we have nothing between the trivial relation

(m, a, a)' a

already mentioned and the following result .

( ; ) THFOREM 15. 6 . If in a=b I --Z~,, then (in, a, a)'-F-N( .
PROOF. It follows from Lemma 14 . 1 that if I S1 =a, then there is a graph _=

=(S, E) such that whenever A, Bc S, CAI =a and JBi=b, then there are elements
x, y E A and z E B such that f x, z) E E and fy, z) E . Since the graph contains
no complete subgraph of power a, it follows by ( ) that there are just a
complete subgraphs of 5 . Hence, if nz -a, there is a (in, a)-system f=(F, M, S)
such that tFu : pE RI) is the set of all the complete subgraphs of jr .

Let S= U (v < w)A(°), where ~A(`)~ =a (v < w) . We want to show that there is some
p E M so that F„ F) A(v°) 0 for all v < co . Let n < w and suppose that we have already
defined x0, . . Y„ E S and A ;") c A ;°) for n - 1, < w so that x„ E A(") (o n), IA ;") l = a
(n I, - _ (o) and

fxo,y),EE if L)--n and YEU(i,1n)A,(") .
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There is some element x, C A(" ) such that

A("+I'=(YEA"') : {x,,, y}# EE}

has power a for all v > n . If this were not the case then for each x E A ;; there is
some v(x)E[n+1, (o) so that x is joined to at most b points of Alv'('X) by edges of W .
There is X E_ [A ;;°]' such that v(x) = v o for all x E X. Hence

Y=A;o)---U(xeX){y : {x, y} # EE}
has power a and

[X, Y]`,, nE_ o .
This contradicts the definition of the graph S . It follows by induction that there
are elements x„E A„° i ( n < ( o) such that F= {x o ,	z",} is a complete subgraph
of W. This completes the proof.

The first problem of this kind which we cannot settle is

PROBLEM 15 . (?) (tn, 2, 2) 2 - i .

It follows from a result in [2] 14 that if ( ) holds and a o , then there is a
graph %1' =(S, E) such that IS1=a+, r, contains no complete subgraph of power
~, and is such that whenever A E [S]", B E [S]", then there is an edge of joining
some point of A to a point of B. Using this result and the same method employed in
the proof of Theorem 15 . 6 we can prove

(m, a + , 2) -+' o

	

(in -- a +) •

(Received 30 July 1965)
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