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§ 1. Introduction. A system of sets is an ordered triple .7 =(F, M,S) where
(1.1) F: M—{X: XC S}

is a mapping from the set M into the set of all subsets of the set S. If uc M, the
image of p by the mapping (1. 1) is F,. In particular, if M is a set of power m and
S is an ordered set of order type . we call # an (m, «)-system. The system of sets
F =(F. M, S) defines a graph ¥ =%(_#) on the set § in which two distinct vertices
x, v€ S are joined by an edge of the graph if and only if x, y€ F, for some pe M.
A set B S is a complete subgraph of %( #) if each pair of vertices in B are joined
by an edge of the graph. Thus %( #) is defined by the complete subgraphs F, (€ M).
A set C Sissaid to be (7, n)-free if C is disjoint from at least # of the sets F, (u € M),
i. e. the cardinal number of the set {c M: F, 1 C=0} is not less than a.

The problems studied in this paper have the following general combinatorial
character. We seek conditions which enable us to assert that (in a precise sense)
if # =(F, M. S)is any (m, z)-system, then either there is a large complete subgraph
of %(¢) or there is a large (7, n)-free subset of S. For example, we study relations
of the form

(1.2) x—[B, 7]2.

By definition, (1. 2) means that the following statement is true. Let # =(F, M, S)
be any (m. x)-system. Then either there is a set B S of order type  which is a complete
subgraphof G( f). or there is a (., m)-free subset of S of order type y. We investigate
under what conditions (1. 2) is true or false, We study also a number of related
problems. The main results of the paper and the outstanding problems are sum-
marized in § 3 after we have introduced some notation.

§ 2. Notation and definitions. Capital letters 4. B, ..., Z always denote sets.
As usual, the symbols £, <, [, [ denote respectively the membership relation,
inclusion in the wide sense. and the binary operations of forming the union and
intersection of sets. We use O to denote both zero and the empty set. 4 ~ B denotes
the set theoretical difference of 4 and B. Il 4 is a set of sets then' (XE€A4)X
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160 P. ERDOS, A. HAJNAL AND E. C. MILNER

and [1(X € 4)X denote the union and intersection of all the sets X< 4. The cartesian
product of 4 and Bis 4 X B. A® denotes the set of all functions which map B into A.

If @ is any property which the elements of a set 4 may or may not possess, then

{xeA4: ®(x)} denotes the set of all those elements of 4 which possess the property @.
In some cases, when it is clear that @ refers only to the elements of 4. we omit A
from the symbol.

Small greek letters denote ordinal numbers (ordinals) and small latin letters
denote cardinal numbers (cardinals). If S is simply ordered by the binary relation
R, then tp, S denotes the order type of & with this ordering. In most cases that we
consider there is only one order relation defined on a set § which we invariably
denote by -. In this case we write simply (pS instead of tp.S. The cardinal of a
set S is denoted by [S|. If tp S =u, then the cardinal of = is |2/ =|S5|. We make no
distinction between finite ordinals and the corresponding cardinals. Consequently,
i view of the convention mentioned above. a small latin letter may also denote
a finite ordinal, but this will always be made clear in any particular context. As
usual, the strictly increasing sequence of infinite cardinals is denoted by
Roe Rpo ooy 8y, oo The initial ordinal of cardinal a is the least ordinal with cardinal
a and is denoted by w(a). We write w, instead of w(¥,), also we write just o instead
of wy. If r is finite, by our convention. w(r)=r. For any z, i the set {v: z=v-=[i}
is denoted by [z, f§).

The obliterator sign ~ written above any symbol means that that symbol is to be
disregarded. Thus Aq U A, ... 1J A, denotes | (v-=2)A4,. The symbol {x,, .... %}
is used to indicate that the set S={x: v=a} is simply ordered by - and that
X, <x, if A<p<a In a similar way, {xo, ..., £,}» means that x, =x, if A=pu=o.

!f the sets 4, (v =) are disjoint and mde:ed. then either of the symbols

2. 1) S=U(v=a)A,(tp) or S=A,U...U4,(tp)

mean that S is the union of the A,(v=a) and that S is ordered in a natural way,
i. e. the order relations in each A4, are unchanged and elements of 4, precede elements
of 4, if A=p<uo. Thus, if tp A,=f,(v=2), then (2. 1) implies that

tp S = Bo+... +f

We say that T'is cofinal with the simply ordered set S if 7— § and for each x€ .5 there
is p€ T such that x =y. Also. if x=tp Sand f=tp 7. we say that f§ is cofinal with .
For any 2, cf (z) denotes the least ordinal cofinal with o — this is the cofinality
index of « introduced by Tarsk1 [10]. For any o, ef(cf(x))=cf(z). 1If x=pf+ 1, we
write 2~ =f. If =0 and a2+ i+ 1 for any f. then «is called a /imit ordinal and we
write o~ =a. Thus « is a limit ordinal if and only if cf (z)=1. If % is such that
[+ y <o whenever fi, y =u, then « is indecomposable. 1t is well known that the only
indecomposable ordnmls are 0,1 and the powers of w. Every ordinal # =0 can be
expressed in a unique way as a finite sum of positive, non-increasing indecomposable
ordinals, 1.¢

(2.3} O(:'X(]‘i‘...‘i‘:{._-,.

where ¢ =, %, is indecomposable (4 =p) and %y = =, =0, We refer to (2. 2)
as the standard | representation of . We say that x is even if x=2f. otherwise z is odd.
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The next largest cardinal to a is a*. If a=5b", then we write a= =b. If a is not
the successor of any cardinal b (i. e. @=b7T), then a is a limit cardinal, and we write
a” =a. If a=y, then & denotes the cofinality cardinal of a, 1. e. the least cardinal
b such that a is the sum of b smaller cardinals. If a=¥Y,. then a" =8, For every
a.a’ =a. If @’ =a, a is said to be regular; otherwise, if @’ =a, a is a singular number.

The set of all subsets of a set S is denoted by [S]. We write

[SlP={X: XS, |X]|=a).

In particular, [S]*=0 if |S| =a. In a similar way. [S]=* denotes the set {X: X S,
[X| <a). If 4, B are disjoint sets, then [4, B]"'' ={{x, y}: x€ A4, y€ B}.

A graph is an ordered pair % = (S, E) with EC[S]?. More generally. if Ec[S]'.
4 =(S, E) is called 4 k-graph. S is the set of vertices of ¥ and E 1s the set of edges
(k-edges) of %. The complementary graph of the k-graph @ =(S, E) is ¥* =(S§, £7),
where E* =[S~ E. A set T S is a complete subgraph of the k-graph % =(S, E)
if [TFcE. If §,c8 and E, =[S,)*NE. then ¥, =(S,., E,) is the restriction of
% on S,. A set S’ S is a connected component of the graph ¥ =(S§, E) if for each
pair of points x, y€ S there is a finite integer r and edges Iy, IT,. ..., 1,6 E such
that xé Ty, yell, and H,7101,., =0 (g=r). The graph ¥ =(S, E) is p-chromatic
if S can be expressed as the union of p sets X, (v <w(p)) which do not contain any
edge of 4, i.e. S=U(v=w(p)X, and X, (v<=w(p)) is a complete subgraph of
the complementary graph %*.

An (m, o)-system of sets is an ordered triple # =(F. M. S). where S is an ordered
set of type o, |M|=m and
(2.3) F: M —[S]

is a mapping on M into [S], the set of subsets of S. The image of € M under the
mapping (2. 3) is denoted by F,. If we do not take the ordering of S into account,
we call # =(F, M, S) an (m, a)-system, where a=|S . The number of sets of the
system 7 (i.e. M|) is also denoted by | # . If M, =M, then ¢, =(F, M,. S) is
a sub-system of §F and we write ¢, #. The set-system 7 =(F, M. S) defines
a k-graph %,(#)=(S. E;) on the set § with edges

E, = U(ue M)[F,J.

We are mostly concerned with ordinary 2-graphs and we usually write ¥( #) in-
stead of %,(#). A set T S is said to be (7. k)-complete il T is a complete sub-
graphof 4,( #). Similarly. wesay T Sis (#, <=k)-complete if [T]"* < | (ue M)[F ]~
A set V' S is said to be ([, n)-free if {ueM: F,[1V =0} =n, i.e. V is disjoint
from at least n sets of the system. If # =(F, M. S) is any system of sets we define

P(F)={xe8: {ucM: x4 F) <=M}

Q(F)={xeS: [ueM: xeF) =M}

We are mainly concerned with infinite set-systems, 1. e. | #| =8,. In this case P(¢)
is the set of clements of S which belong to almost all the sets F, and P(#) Q(%).
Suppose that 7, =(F, M, S) is any infinite sub-system of #=(F. M, S). If X
is a finite set, X C P(#,), then |U(xeX){ucM,: x4 F,}| = |M,| = |M|. Hence, there
is some g < M such that X< F,. This proves that

(2. 4) P(J,) is (F. =Rg)complete if F,C 4. | Fi=8,.
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162 P. ERDOS, A. HAJNAL AND E. C. MILNER

The symbol
2.5 2B, 71

means that the following statement is true. Let # =(F, M, S) be any (m, o)-system.
Then either (i) there is a set B S of type 8 which is (#, k)-complete, or (ii) there
is a set CC S of type y which is (., m)-free. If this last statement is true when we
replace the condition (¢, k)-complete in (i) by (#. =k)-complete, we write instead

(2.6) {8, 7ls":
The symbol
(2.7) 2=[p, 1]

means the following is true. /f # =(F, M, S) is any (m, 2)-system such that tp F, = f
(e M), then there is a set C< S of type 7y which is (#.m)-free. Since each set
F,(ueM)is a (f. <k*)-complete set. it follows that (2. 7) implies (2. 5) and (2. 6)
for any k.

For part of our discussion it is convenient to use another symbol

(2. 8) 2= [B. 7,

which is weaker than (2. 7) but stronger than (2. 6) in the special case when k =y,
and m=4g,. By definition, (2. &) means the following is true. Let ¢ =(F, M, S)
be any (m, a)-system such that tp F,—= [ (ne M). Then either (1) there is an (m, 2)-
system § < F such that tp P(Z )= or (ii) there is a set C= S of type y which
is (_#.m)-free. The relation (2. 8) is clearly weaker than (2. 7), but if m =8, then,
in view of (2. 4), (2. 8) implies that o —[fi, ]z %o,

Similar to the relations (2. 5), (2. 6) and (2. 7) we have analogous relations

{2‘ 5)’ a --"[b._ '{'}fn'
(2. 6) a—Ib, cJzs*,
2.7y a=1b, cl,

connecting cardinal numbers. Forexample, (2. 7)" means the following. If # =(F, M. S)
is any (m, a)-system such that |F,|<b (n€ M), then there is a set C¢<[S]° which is
(7. m)-free. By the well-ordering axiom (2. 7)" is equivalent to the special case of
(2.7) when z=o(a). f=w(b) and y=w(c). A similar remark applies in the case
of (2.5) and (2. 6)".

We shall investigate relations of the forms

(2.9) (a. m. n, ) —s.
(2. 10) (a, m, n. c)f—=s.

(2. 9) means that the following is true. Let J=(Ff, M, S) be any (m. a)-system
of sets which is such that 8 does not contain any ( f, n)-free subset of cardinal ¢. Then
S is the union of a set of power less than a and fewer than s (f, k)-complete sets, i. e.
S= U (v=0)B,IU A, where |Al ~a, d =w(s) and B, (v-=20) is (#, k)-complete. The
statement (2. 10) means that, under the same hypothesis, a stronger conclusion
holds namely that S is the union of fewer than s sets which are (#, k)-complete (i. e.
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the last statement holds with A:()). The symbols (2. 9) and (2. 10) both have an

obvious interpretation when k is replaced by ~-k. In some respects (2. 9) is more

general than (2. 5). For example if s = a’, then (a, m, m, ¢)* —s implies thata—»[a, clk.
For finite integers m. n, k, s (2. 9) is closely relat:‘:d to

(2. 11) (m, n)k —s

(see Theorem 12. 1). By definition (2. 11) means the following holds. Ler # =(F, M, S)
be any system of |M|=m subsets of a set S such that the union of any n of these sub-
sets cover S, i.e.

J(eN)F,  (Ne[M]).

Then S is the union of fen er than s complete subgraps of the k-graph 4, (#), i. e.
§=C,UC,U...UC, and [C,Jrc UueEM)F ¥ (l=o<s).

In the final section of this paper we establlsh a few results in another direction.
These are expressed in terms of the symbol

(2. 12) (m, o0, f)* =n

which means the following. Let # =(F, M, S) be any (in, a)-system which has no
(7. 2)-complete subset of type B. Then S is the union of n sets S, (v—=w(n)) such
that tp S, =o(v<w(n)) and for each pc M there is some v=v(u)=aw(n) such that
F,MS,=0. We only consider the relation (2. 12) in the case when o is indecomposable.
We use the same symbol with cardinals @, b in place of the ordinals «, f and the
mterpretation, in this case, is the obvious one.

In some of our proofs we employ known results (from [2], [3], [7]) about the
partition symbol

2. 13) g (Bos -oer B2)-

This means: If tp S=a and [S]'= U (v=2A)K,, then there is a set 8" S and an index
v=A such that tp S"=u, and [S']" K,. Like the other symbols we have used, (2.13)
has an obvious interpretation when the ordinals o, 8, ..., 5, are replaced by cardinals.
If f,=p (v=4), we write (2. 13) in the alternative form

% —=(f)5.-
We employ also the so-called polarized partition symbol
1.1
a ag a
2.14 s
219 [b] [bo 51]

This means: If A, B are disjoint sets, |A =a, |B|=b and [A, B]'""' =K, + K. then
there are sets A" A, B’ B and 9 <=2 such that |A’|=a,. |B'|=b, am![A BY R =K

The negation of any one of the *arrow’ relations (2. 5)—(2. 14) is convememly
expressed by striking out the arrow — thus «-+[f, 7]% indicates that (2. 5) is false.

The continuum hypothesis asserts that 2% =§,. We sometimes make use
of the more general hypothesis that 2%=8,,, for all v. When the statement of
a theorem is prefaced by () this means that some form of the continuum hypo-
thesis is used in the proof.

§ 3. Summary of results and problems. The symbol (2.6), or

(3.1) x—[f, y15k,
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164 P. ERDOS, A, HAJNAL AND E. C. MILNER

is slightly more general than (2. 5) in the sense that this last relation implies
a—[f. 9] for any p<Fk. In §4 we establish a few general results concerning these
symbols and also (2. 7). In § 5 a complete analysis of (3. 1) is given in the two simple
cases (1) k=2, m arbitrary and (ii) i finite, & arbitrary. In these cases (3. 1) is closely
related to the partition symbol (2. 13) with r=1: such relations have already been
fully discussed in [7].

In § 6 we study the cardinal forms of these relations (2. 5)", (2. 6)" and (2. 7).
Our main result in this section (Theorem 6. 1) shows that

(3.2) m —{m. m),;No

holds for any ni, n =8,. In fact, if m"=n’, then the stronger relation m=[m, nij,
holds. We have only very few results of the form (2. 5)" when k=8,. We prove
(Theorems 6. 3. 6. 4) that

m—~[m.nl?, and m*—[m, m"

m-
provided m=g, and p"=m’. The following questions which we cannot resolve
represent extensions of these results in various directions.

PrROBLEM 1. (7) N, —[R8,.al{® (@=x, or &,).
‘ Ry

PROBLEM 2. (7)) N,o —[Rus1s Nolso.,-

ProsLEM 3. (?) N, —[R,, . N]¥%

In § 7.8 we study (3. 1) and similar relations when m =g, and =, f§, y are de-
numerable ordinals. As we have already remarked, (2. 8) is stronger than (3. 1)
in this case with k =§,. Our main result in these sections (Theorem 8. 2) shows
that for given ff. 7 =w,. there is oy, <w, such that

3:0:‘:' []G‘ ?]Nm
2-+[f, ?]zztu (if x=2).

We also show how to calculate 2, in terms of the given f8, . In § 9 we study the similar
problem with denumerable =z, fi, y but arbitrary m. A surprising feature of this
analysis is that the relations

a—~[f, 7ln and a—[B, yl;*

are equivalent for z, . y=w,. We do not know if this is the case for arbitrary
ordinals a. f3, 7.

In § 10 we study (3. 1) in the case when « is non-denumerable. Our analysis
is incomplete and we mainly restrict our attention to relations of the form

2 ~[8, 7R,

with # indecomposable. With this restriction we are able to decide whether or not
such relations hold provided x=e@{*!. It is a little surprising that new difficulties
are encountered at this stage. The simplest question we cannot answer is

PROBLEM 4. (?) ¥ o —[o?*!, o,w]?,.
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There 1s another interesting problem which arises in this section, We can
show (Theorem 10.6) that wm,x=[w{, ®,x]s. if z=w,, but we cannot solve

PROBLEM 5 (7)) w,w=[of+1, w,w]..
In § 10 we also study relations of the form
%= ['8. ?]io
in the case x=wf (4 =wm,). Again our analysis is incomplete. In Theorem 10. 9
we prove that

o o}, 0, If w=i<o,

and in Theorem 10. 10 we show that this result is best possible in the case cf (1) = w.
The stronger relation ) '
of <0 7R, (r=ofth)

1s proved in Theorem 10. 15 for the case when cf (1) #w and w =/ < w,. We also
prove that this last result is best possible if A=pu+1 and cf (u) =w. In Theorem
10. 14 we prove the negative relation

a1+, w¢ T2, (x=,).
We cannot answer the following questions
PROBLEM 6. (?) of [0}, f*']3, (any i<wm,).
PROBLEM 7. (7) @92 —~[w9™, o9*'o)2, (v=1 or 2: z-=w,).

In §11 we establish a few general results concerning (2. 9) and (2. 10). For
example, we show that (a.m, n. ¢)*—~2 is equivalent to the polarized partition

relation
' 1.1
a] c e
m non

it e=c=g,. This enables us to utilize some results from [2]. In §12 we show
that (Theorem 12. 1) for finite k,m.n,s

(.. n, c)f—s
15 equivalent to (2. 11). We prove (Theorem 12.2) that
1 I
(n1, n) —s

holds if m=k(n—s+1)-+s5—1 and we show that this is best possible in a number
of cases. We cannot prove this in general, i.e.

PrOBLEM 8. (?) (m.m)fits if m=k(n—s+1)+s—1.

In §13,§ 14 we investigate (2. 9) in the case of infinite cardinals. In Theorem
&

13.1 we show that

1
(3. 3) (;\‘0. Nos Ros &OIJ{RU _“Z\\U .
This is a stronger statement than (3. 2) when m=n=y8,. We also show that the
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Ro on the right-side of (3. 3) cannot be replaced by a finite number. For k-graphs
(k=8,) we have the much stronger result (Theorem 14. 4)

(m, mym, my* =3 if m' =x§,.
Also, if m is not a limit number (i. e. m=n"), then (Theorem 14. 1)
(m, m, m, m)> —+~m
holds. These partial generalizations of (3. 3) leave several questions unanswered, e. g.
PROBLEM 9. (7) (8,, N, 8,. 87 —=8,.
ProerEM 10. () (84,1 Roys Rags R, ) = 8o, -
It follows from Theorem 14.5 that
(Nos Ris Ny, 8,7+ Ros
but we do not know if the following is true.
PrROBLEM 11. (?) (Mo 812 Rps Bo)? =8
We prove in Theorem 14, 6 that, if m=y,,
m*t,m . mt, m*)Y +m
and
(m*.m*,mT,mPn if n=m.

Also, in Theorem 14. 7. we strengthen the last formula, in the case whenm is a regular
limit number, to
(m*, m*, m*.m)>+m.

We do not know if a similar result holds when m is a singular limit number.
PROBLEM 12. (7)) (8,50 Rorr- Rorr- NP8, (v=wm or wy).

In § 15 we establish a few relations of the form (2. 13). It follows from Theorem
15.1 and the partition relations

(3.9 w —~(w, w)3,
(3.5 w?—~(w? B} if f=w
due to Ramsey [8] and SPECKER [9], that
(m, . )* -3,
(m. ?, f)* >3 if pB=o.

Also, by using essentially the same construction used by SPECKER [9] to prove that
@ =(w?. 3)%. it is easy to prove that

(m. w3, 4)23 (m=ny).
We do not know if the following is true.
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PrROBLEM 13. (2) (Ry, 3, 5)2 4.
For mfinite cardinals we prove (Theorem 15.5) that

(m, a,a)* (@)t if a’'—=a.

This result is best possible since we prove also (Theorem 15, 6) that

+

(m, a, (@) V—+a" if m=a*.

In Theorem 15, 7 we show that
(%15 Riy 802+ 8o

and this is obviously best possible. We conclude with the following question,

PROBLEM 14, (7) (R3. R;. 8P —8,.

§ 4. Some general results. The theorems of this section give connectives between
different relations of the various forms (2. 5)—(2. 8). For the purposes of this section
it is unnecessary to distinguish between (2. 5) and (2. 6). Consequently, we state

our results only in terms of the first of these # —~[f, y]¥, — it is a trivial matter to

check that similar statements remain valid if £ is replaced by —=4k. Frequently the
proof of a statement concerning the symbol (2. 5) requires only slight modification
to establish analogous results about (2. 7). To avoid tedious repetition we merely

state corresponding results.
As an immediate consequence of the definitions we have the following monoton-

icity relations,
THEOREM 4. 1. Let x=+",f=p.y=y. I=k=|p. Then
a-~[B. Yl implies o' ~[B’, 7T\

0= [!Gs }']rn .".'pr."é’s o= [ﬁ"* ".”]m -

az[B. 71, implies a"=[B" 7],

THEOREM 4. 2. If m=R, and «—~[f, y]5. then =—~[f, 71, .

RemARrK. Similarly, if m=§, and a=(f. 7], then a=[f. 7], .

Proor oF THEOREM 4. 2. Let 7 =(F’, M’. §) be an (m’. 2)-system. We will
assume that S does not contain any (7, k)-complete subset of type f and deduce
that S contains a (#’. m’)-free subset of type 7.

There are disjoint sets M, (v& M’) such that |M, =m (vE M’) and such that
M=1J(ve M )M, has cardinal m. Consider the (m, %)-system # =(F, M. §). where
F,=F, if pe M, (vé M’). Since the two k-graphs %,(#) and %,(#") are identical,
it follows from the hypothesis » —~[f, 7], that there is a set C S of type 7 which is
(7. m)-free. Hence, there is M[ < M’ such that ‘M| =m" and CF,=0 (ve M)
Therefore. C is also (#', m')-free.

We do not know if the converse of Theorem 4. 2 is true. but in the next two
theorems we show that this is the case when extra conditions are imposed on m.

Turorem 4.3, Let m=Ry: x|l =n=m": 2 —=[f. 9. Then = —~[B, 71..

\cademine Scientiaram Hungaricae 17, 1666
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168 P. ERDOS, A. HAINAL AND E. C. MILNER

Proof. Let # =(F, M, S) be any (m. x)-system. We will suppose that there
is no (¥, m)-free subset of type y and deduce that there is an (7, k)-complete subset
of S of type f.

We want to show first that there is a sub-system ¢’ ¢ such that | #'|=n
and such that S does not contain any (7", n)-free subset of type 7. Let K={C: C
— S, tp C=9}. Then |K|= |z il =n=m’". Also, by our assumption, |{ue M: CN F,=
=0} <=m (CEK).

Case 1. |K|<m’. Then |M*|<m, where M* = U (C< K){u: F,(N C=0}. Hence
there is a set of cardinal n, N€[M ~ M*]". In this case put #' =(F, N, S). Clearly,
§ does not contain any (#’, n)-free subset of type y since F,(1C=0 (ueN; C<K).

Case 2. |K|=m'. Then m’=n, and K={Cy,C,, ...,C;}. where A=w(n).
It follows by induction that for v <24 there is

p(vyeM ~ U (o=v){ueM: C,M F,=0}U {u(e)}.

Now put N={p(0). .... (A} and let #" =(F, N, S). Then #' c ¢ and | ¢#'|=n.
Moreover, S does not contain any (#", n)-free subset of type y since C, [ F(,, =0
(o=v=A).

The hypothesis o —[f, 7]¥ now implies that there is a set BC S of type f which
is (#'. k)-complete. The set B is also (#, k)-complete since ¢’ #.

() THEOREM 4. 4. If m= 8,2 and x—[f, y]k., then o —~[p, k.
REMARK. Similarly, iff m=8,2" and o2=[f,7], then a=>[f, ],

PrOOF OF THEOREM 4. 4. We can assume that m=m’. Then (%) implies that
m=2l". Let #=(F, M, S) be any (m, o)-system and suppose there is no (#. k)-
complete subset of S of type p.

Let A=aw(m’). Then m=my+...+nr,, where m,=m(v—=24). For v=/4 there
is p(v)e M such that
4. 1) {ueM: F,=F,,} =m,.

Otherwise, we should obtain the contradiction m =M =2xm,=m. Put N=[0, 2)
and let F,=F,,, (véN). Then # =(F'.N.S) is an (m’, u)-system. Moreover,
since the k-graph %,(#’) is a subgraph of %,( #), there is no (7', k)-complete subset
of S of type f. The hypothesis of the theorem now implies that there is a set C— §
of type ¥ which is (7', m’)-free. Hence, there is N’ €[N]" such that CF; =0
if ve N". Put M"=U(veN){u: F,=F,}. Then (4. 1) implies that |M’|=n, for all
v=4 i.e. (M’ =m. Since C( F,=0 (ue M’), it follows that C is (#, m)-free.
We have also the following

(=) THEOREM 4. 5. If m=n=¥, and m" —[m’, m'%, then m—[m, ml;.
ReMARK. We have also, if m=n=8, and m'=[m’, n'l,, then m=[m, m],.

Proor oF THEOREM 4. 5. We may assume that m=m’". Let A=cw(m’). Then
we may wrile m=mg +m, + ...+, where n* =mg=m, =...<m, and m,=m,
(v=24).

Let #=(F. N, S) be any (n, m)-system. Since N contains only n* subsets
and n™ =m., it follows that for v =/ there are N, N and S, €[S]" such that

{HEN:xEF,}=N, (x€S,).
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Choose x, €8, ~ U(e=v)S, (v “f) Put §'={x,: v<A}andlet F, = F, (8" (LEN).
Then ¢ =(F’', N.S§') is an (n, m")-system. The k-graph %,(#) restricted to the set
(v=24)S, is completely characterized by the k-graph %,(#°). More precisely,
if 77 S"is a (#7, k)-complete set, then the corresponding set

4.2) T=U(x,cT, v=A)8§,

is (7., k)-complete. Similarly, if 77 is an (", n)-free subset of S’. then the set T
given by (4.2) is (£, n)-free. The result now follows from the hypothesis
m’ —[m’, m’, for if |T”)=n’, the set T in (4. 2) has cardinal m.

Later on we require

THEOREM 4. 6. [f 6=0: |¢|=m': 2= [f. }],. then
oue=>[fie, 67, .

PROOF. Let ¥ =(F, M, S) be a (m, oxe)-system such that tp F, < pfe (ueM).
We may write S=J(g=¢)S, (tp), where lp S, —&x (0=¢). If ptCM then there is
o(p) =e such that tp F,1S,,,=p. Since ¢/ =m" it follows that there is M’ €[M]"
such that o(u)=p (peM} We have that S, = U(J{:)T; (tp), where tp T; =49
(A=a). Forpe M’let F, = {A=o:T, () F,=0}. Thentp F, = ff (u€ M’). The hypothesis
a=[f, 7], implies that “there is A [0, oc) and M”e[M’ ]"' ‘such that F, A4 =0(ueM”)
and tp A=y. The set |J(A€ A)T; is disjoint from the sets F, (u € M”) and has type d7.

§ 5. Two special cases. In this section we analyse the symbol o—[f, y]:%
in the following two simple cases (i) k =2, m arbitrary, (ii) k arbitrary and m finite.
Our results are expressed in terms of the partition symbol (2. 13) in the special
case when r=1; these ’unitary” partition relations have been completely discussed
in [7).

THEOREM 5. 1. For any m=1, the relations «—~[f, y1} and x—(B, )" are equi-
valent.

Proor. Suppose that z—(fi, p)'. Let #=(F, M, S) be any (m, a)-system.
Then B= J(ue M)F, is (4, 1)-complete and C= S~ B is (¢, m)-free. Since either
tp B=f or tp C=y. it follows that x—[f, y]L.

Now suppose that «-+(ff, 7)'. Let tp S=o. Then S=XUY, where tp X5,
tp Y2y Let M=(0,w(m)) and let F,=X(ueM). Consider the (m, x)-system
F=(F, M. S).If B"is (/. 1)-complete, then B" X and tp B % . If C” is (_f, m)-free
then (since m=1) C'< Y and tp C'Z% 7. This shows that a-[f, 1L

The condition that m is finite is only required for the second part of

THEOREM 5.2. (i) Let m=1, p=c(m), %—=(Bo, ... Bs 7)'s where ;= (A< p).
Then a=[f, ],

(i) Let 1=m=8. k=2, If 2+(fos.cos P )L, where B, =p (L=m), then
J_'lﬂ }m
Proor. Let ¢ =(F, M. S) be any (m. x)-system of sets such that tp F,=f

(ue M), The hypothesis of (i) tmpheb that tp C=+v, where C= S~ _,(;;CM]I
Since C 1s (., m)-free, this proves that a=[f, y],.

Now assume the hypothesis of (i) holds. If § is an ordered set of type z, then
there are disjoint sets F,= S (u=m) such that tp F,=f (u=m) and tp F,=
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Let M=[0, m) and let # =(F, M. S). If B is any (7, k)- complete subset of § then,
since k =2 and the sets F, are disjoint, it follows that there is some p—=m such that
B F,. Hence there is no (,}' k)-complete subset of S of type fi. On the other hand,
since m is finite, a set C— S is (£, m)-free only if Cc F,. Hence S contains no
(7. m)-free subset of type y. This proves (ii).

We mentioned in § 3 that the relations

a—+[f, 7l and a—[B, yli¥e

are equivalent for denumerable «, fi, y. It is easy to see that a similar remark does
not apply to the symbol « —[f, y],. For example. since

m2 (w2, w)' and @2-(w2. w2. W),
it follows from the two theorems that
w2 —+[w2. w]), and @2-+[w2. o], if m=2.
§ 6. Cardinal numbers. The main result of this section is

(%) THEOREM 6. 1. Let m, n=8,. Then

(6. 1) m—[m, m]; ¥,
Also, if m"=n". then
(6.2) m=[m. mj,

In order to prove this theorem. we prove first a lemma. This is a special
case of a more general result (Canonization Lemma) proved in [2].

(%) LEMMA 6.1. Let p<=R8o; m=m =Re: i=w(m): m=my+...+m;:
m, umuw(m L+ i)t (u<A). Let S= SU J...‘._,'S;: (8, =m, (u=27):
P =y L) il Then there are disjoint sets S, =S, (u=1) such that |8, =m,
(ft=127) fma'
[Sus S 1t C L (p=v—=24),

where n(u, v)=p (n=v=24).

ProOE. Let P={0, 1, .... p}. Since [S]*> = U(v€ P)L,, there is a function ¢ £ PUV°
such that {x, y} € L,y ({x, v} . = 8). Let T, = U(v=p)S, for u <= 4. The hypothesis
implies that | P« =m,. Hence there is a Function Y, £PT= and a set S, €[S, ~ T,]m
(pt=4A) such that

(6‘ 3] ('D(_{.\’, ,1'}}:||III/“(_‘L'] (\E S; VC r;a nu }

Choose x,€8, for p=Ai. Let M=[0, 2). Since |PM|<m, (u=<2). it follows
that there is a function 0,€P¥and a set S, €[S, ~ {x,}I™ (u=< ;‘) such that

(6.4) o({x, x,})=0,(v) (xES,; pyv=<i),

The sets S, (;:fz) are clearly disjoint since the S are disjoint. Let x<.5,
£ S,, where y=v—=4. Then, by (6.3) and (6. 4)

o({x, 1) = () = o({x. x,)) =0,(v).

ur
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This proves that
[S:l‘ Sl\-]l.i CLN(,!!.\') (.Iu'{ \I{’J"}.'
where n(u, v)=0,(v). -

Proor oF THEOREM 6. 1. First we prove (6. 2). Let # =(F. N. S) be a (n, m)-
system of subsets of § such that |F,|=m (v€N). We have to show that, if m"=n’,
then § contains an (7. n)-free subset of cardinal m.

Case 1. n'=m, There are disjoint sets S,€[ST" for L—=ew(m) such that
§=U(2=w(m))S,;. Each of the sets F,(v£N) is disjoint from at least one of the
sets S, (A=w(n)). Hence, there is a set N, €[N]" and » <w(n) such that S, F,=0
(vEN,). Thus S, is a (#, n)-free subset of § of cardinal m.

Case 2. m"=n. Then S~ J(veN)F,isa (#. n)-free subset of S of cardinal m.
Cases 1 and 2 above show that (6. 2) holds if " =m or if m"=n. In particular.
since m’ #n’, we have proved

(6.5) m'=[m’.m,.

The remaining cases which have to be considered follow from (6. 5) and the remarks
which follow Theorems 4.4 and 4.5,

Case 3. m=n=m’. Since m=n"*, it follows from Theorem 4.4 and (6. 5)
that m"=[m’, m’],. Therefore, by Theorem 4.5, m=[m, m],.

Case 4. n=m=n". From (6.5) and Theorem 4.5, it follows that m=[m, m],.
Therefore, since n=m", it follows by Theorem 4.4 that m=[m, m],.

These four cases exhaust all possibilities and complete the proof of (6. 2).

Since (6. 2) is stronger than (6. 1) when m" =#", it is only necessary to prove
(6. 1) under the added assumption

(6. 6) m' =n".
In fact, it is enough to prove

(6.7) m —[m, m]; %o (m=Rg)-

To see this we must show that (6. 6) and (6. 7) imply (6. 1) when m =n. From (6. 6)
and (6. 7) we have

(6.8) m’ —[m’, m’]5 %o,

Suppose first that m =n. By Theorem 4. 4 and (6. 8), it follows that m” —[m’. m’];7*o,
Now Theorem 4. 5 implies that m —[m, m]; ¥, Now assume that /m=n. From (6. 8)
and Theorem 4. 5 we have m —[m, m];>%. Applying Theorem 4. 4 to this last relation,
we deduce that m —[m, m];%0. Therefore. in order to prove the Theorem it suffices
to prove (6. 7).

Let 7 =(F, M, S) be any (m, m)-system. We will assume that S contains no
(7, m)-free subset of cardinal m and deduce that there is a (7, <= Ng)-complete
subset of cardinal . Since the sets F, (ue M) are (#. = Ny)-complete. there is
no loss of generality if we assume also that

{6.9) |F | <m (HeM).
We shall consider separately the cases (i) m regular. (ii) m singular.
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Case (i). m=m’. If x€ § and M'< M, we put M'(x)={u€ M’: x€ F,}. Suppose
that there is M’€[M]" such that the set
T={xeS: |M'(x))<=m)

has cardinal m. Then, in view of (6.9), we can define inductively x, and g, for v =w(m)
such that

X, €T~ U(o=v)F, U {x.},
HEM ~ U(e=vIM (x)U{ug, -..s 1y}
Put S$*={x,:v=w(m)}, M*={u,: v=w(m)}. From the way the x, and g, are
chosen. it follows that |S$* = M*| =m and
x4 F, (xe S, ue M*).

This contradicts the initial assumption that S does not contain any (Z, m)-free
subset of cardinal m. Hence,

(6. 10) Hx€S: IM'(x)|<=m}|=m (M’ e[ M]™).

Let 2= w(m) and suppose we have already chosen yg, ..., ¥, € § in such a way
that each finite subset of {y,. ..., 7;} is contained in m of the sets F, (e M), i.e.

(6. 11) [MxeX)M(x)|=m (Xe[{ygs -ees Pi )17 80).

We write M(X)= [ (x€X)M(x). Since Y= {yg., ..., 7, } contains fewer than m(=m")
finite subsets, it follows from (6. 10) and (6. 11) that the set

A=J(Xe[Y]<){xeS:  M(X+ {x})| <=m}
has cardinal @ = m. Therefore. we can choose
}’,—_ 'E S - /4 i-_/ Y.

Since y; ¢ A, it follows that if X is any finite subset of ¥ {y,}, then X is contained
in m of the sets F, (u€ M). Therefore, by induction, there is a set ¥* = {y,: 1 =w(m)}
such that each finite subset of ¥* is contained in m of the sets F, (u€ M). Hence
Y+ is (#. = §,)-complete. Since 'Y+ =m, this proves (6. 7) for regular cardinals m.

Case (ii). m=m’. Then we can assume that m=my + ... + ;. where A =wm(m)
and m,=m,=(m" +mo+...+n,)" (H=2).

There are sets K, for v-= 4 such that |K,| =m, and so that K, § (if v is even).
K, M (if vis odd). Let K= " (v=2)K,.Consider the set £ [K]* where {x, vy}, £ E
if and only if x€S. y€M and x € F,. By lemma 6. 1, there are disjoint sets K|, K|
(v=24) such that |K.!=m, and, for p=1v-=4, either

(6. 12) (K. K" NE=0,
or
(6. 13) (K., K,)"' CE.

Choose z,€K, (v=4) and put 8'={z,: v=4, v even}, M’'={z,: v=A4, v odd}.
Then, since the sets K. are disjoint, S €[S)™. M"¢[M]™. Consider the (m’, m')-
system #'=(F', M’ S§'), where F,=F, N8 (véM’).
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Suppose that there is a ((#’, m")-free subset of §* of cardinal m’. Then there is
Nyc{viv=~Zveven} and N,c{v:iv<4, vodd} such that N, =[N, =m’ and

{z,, 2, } 4 E (LEN,. vEN,).

Therefore, (6. 13) is false and (6. 12) holds whenever €N, and v£ N, (or vice-
versa). Hence,
x4 Fy
ifxeS, =U(ueN)K, and ye M| = U(veN,)K,. Since | S, = M, =m, this contra-
dicts our initial assumption that S does not contain any (¢, m)-free subset of power
m. Hence, S’ does not contain any (#'. m’)-free subset of power ni’.
Since m"—[m’, m’];;¥e by case (i), it follows that S” contains a subset of cardinal
m’" which is (#", = 8g)-complete. This means that there is a set Ny < {v: v=4, v even}
of cardinal m’ such that, whenever N €[N;]=®o, then there is v=1v(N)& M’ such that

(6. 14) {z,: pEN}C F,N S".

Let 85 = U(vEN;)K,. Then S5 [S]™ If ¥ is any finite subset of S;. then N=N(Y)=
={u:p€N,;, Y(1K,=0} is a finite subset of Ny. Hence, there is v=v(N)eM’
such that (6. 14) holds. This implies that (6. 12) is false if v=v(N(Y)) and g N(Y).
Hence, for these values of g, v (6. 13) holds. This implies that

Yo U(ueN(Y)K,CF...

Therefore, S5 is (£, = 8y)-complete. This completes the proof of (6. 7) and concludes
the proof of Theorem 6. 1.
The condition m"=n" for (6. 2) is a necessary one since

(6. 15) m==>[m, 1], if m'=n"=y,.

To see this let Z=wm)=w@®); S=U(e<=4)S,; M=U(g=m)M,: |S =m=

=|8,(e=4); M,NM,=0 (o=0=4); |[M|=n=|M, (0=4). Now consider the

(n, m)-system #=(F, M, S), where
F,=8pl)...uUS§

H

(HeM,: 0 =A).

Clearly, |F, =m (peM) and S does not contain any element which is disjoint
from n of the sets F, (ueM).
In contrast with (6. 15), however. we do have the following

(%) THEOREM 6.2. If m,n=%8, and x=w(m), then
(6.16) w(m)= [z, w(m)],.

In order to prove Theorem 6. 2 we make use of the following result established
in [4].

LEMMA 6.2. Let m= R, and let S be an ordered set of type w(m). If 1\ is any
mapping of S into [S] such that x & y(x) and tp Y(x) =0 = w(m) (x€S), then there
is a set S"E[S" such that x£(y) (x, yeS).
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PrOOF OF THEOREM 6. 2. We will first prove (6. 16) in the case m=n.

Let A=w(m) and let S={x,, x,, ..., X;}-. Let M =[0, 2) and let # =(F, M, S)
be any (m, m)-system of subsets of § such that tp F,<u« (u=4). By induction,
there are ordinals ¢, =4 such that g, =g, (u=v=41) and

_;t
Yu=X, €ES~F, (u=2).

Let S| ={¥y. .... ; } < and consider the set-mapping Y € [S,]** where /(y,) = F, S,.
Then x ¢ (x) and tp Y(x) == (x £ S,). Therefore, by Lemma 6. 2, there is M’ €[M]"
such that

.4 F (. veM’).

The set $"={y,;us M’} is (#, m)-free and has order type Z=w(m). This proves
(6.17) r=[at, 2],

Now suppese m =n. If m"=n’, then (6. 2) implies (6. 16). Therefore, we may
assume that m"=n".

Case 1. Suppose n=m. Then (6. 17) and the remark which follows Theorem
4.2 imply that A=[z, /],. Therefore by Theorem 4. 4, A=[z, 4],.

Case 2. Suppose m=n. Let # =(F, N, S) be any (n, A)-system such that tp F, <«
(MEN). Then S =S8~ U(ueN)F, is an (7.n)-free subset of type i Hence,
A=>[2, A],. This completes the proof of (6. 16) in the case m=n and concludes the
proof of Theorem 6. 2.

The formula (6. 1) provides a complete discussion of the symbol (2, 5)" in the
case k = §,. In contrast. the only results we have of this kind when k =&, are given
by Theorems 6.3 and 6.4. We conclude this section by stating the three simplest
problems not covered by our results.

THEOREM 6. 3. [f m=%, and k"=m’, then
(6.18) m —[m, nlk,.

PrOOF. Let ¢ =(F, M, S) be a (m, m)-system and suppose that S does not
contain a (., k)-complete subset of cardinal m.

Let v=w(n), x=w(k). Put N=[0, v), K:[O, %). Let p=v and suppose we
have already chosen disjoint sets S, ¢[S]* for o= g. Since T=S~ U(6=g)S, has
cardinal m, it is not (¢, k)-complete. Hence, there is a set S, [T such that S,E F,
(,ur—M} Thelelure by induction, there are disjoint sets S,€[S]* (¢<v) such thdt
S.EF, (¢e<=v; peM). Let §,={x, 116K}, (0EN).

For any function pe KN we put

M(p)={ueM: U(eeNY{x, 4o N F,=0}.

It pe M, then by the definition of the sets §,, it follows that there is some function
o e K" such that

"’(—,r.;![;f! '-{ F, ( o € N )‘

~ "
Therefore,

M U (e KY)M(p).
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Since k" =m’, it follows that there is € K" such that |M(y)| =m. Put 8" = {x, .,
o€ N}. Then |S'|=n and x¢ F, if x€S" and pe M(y), i.e., S’ is a (F, m)-free
subset of § of cardinal n. This proves (6. 18).

We do not know if the condition k" <=m" in Theorem 6. 3 is necessary. The
negative results that we have suggest that this might be the case. For example,
it is easy to see that

m-[m, 1% if m=§

We will prove the slightly more general result that
(6. 19) m=[m, 1] if m =

To see this let A=w(m’) and let §=U(u=2)S,(tp), M=U(u=A)M,. where
tp S=w(m). |S,/<=m(u=4) and M,(M,=0 (p=0=1), =n=|M, (u=7).

Now consider the set-system ¢ _(F M, S). where
F,=U{e=p)S, (veM, s p=24).

Every subset of S of cardinal m has a subset of cardinal m” which is cofinal with
S and which. therefore, is not contained in any of the sets F, (v& M). Hence, there
is no (¢, m')-complete subset of § of cardinal m. Also, if x€ 8. then there is p=4
such that x€8§,. Hence, x< F, if ve U(u=0=4M,, i.e. {x} is not (¥, n)-free.
This proves (6. 19),

Less obvious than (6. 19) is

(%) THEOREM 6.4. [f m =8, then m™ —[m*, m]%..

m

Proor. Let u=w(m). r=w(m"). Let S be a set of cardinal m™ and let [§]" =
={By, i.i; B Ve Let M=[u, n). We will define a (m*, m* *)-system ¢ =(F, M, S)
in the followmét way. Let o€ M. Then we may write {B,, ..., B,} = {CD. R o
Since each of the sets C, (4 =p) has cardinal m, there are x;, y,. for A= p such tlmt

{-\‘.i.- .1';'\}'1'- c C;‘. ~ (g =< ’;“){xo! .l‘rr}'
Now put F, —{ :/=p}. This defines the set system . Since x,€ F,(1C; and
V;€C, ~F, it f'ollows that
(6. 20) F,NB,=0, B,~F,=0 (6=g0cM).

Let B be any subsetof S of cardinal m. Then there is ¢ =« such that B=B,. Hence,
by (6.20). £,(1B=0 (6=9¢M). Therefore, S does not contain a (#, m™*)-free
subset of cardinal m. Let T be a subset of S of cardinal m™*. Then there are 1—=n
and x£7 such that B,— T and

(6.21) XET~U(t=peM)F,.

Put X = I{x}. Then | X =m. Also, by (6. 20) and (6. 21), Xd- F, (o€ M). Hence,
T is not ll [:1 m)-complete subset of §. This proves the theorem.
We do not know the answers to the following questions.

PROBLEM . (7) %, —~[N,, ¢]§? (a=8, or N,
ProBLEM 2. (7) N —[Roxis Nol¥?

B+l ”

ProsLem 3. (7) N, =[8e,. Rol¥°
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§ 7. Preliminary results for denumerable ordinals. The results of this section
are required in § 8. where we give a complete analysis of the symbol o —[f, y]5¥°
for o, fl. y=wm,. Most of the theorems in this section are special cases of Theorem
8. 2, but we do not restrict ourselves entirely to the denumerable case.

We remind the reader that if ¢ =(F. M. S) is an infinite system of sets, then
P(fy={xeS: {ueM: x¢ F,}| < |M|}.

LemMA 7. 1. Let F=(F.M.S). y'=(F.M’.S), where Fe[SIM'M, M =
=M |=m=8y. If ‘M ~M|<m, then P(F)c P(#).

Proor. Let x€P(¥). Then |M~M(x) <m, where M(x)={ueM:xcF,}.
Put N=(M’"~ M) (M~ M(x)). Then |[Nj<m and M"~ N M(x). Hence, x€ F,
if pe M’ ~N, i.e. x€P(#'). This proves the lemma.

Lemma 7.2, Let S be an ordered set and let S, = S(L€L), where |L =%,.
S§,MNS,=0if {Apl.cL, tpS,=w*>and 9,=0 (A€L). Let F=(F. M. S) be a
(R¢. tp S)-system such that (i) tp F, (1S, =w® (ne M, A€ L), (i) tp P(F') S, =
(LeL; F'e F:17 =8). Then there is a (F. 8o )-free set X 8 sueh that XS, =
= Np {/ ¢ L)

Proor, If L=0 there is nothing to prove. Therefore, we assume L=0. We
can assume that M =[0, w). There is a function @£ LM such that [{ueM: o(u) =
=Ai} =Rg (A€L), i.e. the sequence ¢(0), @(1), ..., ¢(w) repeats each element of
L infinitely often.

Let « =w and suppose that we have already chosen x, €5 and p, € M for v =z
in such a way that

M, =M~ U(c=v)M(x,)
is infinite for v =2, where M(x)={u: u=w, x€ F,}. Let #, denote the sub-system
(F, M,. S)of #. From the hypothesis (i), (ii) of the Lemma, it follows that there is

X3 € Spy~ U(v=a)F, U{x,}UP(£)

(because tp S,,, is indecomposable). With this choice for x, we notice that M, ., =
=M~ J(e=a)M(x,)=M,~ M(x,) is also infinite since x,4 P(#,). Hence, we
can choose p, €M, ~{fg..... 4,}. Therefore. by induction. there is
X={xy, ... ¥} 8 and M’ ={py, ..., $,}s M such that 2

x4 F, (xeX, ueM’).
Thus the set X is (#. 8o)-free. Moreover, since x,€S,,, and |[{a: 2= @(x)=
=L} =8, for each 2€ L, it follows that [ X1 5, =8, (A€ L). This proves the lemma.

As an immediate deduction from Lemma 7.2 we have

THEOREM 7. 1. If 0=0 and y =, then oy = [0, oy]s,.

Proor. Let L=[0, y); S=U(AEL)S, (tp); tp S; =w? (A€ L). Let #=(F, M, S)
be an (8. w'y)-system such that tp F, <=w? (ueM) and tp P(F)<=w® (F = J:

| # =), Then, by the last Lemma, there is a ((#. Nq)-free subset X< S such that
X1 8;,|=8, (A€L). Hence, tp X =wmy. This proves the result.
. ! Y p

* Suppose . fi<=wm. If fi=g, then x.4F., by the definition of x.. Also, if 2= f#, then
HpEMpey oMy, Hence, ppd M(x2), 1. €. xat Fup.
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THEOREM 7. 2. If r=w. y=w,, then wy=lr, my]s,.

Proor. The conclusion is obvious if r = 1. Therefore, we assume that r=1 and
use induction on r, i, e. we assume that

(7. 1) wy=[r—1, oyls,.
Let # =(F, M. S) be a (8,. wy)-system such that
(7.2) tp F,=r (e M).

We want to show that S contains a (7, 8)-free subset of type wy.

Suppose that there is an element x€ 8 such that M(x)={ucM: xcF,}is
infinite. Put F, = F, — {x} for n€ M(x). Then #'=(F’, M(x), S~ {x})is a (8¢, wy)-
system such that tp F, =r—1 (¢ € M(x)). It follows from (7. 1) that § ~ {x} contains
a (#7, 8y)-free subset of type wy. Hence there is 8" S~ {x} and M’ M(x) such
that tp 8" =wy, (M’ =, and S'(1F,=0 (ueM’). Since xv£58’, it follows that
SMF,=0 (ue M’). Therefore, S§” is also (7, §)-free. Consequently, we may
suppose that

(7.3) IM(x) <Ry  (x€8).

By (7.2) and (7. 3) it follows that each element x¢ S is joined to only a finite
number of elements of & by edges of the graph %,(7). Since P(#7) is a complete
subgraph of 4,(7) if | #* =8, and g% < # (see (2. 4)), it follows that

(7. 4) tp P(F*)<w ([F* =8y F* F)
By Theorem 7. 1, we have that
Wy = [, @)

This relation, together with (7.2) and (7. 4), implies that there is a (#, 8¢)-free
subset of § of type wy. The Theorem now follows by induction on r.

Tueorem 7. 3. Let r=w, y=w,, f=w" 0=0. Then
Pary Z[Pr, 0yl

ProoF. We can assume that r, y=0. Let #=(F. M, S) be a (8,, ffwy)-system
such that
(o 5) tp Fy = ﬁf {“E ML

(7.6) tp P(F)<fr  (F ;1 F1=Ro)

Since tp S= flwy, we may write S= (A =wy) S, (tp), wheretp S, =f (A =wy).
Consider the (Rq, wy)-system #* =(F*, M, L), where L=[0, wy) and

Fi={A€L:tp F,NS;=f}  (nEM).

By (7.5), tp F}; <r (ué M). Therefore, by Theorem 7.2, there is M,e[M]Y and
Ly, L such that tp L,=wy and

(7.7) tp F,NS;<f (€M A€ Ly).
Put #,=(F, My, S).
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Suppose that &: whenever §'c §o, L'C Ly, | #'| =80, tp L' =wy, then there
is A€ L' and an infinite subsystem §" < 7' such that tp S; N P(F")=f.

Since the removal of a finite number of elements from L, does not change
the order type of L, it follows from the assumption.% that there are {4,,4,,...,4,}. C
< Ly and infinite set-systems #,, #,, ..., #,.such that #,2 ¢, >...> ¢, and

tp S,,NNP(F)=B (l=o=r).

By Lemma 7.1, P(#,)=P(#,) (1 =0=r). Therefore, tp P(#,)=fir. This contra-
dicts (7. 6) and proves that the statement % is false.
Hence, thereis #' < #, and L' L, such that | #'| =8,, tp L' =wy and

(7.8) tp SNP(I)=f (AL J7 7’5 |F"1=No).

Applying Lemma 7. 2 to the set §'= U(A€L’)S,, it follows from (7. 7) and (7. 8)
that there is a (', 8,)-free set X S” such that | XN S,/ =8, (A€L’). The set X is
also (f, 8g)-free and tp X =w?y. This completes the proof of Theorem 7. 3.

The next theorem shows that, in a certain sense, the results given by Theorems
7.1 and 7.3 are best possible.

Tueorem 7. 4. Let y=w, =o', o=w,. Then

ﬁl)_w[ﬁ ﬂ')" J_ ]]Nu

Proor. I fiy=wy the result is obvious. Therefore we assume that y=0 and
B=Bo+ ...+ P, where O=p=p=...=f,<p=<

Let S=U@A=7)8,(tp):tp ;= (A=y). Thcn tp S=pfy. Since O0<y=<w,,
we may write [0, y)= {4y, ..., 2.}, where 0=n=w. Put T.=S8,, (x=mr). Then
S=UH=mT, and tpT,.=f (x=m). Therefore, = U (u ’(u) L (tp), where
tpT,,=f, (x=m: p=w). Since w=f,<=w,, we can assume that

=300 v R (x=m; p=uw).

Now consider the (%, fy)-system # =(F, M, S), where M =[0, &) and
Fo={x, % p=n=v<=w) (n=uw).

Let 8 be any subset of Sof type fi. Let x, =x,,,,,, €S’ where x, =n: u,, v, =w.
Then there is », =n and p,, v, = such lhal X3 =X, €S and either », =v,
or it =v,. Otherwise, we have "< U(x, u=v,)7T,, and this leads to the contra-
diction f=tp S"=(f,+...+p,)v,=p. Since {x,,x,}.4F, (n=w), it follows
that the graph %( #) does not contain a complete subgraph of type f.

Now let §” be a subset of S of type wy + 1. Then there is x =n and ¢ = such
that tp S"MN7,,=w. Let ny=max {», u}. If n=n,. then there is v=n such that
X4y € 87. Therefore, §”(1 F,#0 (n,=n<w). This proves that S does not contain
a (7, 8y)-free subset of type wy+1.

The next theorem gives two ways of obtaining new relations of the form (2. 8)
from known relations of this kind.

THEOREM 7.5. (1) Let O=i+j=ow; a=[f, fls. Then o+ G+j— 1)+ 1, flse-
(i) If B <PB:a[B, ylo: ' R, Vs then ato’ Z[F, 747 -
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ProOF. (i) Let S=8,US, (tp): tp S, =w; tp S,=i+j—1. Suppose #=
=(F, M, S) is a set-system such that |M|=§8, and

(7.9) tp F,<f+i (e M).

Suppose also that § does not contain a subset of j elements which is (7. &g )-
free. Since S, is finite, there is X< S, and M’ c[M]"% such that F, NS, =X (ueM’).
Since S, ~ X is ([, 8y)-free, it follows that |X|=i. Therefore, by (7.9),

tp F,M18,=p (peM’).

It now follows from the hypothesis x=[f, jly, that there is M, €[M']% such that
tp S, NP(F)=p, where #,=(F, M,,S). Since X< P(#,), it follows that
tp P(#,)=p+i This proves (i).

(i) Let S=TUT (tp); tp T=u; tp T"=o’. Then tp S=a+o'. Let # =(F, M, 5)
be a system of subsets of § such that M =y, and

(7. 10) tp F,=f (ne M),

(7. 11) tp P(I)<=f  (F'CF; F =R

Since a==[f. 7]s,. it follows from (7. 10) and (7. 11) that there is M’¢ [M]“" and
Cc T such that tp C=y and C(1F,=0 (ueM’). Similarly, since "= [, 7']s,.

it follows that thereis M” C[W Meanda set C’c T'such lhal tp C' =y and C’ f‘ F =0
(e M”). The set ClUC"1s (F, Bg)-free and has type y + 7. This proves (ii).
For negative relations of the form (2. 6) we have

THEOREM 7. 6. If o, +[B,. v )" (0 <=24) and if f. y are such that f=Z(0=M)f,
and y=Z(0=2)y, whenever [3, < - f, and y, =y, (0 <2), then

(7.12) Z(p=A~)m,+[p, e

REMARK. The theorem remains true if =4 is replaced throughout by k.

PROOF OF THEOREM 7. 6. Let S= U(g=4)5, (tp), where tp §,=z, (0=2).
Let |M|=m. By the hypothesis, there are set-systems ¢, =(F), M, S) (0=4)
such that S, does not contain a (.#,, = k)-complete subset of type f8, or a (£, m)-free
subset of type y,. Consider the set-system ¢ =(F, M, ), where F, = J(g<=2) F?
(neM).

It X is (#, =k)- LOI“}')IL{L the X1\, is (#,. —k)-complete (¢ < 4). Therefore,
p X=2(0=4)tp (X S,)=p. Similarly, if ¥is (f ni)-free, then Y1 S, is (7. m)-
free (¢ <4) and hence, tp Y=2Z2(¢=4) tp (YN S,)<y. This proves (7. 12).

LEMMA 7.3, Let r=witp S=wa. If §#, is a countable system of subsets of
S such that

tp P{J") =wx (F'cF0: |7 1=Ro)
then S contains a subset of r elements which is (., Ro)-free.

ReMARK. The lemma clearly implies

(7.13) ot =2 [wa, Fl, (r—=w: a=0).
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Proor oF LEMMmA 7. 3. The hypothesis implies that =0 and that S~ P(#)
is infinite if #'< #,,1 7 =8y. Let ¢g=r and suppose we have already defined
Xy X, €Sand J,=(F, M,, Sy #, such that | #,|=R,. Then thereisx,., €S~
~ P(ﬁf YU{xy, o x,). Let M, ={u€M,:x,.,§F,}. Then |[M,,,|=8, since
Xje1 8 POE) Now put £, =(F, M., S). By mductlon it follows that Lhm.: is
X=Ax; oy X} © Sand infinite set-systems #, =(F, M,, S)such that M, > ... 5 M,
and x,¢ F, (neM,; l=p=r). Hence XN F, —0 (MEM,), i.e. Xisa (F,, Ml flce
subset of type r.
Lemva 7.4, Let r=w:  =f=w’ 90=1. Let §=(F, M., S) be an (X, f)-
system such that (1) tp F, = (weM), (i) tp P(F)<=p (F < F: |7 1=R8q). Then
there is a ([f, Qg)-free subset of S of type w+r.

Proor. The hypothesis implies that there are indecompeosable ordinals i, (v =)
and s = such that "= f,s and

w=P=p=...=8,< ﬁ =X(v=0)f,.
The m'uu Uv=w)S8, (tp)., where rp =f, (v=4). Put Fi={v:iv=w;
tp F, ﬁ } e M) Then, by (). tp F =s (p(_ M). Since m =[s, m]y, by Theorem

s ”, It tollows that there are infinite sets Lcl0, ) and M, M such that

LNF;=0 (ueM,), i c.
(7. 14) tp S,NF,<p,; (AEL; neM,).

Put &, =(F. M,, 8), L="{lo, s Ju}e.
Suppose that &7: whenever A€L, F'C F,. |8 =g, then there is §"c g’
such that | #7| =8, and tp S;(1P(#")=f,. Then there are infinite set-systems

7. =(F. M}, S) (9=w) such that #,2 4,2 ¢1>...04, and
(7.15) tp S, NP(F)=P,, (e=w)

Choose p, for p=w so that p,€ M, ~{ug, .... fi,}. Put #'=(F, M’,S), where
M’ ={ys -, fiy} o Since M"~ M, {py, -, 1.}, 1t is a finite set and hence,
by Lemma 7.1, P(#,)cP(#) for ¢=w. Therefore, by (7. ]S} tp P(F) =
=X(g=w)f,, —p. This contradicts the hypothesis (ii). Hence, & is false.

It follows that there is some A€ L and an infinite set- -system #7C #, such that

(7. 16) tp S;NP(FY<B,  (FCHT |F =)

By Theorem 7. 1, B,=[B,, wls, Therefore, in view of (7. 14) and (7. 16), there is
aset X< S, of type w and an infinite set-system #3 =(F, M3, S) #7 such that

XNF,=0  (ueM3).

Put 7= U(A=v=w)S,. Then tp T=p. By (ii) of the hypothesis and Lemma 7. 3
we deduce that there is Y€[T] and M3Ie[M3]% such that Y F,=0 (1€ M3).
It follows that the set X U Yis (7, 8¢)-free zmd has type @ +r. This proves the lemma.

LemMMmA 7. 5. Let rys,t=w; 0= [, ys,. Let tp S=a(r+s+1t) and let §F=
=(F, M, S) be an infinite set-systen such that (i) tp F, <B(r+1) (e M); (iNtp P(F) =
=B+ 1) (F'C F: |7 =Re); (iil) there is no (F, Ng)-free subset of S of type
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r(r rl) Then there is an mfrmre sub-system g =(F, M*, S)C ¢ such that (1)
F,=pr (e M*); (i) tp P(F*)=Ps: (i) tp (S~ U( ,urM )F,)=yt.

PrROOF. Put n=r+s+1. Then we may write S= U (v=n) S, (tp), where tp §, =«
(v=n). We shall define infinite set-systems # =(F. M, S)c # (0=v=n) and
a partition of [0, #) into disjoint sets 4, B, C in the following way.

Put M,= M. Let v=n and suppose we have already defined M, c[M]% . Put
Ny={pueM tp SN F, =)

Case 1. N, =§,. Then we put M,., =N, and put v in A.
Case 2. |N,|=R,. Then M, =M ~ N, is infinite and

(7.17) tp S,NF,=f (e M,).
Let 4, =(F, M., S).

Case 2a. There is an infinite set-system #c ¢!
Then we put 7., ,=#. and put v in B.

Case 2b. tp S,(VP(F")=f(F " f.: #" =8y). By (7.17) and the hypo-
thesis o= [ff, 7]y, it follows in this case that there is a (#.. R,)-free subset of S,
of type y. Thus, there is a set My €[M]% such that tp (S,~ U(eM)F,)=)
In this case we set M,,, =M and put v in C.

such that tp 8,1 P(#))=p.

This procedure defines the partition [0,n)=AU B C and the set systems
J.=(F. M, S)(v=n)sothat M=M,> M, >...= M,. Moreover, we have

(7. 18) if veA, then tp S, F,=p (HeM, ),
(7. 19) if veB, then tpS,(VP(F.1)=p,
(7. 20) if veC, then tp(S,~U(ueEM,  )F,)=y.

Let |4 =a, |B|=b.|C|=c. Since M, M, (v=n), it follows from (7. 18) that
(7.21) tp F, = fa (e M,).
Also, by Lemma 7.1 and (7. 19), we have

(7. 22) tp P(7,) = fih.
Similarly. (7. 20) implies
(7.23) tp (S~ U(ueM,)F,)=vyc.

By (i), (i) and (iii) of the hypothesis, it follows from the above inequalities that
a=r;b=s5;c=t Moreover, since the sets 4, B, C are disjoint, a+b+c=n=
=r-+s-+t Hence, a=r; b=s; c=t. If we put N=M,, then (7. 21), (7. 22), (7. 23)
coincide with the conclusions of the lemma.

A consequence of the last lemma is

THEOREM 7. 7. If o= [, v]s, and s, 1<, then
(7.24) (25 +1+ D) Z[B(s +1), (1 + Dlso.
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Proor. Let S=U(A=2s+1)S,(tp).tp S, =2 (A=25+1). Then tpS=
=a(2s+1+1). Suppose (7. 24) is false. Then there is a countable set-system § =
=(F, M, S) such that (i) tp F,=f(s+1) (ueM); (ii) tp P(F')=B(s+1) (f ' 7;
| #°1 =8y): (iil) S does not contain a (f, 8,)-free subset of type 7p(r+1). Now
consider the set-system #°=(F° M, §°), where S°=S~S,,,, and F}=S°NF,
(ue M). By (i), (i), (iti) and Lemma 7.5, there is an infinite set-system f*—

=(F, M*, S)c ¢ such that (i)" tp S° N F,=ps (e M*); (i)’ tp S° M1 P(F*)=ps;
(i) tp (8" ~ U(uée M*)F,) =yt. From {'i)—(iii)’ it follows that

tp Sy NF,=f  (HEMT);
tp Sy, ., VP(FY<p if F'c#* and |F'|=8q;:
tp (Szesc~ U(MEM)F,) <y if M €[M*]¥.

These last three statements contradict the hypothesis « = [f, yly,. This proves (7. 24).
We need also the following lemma which resembles Lemma 7. 5

Lemma 7.6, Let q.r.s.t=w;f=w’=wl;0=0. Let S=T,UT, (tp):
tp To=pr+s+1t); tpT,= = 0. Suppose that §=(F, M. S) is a countable set-
system sueh that (1) tp £, = fir+wf) (e M); (i) tp P(F) =,’)’S—|—w() (' g | 8=
= \n} (iii) S does not muram a (7. %) ﬁee subset of type w(t+1)+q. Then there

St =(F. M*, S)yC ¢ such that |M*|=8, and (i)' tp T, F,=pr (neM*);
f_n] tp To N P(F*)=Ps: (i) tp(To~ U(ue M*)F,) = wt.

Proor. We proceed as in the proof of Lemma 7.5. Put n=r+s+t. Then
Ty=1U(A=n)S, (tp), where tp 5, =f (L=wn). We define infinite set-systems §, =
=(F. M. S)c ¥ (A=n) and a partition of [0, #) into disjoint sets 4, B, C in the
following way.

Put My= M. Let A=n and suppose we have already defined M, ¢ [M]%0. Put
N,={ueM,:tp S;N F,=p}.

Case 1. |N;|=8,. Then put M, , =N, and put 4 in A.

Case 2. |N;] Then M,=M,~ N, is infinite and
(7.25) tp S;NF,<fp (neM;).

Put #;=(F, M;. S).

Case 2a. There is an infinite set-system #; < #; such that tp S, N P(#;) =p.
Then we define #;,,=¢ and put 2 in B.

Case 2b. tp S, NP(I V=P (F'F.: | F1=8). Since f=[f, o)y, by
Theorem 7. 1, it follows from (7.25) that, in this case, there is M, ¢[M}]y, such
that tp (S; ~ U(ue M7)F,)=w. In this case we define M, ., =M} and put 2 in C.

This defines the set-systems 7, =(F, M,, S) (A=n) and disjoint sets 4, B, C
such that [0, ) =AUBUC; M=My>M,>...0M,c[M]%. Also, we have

(7. 26) if A€A, then tp S;NF,=p (HEM, . );

(7.27 if AeB, then tp S;MP(F,,)=p:

(7. 28) i A€C, then tp(S,~UmeEM, ) F)=w;

(7.29) if A€C. then tp S;NP(F)=p (F' T F,: F'|=8)
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Let [A|=a, |B|=b, |C|=c. By Lemma 7.1, P(¢,)c P(¥#,) (4A=n). Therefore,
from (7.26), (7.27) and (7. 28) respectively, we deduce that

(7. 30) tp Ty (M F,=pa (neM,):
(7.31) tp Ty M P(F,)=pb;
(7. 32) tp (To~ U(ueM,) F,) = wc.

These last three statements coincide with the conclusion of the lemma with M* =M,
provided that

(7. 33) a=7r; b=i&; =1

To complete the proof we will assume that (7. 33) is false and deduce a contradiction,

Since the sets A, B, C are disjoint, we have that a+b-+c = r+s+t = n.
Also, (7.30)—(7. 32) and the hypothesis (i)—{(iii) imply that a=r, b=s:c=r-+1.
Therefore, since (7. 33) is false by assumption, we must have

(7. 34) c=1t+1; aclr,r—1}; a+b=r+s—1.
Suppose that ¢ = r—1 and b=y Then, by Lemma 7.1, (7.31) and the

hypothesis (ii),
tp T, NP(F)=wl  (F'CF,; [F1=N0)

Therefore, by Lemma 7.3, there is a (#,. ¥q)-free set Y T, such that |¥|=gq.
Put X=Ty~ U(ueM,)F,. Then XUY is (#,, 8o)-free and, by (7. 32) and (7. 34),
tp XU Y =w(t+1)+4g. This contradicts (iii) of the hypothesis.

Therefore a=r and b = s— 1. By (7. 34), |C|=c=1. Let = denote the largest
element of C. Suppose that

(7.35) A0, m).

Then, since D = U (u€4)S; precedes S, in the ordering of Sand tp DN F, = fa=fr,
it follows from (i) that .

(7. 36) tp S, F,=wl  (ueM,).

Since 7, it follows from (7. 36), (7.29) and Lemma 7.4 that §, contains a
(s Ro)-free subset of type w+g. Thus, there is Ne[M,]% such that tp (S, ~
~U(UEN)F,)=w+q. Since © is the largest element of C, it follows from (7. 28)
(7. 34) that _

tp(U(AEC)S; ~ UeEN)F,)=w(t+1)+q.

This contradicts (iii). Hence, (7. 35) is false and there is ¢ A such that m =«. This
means that the set

: Z=UeC)S;~ U(uEM)F,
precedes the set S, in the ordering of S. By (7.28) and (7.34), tpZ=w (¢ +1).
Therefore. by (iii), S, U T, does not contain a (#,, 8;)-free set of g elements. There-
fore, by Lemma 7. 3, there is an infinite sub-system ¢’ ¢, such that

tp (S,U T NP(F)=p+wb.
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Since P(#,) P(#'), by Lemma 7.1, it follows from (7.28) and the fact that
aif B that

tp(To,UT)N PNV =+ + 00 = fis+wl.

This contradicts the hypothesis (ii). Hence, (7.33) holds and the proof of Lemma
7.6 is complete.

§ 8. The case of denumerable ordinals continued. In this section we show that,
for given fi, y=w,, there is x5 =, such that

(8. 1) %02 [Bs 7]sos
(8.2) a+[B, v,  (e=2).

Our results also show how to evaluate 2, in terms of the given f, 7.

If =0, the above relations hold trivially with «,=0. 1/ 0 =f=w, we have
the stronger statement of Theorem 8. 1. The more general case when w=f=w,
is dealt with in Theorem 8. 2.

THEOREM 8. 1. If O<=fl=w and y—=«,, then there is 2, such that
(8.3) 2o =[f, 7l
(8.4) a+[f. vl (x=0oy: m=1).

The value of =, is given by

i Y=y,
8. 5) x =! .
: T lntB i r=n+l

Proor. If 2, is given by (8. 5) and o =2, then 2-+(f, y)'. Now (8. 4) follows
from Theorem 5. 1.

Let y=wy,+/, where j=m. We define é as follows (i) 6=01f j=0, (ii) 0 =
=(j—1)+p il j=0. Then (8. 5) gives 2y =wy,+ 9. Let #=(F, M, S) be a (Xg, o)-
system such that tp F,=f (ueM). Then §=S5,US, (tp), where tp S, =wy,,
tp §; =0. Since S, is finite, there is M’€[M]% such that S, F,=X (ueM’).
By Theorem 7. 2, wy,=[f. wyy]s,- Hence, there is M”c[M’]*0 such that Y= 8, ~
~ U(ueM”)F, has type =wy,. The set YU(S, ~X) is (£, 8y)-free and has type
=wy,+j=7y. This proves (8. 3).

Lemmas 8. 1 and 8. 2 give special cases of the positive and negative parts of
Theorem 8. 2.

Levma 8. 1. Let b, e, i, j=w=p=w,; f=w’ Then

(8. 6) oo < [Bb+1)+1i, w(c+ 1)+ /).

where

pRb+c+1) if i=j=0,

fR2b+ec+2) if i=0<=],
p2b+c+2)+w if i=0=j,
P2b+c+2)+w+(E+j—1) if i, j=0.

(8.7 Mg =
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Proor. By Theorem 7. 1, i=[f}, wly,. Therefore, by Theorem 7. 7,
(8.8) B2b+c+D)ZT[BMB+1), e+ Dl
(8.9) BRb+c+2) BB +1), w(c+ 2.
‘I_'Fle relations (8. 8) and (8. 9) respectively imply (8. 6) in the cases (i) i=;=0 and
& IFO?‘ !lic remainder of the proof we assume that /=0. If j=0 we put §=0; if
J=0 we put & = i+j—1. Then, for the remaining two cases of (8.7), we have

oy =f(2b+c+2)+w-+0o. Suppose that (8. 6) is false. Then there is a (Ry, %y)-
system 7 =(F, M, S) such that

(8. 10) tp Fy=pb+1)+i (neM):
(8. 11) tp P(F")=Bb+1)+i (F'cf; 17 1=%0);
(8.12) S contains no (7, Ng)-free subset of type w(c+ 1)+ .

We may write S=S,UUUV (tp), where tp S,=2b+c+2). tp U=w and
tp ¥'=4. We consider separately the cases fi=w and ff =w.

Case 1. f=w. Then tp (S, U U)=pF2b+c+3). It follows from (8. 10)—(8. 12)
and® Lemma 7.5 that there is an infinite system #* =(F, M*, §)c # such that

(8.13) tp (S UU)NF,=p(b+1) (eM*);
(8. 14) tp (S, UU)NP(F)=Bb+1);
(8. 15) tp (SoUU~ UueM*)F,)=w(c+1).

From (8. 10) and (8. 13), it follows that tp V' F,<i (u€ M*). Also, (8. 12) and
(8. 15) together imply that V" does not contain a (_#*, 8,)-free subset of type j. This
Is a contradiction, since Theorem 8. 1 implies that tp ¥V=0=i, jly,.

Case 2. ff=w. In this case (8. 10)—(8. 12) and* Lemma 7. 6 imply that there
is #*=(F. M*, S)c # such that | #*|=x, and

(8. 16) tp SN F,=B(b+1) (neM*);
(8.17) tp So NP(F*)=P(b+1);
(8. 18) tp (Suw U(ne M*) F,) = we.

From (8. 10)—(8. 12) and (8. 16)—(8. 18), we deduce that
tp (UUV)NF,<i (ueM*):;
tp(UUV)NP(I)<i  (F'CF*; |F =R
and UlJV does not contain a (f*, 8y)-free subset of type w+ /. This is a contra-
diction since
0+ 02, w+jly,

by Theorem 7.5 (ii) (for o= [w. @]y, and 6=2[i, jli,). This completes the proof
of Lemma 8. 1.

# Apply Lemma 7.5 to the set Sou U with r =s=5b+1, t=c and a= fi=y=w.
* Apply Lemma 7.6 with To=80, T'=UuV, r =5 =b+1, t=¢, g=j and 0=1,
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Lemma 8.2, Leti.j=w=f=w,: f=° Then
(8. 19) s+ [Bri ok,  (@=u),
where a, has the value given by
B if i=j=0,
B2 if i=0<j,
R+w if i=0=j,
B2to+(i+j-1) if i,j=0.

(8. 20) oy =

Proor. Case 1. i=j=0. Clearly (8.19) holds with o,=/.

Case 2. i=0=j. By Theorem 7.4, f—+[f, @+1]%, and, if f'=p, clearly
B+, 113, Therefore, by the remark after Theorem 7.6, f+p +[f. o +1]3,.
This implies (8. 19) with «, = 2.

Case 3. i=0=j. Let x=f2+w. Then there is g=w such that a=f2+q.
Let S=BUBUQ(tp), where tp B=tp B'=f, tpQ=¢q. Let B={xg, .... X} %,
B'= s \(',}¢. Let M=[0, w) and consider the set-system _#=(F, M, S),
where F,={x;: A<p}U{xj: A=p} (ueM).

Supposa S’ S is (F,2)-complete and |§'|=1. Then S'(1Q=0. Suppose
there is ¢ = such that x; € §”. Then S"(Bc {xy, ..., X,}. Hence, tp S"=po+ f=4.
Thus, there is no (/’ 2)-complete subset of S of type f+ 1.

Suppose that S” is (F, 8y)-free. Then there is {ig, ..., fl,}< [0, @) such that
S"(1F,,=0(v=w). This implies that " {x;: A<=p,}UQ, i.e. S” is finite. We
have proved that

(8. 21) R+g+[f+LwE, i g¢g=o.
Hence, (8. 19) holds in this case with o, =2+ w.
Case 4. i, j=0. By Theorems 8. 1 and 4. 1 we have that
o+i+j—2-+i, o +j3,
Therefore, by (8.21) and Theorem 7.6,
R+o+itj-2+[f+i 0+jli,

This proves that (8. 19) holds in this case with 2, =2+ w+i+;j—1 and concludes
the proof of Lemma 8. 2.

THEOREM 8. 2. Let i, jk=w=Ff=F+f+...+i+i=0w,; f,=w> (L=k),
0=0,=..=0,=0; y=wy,+j<=w,. Then (8.1) and (8.2) both hold if x,
has the ﬁ}HOH'f.".’“’ value:

Case 1. yo=75. Then

Bovo i Jj=0,
%= Pov+B if i=0<j,
Bovo+B+j—1 if i,j=0.
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Case 2. yo=7,+1. Then ag=pyy, +E(A=Kk),2+05, where
Be if i=j=0,

B2 if i=0<j,

f2+ow if i=0=j,
P2tw+i+j—1 if i,j=0.

o=

Proor. Case 1. y,=75. Then y,=wy" and, by Theorem 7. 3,
(8. 22) Bovo 2 [Bolk +2), wygly,:

Case la. j=0. Then y=wy, and since f,(k+2)=/f, it follows from (8. 22)
that (8. 1) holds with «,=[7,.

If = flgyq, then there is y” =" and ¢ = o such that « = ffy(wy” + ¢). By Theorem
7.4,

Bowy” +[Bo, @y + 115,
Bo+[Bo, w+ 113,
Using Theorem 7. 6 and the fact that f5, is indecomposable, we deduce that
Powy” + Bog+[Bo, 0y +owg+ 113,

Therefore, by Theorem 4. 1, x-+[f. y]4,. This proves that (8. 2) also holds in this
case with ag=/[¢70.

Case 1b. i=0<=j. In this case f is a multiple of w and, by (7. 13), f=[f, flgs-
Therefore, by (8.22) and Theorem 7.5 (ii),

Bovo+ BB, @y, +ilsor

l'herefore, (8.1) holds with o,=p4v,+f.
By Theorem 7. 4,

(8. 23) Bovo—[Bos @yo+ 115,

Therefore, by Theorem 7. 6 and the fact that f'-+[f, 114, if f’<=p, we deduce that
Bovo + B +IB, wyo + 115, (B =Bo)-

Hence, (8. 2) also holds in this case if ay=f347, -+ f.

Case lc. i, j=0. Put f=p*4i. Then f* is a multiple of @ and, by (7. 13),
p* Z[B*. jlg,. Therefore, by Theorem 7.5 (i).

BH(=D)=F+(+j—DIIB g
Therefore. by Theorem 7. 5 (ii), this last relation and (8. 22), we have
Bovo+B+(i—1DZIB, v

Therefore, (8. 1) holds with oy =foy0+F+(—1).
Clearly, p*+(i+j—2)+I[f,jl5,- Therefore, by (8.23) and Theorem 7.6,

Bovo + B* + (i +j—2)+[B, wyo +ilg,
Hence, (8. 2) also holds in this case with o, =f70+f+(—1).
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Case 2. yo=17,+ 1. We must prove that both (8. 1) and (8. 2) hold if oy = figy, +
+ X(A=k)p,2 + 0, where 0 has the value given in the Theorem.
We consider first the negative relation (8. 2). By Theorem 7. 4,

.Bn?l ?‘[;‘Gn« Wy, + ”in-
Also, by Lemma 8. 2, we have
B,2+[B,+ 1, wl§,.
O+ tio+jli, if §=o.
Therefore, by Theorem 7. 6,
Bovi +E(A=Kk)B;24 0" +[Z(A=k),+i, wy, + o +jl5,
il 0" =a. This proves that (8. 2) holds if o, has the value given by the Theorem.

It remains to prove (8. 1) in case 2. It is more convenient to re-write the standard
representation for f# in the form

B = Bibo+Biby + ...+ B by+i.

where /=w; O=b,=w (A=0D: {Bo.pl. ... B1}>={Po-B1. ... B}=. There is
¢o = m such that

Y1 =W7+ Co.
We put ¢,=0 (0=A=/). Then we may write

y=w?y,tolcogte,+... e+ 1) +j
and
oy = Powys + (A=D1 (2b, +c;)+ B (2b,+ e, —2) + 0.

Let # =(F, M, S) be a (R,, 2%g)-system and suppose that

(8.24) tp F,=p (ueM);
(8. 25) tp P(S)<f (F'ch:|F =)
(8. 26) S contains no (F, Xo)-free subset of type 7.

We will deduce a contradiction.
Since tp S=u,, we have S=8, U T,UT, ... UT,(tp), where tp Sy = flowy,.
tp 7, = f5(2b, +¢;) (A=), tp T,=pf; 2b,+¢,—2)+4.
By Theorem 7. 3,
tp So = PBowy2 T [Bolk +2), @?*y;lx,-

Therefore, since fy(k +2)=f. it follows from (8.24) and (8.25) that there is
M, e[M]* such that
(8.27) tp (So ~ U (€ My)F,) = w?y,.

We will prove by induction that there are infinite set-systems ¢, =(F, M,. §)
such that Myo> M, >...o M, and

(8. 28) tp(U(v=T,NF)=Z(v<A4)B, b, (MEM ),
(8.29) tp (U(v=AT,NP(F,))=Z(v=21)p;b,,
(8. 30) tp(U(v=~AT,~ U(ueMF,)=2(v<we,

all hold for A=/
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If /=0 there is nothing to prove since (8.28)—(8. 30) merely assert 0=0.
Now suppose /=0. Let A=/ and suppose that we havre already defined #,=(F,
M;, §) so that the above statements hold. Put

Zo = T_;_, ‘Zl = {)’1 =V= !)T‘,.
Also, let ! be the least ordinal satislying
wd=p,=Z(A<=v=Dp.b,+i.

Since (b, +1) is a multiple of @ which is strictly greater than f,, it follows
from the delinition of 0 that

(8. 31) Bi=B (b, + D=0
We note also, that
(8. 32) tp Z, =l

To see this consider separately the cases (i) 4 = /—1land (i) A=/— 1 If 1 = /-1,
then fi,=f/b+iand tp Z, =tp T, =0/(2b,—2)+ 4. If i=0, then §=p,=f, and
tp Z, = [l by =l by the minimal property of 0. If i=0, then d=f/2 and again
tp Z, =f/(2b;) =wl. Thus (8. 32) holds if 1 = /—1. If A=/—1, then by (8. 31),

tpZ, =tp Ty =05 4120 V=04 1b1s 1 + ) =,

This proves (8. 32).
By (8. 24) and (8. 28) we have

(8. 33) tp(ZyUZ)NF,=X(A=v=Dpb,+i=pb,+ 0l (neM,).
Also, by (8.25), (8.29) and Lemma 7.1,

(8. 34) tp(ZoUZ)NP(F)=Bibi+wl  (F I, |5 1=R)
Similarly, by (8.26), (8.27) and (8. 30),
(8. 35) Zoy\UZ contains no (F,, 8g)-free subset of type w(c,+1)+].

By (8. 31), tp Z, =f,(2b, + ¢;) = o). Therefore, by® (8. 33)—(8. 35) and Lemma
7. 6, there is an infinite set-system ¢, , =(F, M, ,,, S)< _#,. such that

tp ZoNF,=p5b, (MEM; ),
tp Zo N P(F541) =Pibss
lp (Zo"v |~.J(ﬂ€ Ml+I)Fp):—£U)Cl'

The last three inequalities, together with (8. 28)—(8. 30), imply that (8. 28)—
(8. 30) remain valid when we replace 4 by 44 1. Therefore, by induction, there is
Fi=(F, M;, S) _# such that |M,| =8, and such that (8. 28)—(8. 30) hold with
.=1. These three inequalities (with A =/) together with (8. 24)—(8. 27) imply that

tp 7,0 Fucﬂ;:"?;—f-f (neM)),
tp TNP(I)=Pib+i  (JF'Cf |F1=80)
* We apply Lemma 7.6 with f=p8.: g=j: r=s=bs: t=c,.
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and 7, does not contain a (_#,, ¥,)-free subset of type w(e,; + 1) +,/. This is a contra-
diction, for, by Lemma 8.1 and the definition of d.

tp TI = ﬁ! {2.-’); 4 Cp— 2) + i [ﬁ;b; o .l'l, w{('l e 1 ) ‘I”}ND'
This concludes the proof of Theorem 8. 2.

§ 9. The case of denumerable ordinals concluded. By Theorems 4.2 and 4.4
(and the continuum hypothesis (%)), the relations

a—~[f. 7l and a~[B, vl

are equivalent if @ =w, and m=§,. Therefore, if m" =8,. f, =, and o, has
the value prescribed by Theorems 8.1, 8.2, then oy —~[fi. ] % and a-+[f, y]3 if
L=y

In this section we examine relations of the form

9. 1) a—[B, ylk

for m” =8, and denumerable =, i, p. Assuming () it is only necessary to consider
the case m—=8,. For, if m"=2%. 8, (z not necessarily denumerable), then a simple
argument shows that (9. 1) is equivalent to

a (. ).

Thus, for denumerable ordinals, it suffices to discuss (9. 1) in the special case m=¥§, .
We show (Theorems 9.2, 9. 3) that for given fi, y =@, , there is o, =w, such that

{9' 2} 9y :[ﬁ' }']N 2
(9. 3) a—+[f, 71§, (r=o,).
LemMvA 9.1, If f, 7=, then oyf=[wf, oy]y,.

Proor. Let 7 =(F, M, S) be a (R,, wyf)-system such that tp F, =wff (e M).
Since tp S=wyf, we may write S= U (A=) S, (tp), where tp S,=wy (L=f).
If € M, then there is A(u) = ff such that F, (15, is finite. Hence, there is M’ [M]*
such that A(p) =4 (ue M”). Since S, contains only countably many finite sets, there
is M”e[M’]¥t such that F, (S, =4 (ue M”). The set S; ~A is (#, 8,)-free and
has order type w7y.

LemMA 9.2, (i) If O=i=w and y=w,, then y+(i—1)=[i, y]y,. (i) If r,s=w
and y=w*=w;, then wy(r+s)=[or, wy(s+1)],.

ProoF. (i) Let /=(F, M, S) be a (8,.y+i—1)-system such that tp F, =i
(ne M). Then there is M"€[M]™ such that F,=A4 (ueM’). Then tp(S~4)=y
and S~4 is (F, §))-free. (i) Let S=U(A=r+55; (tp); tp S;=wy (A=r+35).
Then tp S=wy(r+s). Let #=(F, M, §) be a set system such that |[M|=§, and
tp F,=or (ne M). Then there are sets M"€[M]¥ and N[0, r+s) such that |N|=s
and F,(1S; is finite for e M’. 2 N. Since 7'= [J(AL£N)S, has only countably
many finite sets, there is M”e[M']¥t such that F,NT=B8 (ueM”). The set T~ B
is (7, 8,)-free and has type =wy(s+1).

The negative result Theorem 9.1 is given in more general terms than we im-
mediately require in this section.
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~
i

(%) THEOREM 9.1. Let a=0; O<fl<w,i3; O=<p,=p,=...=9,, <W,47;
Y=Yo+ 91+ + T, Then yB-+loB+ 1,413, ,.

Proor. Let §'= U (A =w,f)S; (tp); tp S; = 55y Where n(1) =w, and 4 = w,o(2) +
+n(4) (A=w,f). Then tp S=yf. Now consider all sets B S such that tp B=aw,
and [BNS;|=1 (A=w,f). Since 1=|S;|=R8,.;(2=w,p) and {8371 =84, by
(%), it follows that there are 8, such sets B, say By, B,,..., B, . . LetM=
=[0, m,.,). We will construct a set-system ¢ =(F, M. S) such that

(9. 4) F,NB,#0 (v=p=w,,,),
©.5) FNSI=1 (=0, i<of).
Let p=w,; . Then {B wp By ¥ =Gy, ....C,,}* where 0 =w,. Since each

C is a B, there is {4,, .. ,.,}4 < [0, w,p) such that Ct,ﬂS,, =0 {o-af)) Put F,=
=U(e<0C, NS, Clearly hasanon -empty intersection with each set C, (ﬂ{(})
Therefore, (9. 4) holds Also, (9 5) holds since 4, ..., 4, are distinct.

If §*is a comp]n.te subgraph of %(#), then |S’ﬂ S, =1 (A=w,p). Therefore,
tp 8" =w,f+ 1. If $”C S has type =y, then there is #<=w,,, such that B,c S”.
Therefore, F, ﬂS”.——‘-O (t=p=e,44)1.e. 8 is not (F, 8,4 ,)-free. This proves
the Theorem.

Theorems 9. 2, 9. 3 show how to find the ordinal o, such that (9. 2) and (9. 3)
hold for given fi, y =w,. Theorem 9. 2 deals with the trivial case of finite y. In this
case (9. 3) can be replaced by the stronger relation (9. 6) — we omit the proof.

THEOREM 9.2. If f=w, and 0=y =w, then

oy =B, Yy,
9. 6) a8, 7]y, (@=uy),
where
- {ﬁ i B=p",
Bity if B=Bi+1.

THEOREM 9. 3. Let byijk=w; f=w*Bot+obti=w,; y=y9+ ... 9 +j=
=m; =0 (A=k): po=...=0,=0. Then (9.2) and (9.3) both hold if =, is
given by:

Yoo if i=b=0

Po(@Bo+b—1)+7 rf i=j=0, b=0,
volwpo+b—1D)+y+w if i=0,j,bh=0;
Yol@fo+b) +y+(E—1) if i

Proor. Case 1. i=b=0. By Lemma 9. I,
9.7) Powfo=[w? By, yolk l]},m-

This implies that (9. 2) holds with o, =y,mf,.
Let o =yomff,. Then there is ff, =f, and r=wm such that o= y,(wf, +r). By
Theorem 9. 1,

.11:

Po@fy +[w?fy + 1, ?u]?z.-
yor —=[wr+1, '}’o}il-
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Therefore, by Theorem 7. 6, «-+[w?f, +wr+ 1, y]%,. This implies that (9. 3) also
holds with «, = y,0f,.

Case 2. i+b#0. There is ¢e=ksuchthat yo=...=7p.=7.4¢. Put y'=7.,,+
g

Y i i=j=0;
d=19"+w if i=0=j;
VAHG+i=1) if i=0.
Also, we put _
| o if i=0 i is0
lb—1 i i=0" "o i i=o.
With these definitions for 97, § and = we have, by Lemma 9. 1 and Lemma 9. 2 (1),
that
(9. 8) d=|m, ¥ +Jly,-

Let S=8S,US,US,(tp); tp Sp=70mf0: tp S, =750’ +¢); tp S, =46. Then,
by definition of b’, ¢, 6 we have tp S=u,, where «; has the value given in the state-
ment of the Theorem for the case i +h=0. Let ¢ =(F. M, 5) be a (8, o, )-system
such that tp F, =f (uc M). We will assume that S does not contain a (#, 8)-lree
subset of type 3 and deduce a contradiction.

Since y4(k + 1) =7, it follows from (9.7) and our assumption that there is
M’ c[M]Y such that tp F, (1S, =w?B (ue M’). Therefore,

(9. 9) ' tp £,N(S,US,)=wb+i (e M’).
By Lemma (9. 2) (ii), we have
Polb +c)=[wb’, yole+ Dlg,;s 700"+ c)=[e(b" + 1), pocly, -
Therefore, since w(h"+1)=wb+i and y,(c+1)=7, there is M”c[M']* such that
(9. 10) tp F,N S, =wbh’ (e M”),
(9. 11) tp (S, ~ U(eM")F,)=yqc.

(9.9) and (9. 10) imply that tp F, (1S, = (ue M”). Also, (9. 11) implies that there
is no (7", 8,)-free subset of S, of type y"+j, where #”=(F, M”, S). This contra-
dicts (9. 8). Therefore, (9. 2) holds if &, has the value stated in the Theorem.

It remains to show that (9. 3) also holds in the case i+b=0. We consider
the various sub-cases separately.

Case 2a. i=j=0=b. If o =yy(@fy+b—1)+7, then there is y* =7 such that
%= yolwfy+b— 1)+ y*. By Theorem 9. 1,

9. 12) Yo(@fo +b—1)+[w?ho+a(b—1)+ 1, yolg -
Since y* +[1, 71§,. it follows from Theorem 7. 6 that

yolwfo +b—1)+7* +[w?hy+ob—1)+ 1, 7],
Hence (9. 3) holds with o, =ypy(wfiy+b—1)+ 7.
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Case 2b. i=0=j,b. Let x=0, =y5(wfy+b—1)+ 73+ w. Then there is 0 =w
such that o= }'n{(uﬁ +b—1)+y+0. From Theorem ? 6, (9. 12) and the trivial
relations

Yo+ e F Wt Po+ oo+ 11,
and j+ 0-+[w, 11§, we deduce that
Yol +b—1)+y+0+4[w?fo+wb, yo+ ... + 3 + 113,
This implies (9. 3).

Case 2c. i=0. Let a=o, =ywfy,+b)+y+(i—1). Then there is @=7p+

+(i—1) such that o =yy(wf,+b)+@. By Theorem 9.1, y(wfy+ b) [0, +

+wb+1, y]%,. Therefore, by Theorem 7.6 and the trivial relation ¢@--[i, 713,
x-++[f, 715, This completes the proof of Theorem 9. 3.

§ 10. Non-denumerable ordinals. Although some of our results are expressed
in more general terms, the discussion in this section is mainly directed towards
the relation

(10. 1) (8,91},

in the case when 2 is an indecomposable ordinal of cardinal &,. Even in this restricted
form, our discussion is incomplete. We are able to decide the truth or otherwise
of (10. 1) if z is indecomposable and o = w$¢*!. The first relation of this kind which
we cannot decide is

PropLem 4. (7)) of Mo —~[o?t!, ow]f,
The section is concluded with a discussion of relations of the form
2
a—=[B, 1%,

when |z = &, . Essentially we consider only the case when a is a power of w, and,
even for this case, our analysis is incomplete. In Theorem 10. 9 we show that

wt~[w}, 091, if o=i=w,

and this result is best possible in the case cf (1) = by Theorem 10. 10. In Theorem
10. 15 we establish the stronger relation

of~lof, R, (=0

provided cf (1) =@ and @ =4 =w,. Also, in Theorem 10. 14, we prove the negative
result that
o -},_[th: m+2]&"
However, we do not know il
(1) o —~[oy, o?t'];,
for any 4=, (Problem 6).
All the negative results of the form (10. 1) in this section derive from Theo-

rem 9. 1 and the next three theorems.

(%) Taeorem 10.1. Let v=0:;0=9ff=w,.5: f=w(y+1). Then affi-
[,y + 1, a3, |
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Proor. There is d =w, such that f=w,y+4d. By Theorem 9.1, aw,y-+
+loyy+1, 0w, 5 also, ad-++[l,uw]§,,,. Therefore, by Theorem 7.6,
a(w,y +0)+[wy+ 1. aw]i ,,. This implies the Theorem.

TueoreM 10.2. Let v=0;0=afi<=w,,,. If y=Z(e=P)4A, whenever i,<
‘("{uv-lll (Q"/'.IBL [hel‘l qﬁ+[a{9v+l’ y]§v1-l‘

Proor. If f=wm,,, the result is obvious. The result is also obvious if 2 =w,,,
since, in this case, 2ff =y. We shall therefore assume that o, f=w, .

Let tp S=of. Then S=U(o=p)S, (tp)., where tp S,=a (¢<p). Let M=
=10, m‘,H) and let ¢ be a (1 —1)-mapping of M onto [0, f). Put T,=5,,=
={X, i T=W,4,}x (6=w,;,). Consider the set-system #=(F, M,S), where

Fo={x,: 0<p<T<wy4} (ue M).

If S’ S and tp S"=aw,., then there is M’¢c [M]¥++1 such that S’ T, =0
(LEM’). Let x,.€ S’. Then there is g€ M" and m=w,, , such that =g and x,. ¢ §".
The elements x,. and x,, are not joined by an edge of the graph % (.#). Hence % (%)
contains no complete ‘,ub-oraph of type aw, .

If S”c S and tp S” =17, then there is o < ff such that |S” 1S,/ =8,.,. If peM
and p=o=¢ (), then there is t such that u<=t<=w,,, and x,. €S". Hence,
S"MF,#0 if u=a. Thus, there is no (£, R, )-free set of type y. This proves
the Theorem.

(%) TaeoreM 10.3. If A=w,, then A+[w,, o],
Proor. It has been proved in® [7] that
Iy, F, ..oy 0D

Therefore, if tp S= 4, there are disjoint sets S, S (v =w) such that S=U(v=wm) S,
and tp S,=wl™! (v=w). )

We assume lhal A=w?. Then there are N, sets, say By, ..., B, such that |B,| =R,
and |B,M1S,|=1 (¢=w,; v=w). Let M=[0, »,). Using the same construction
asin the pr oofofTheorem 9.1, it is easy to see that there is a set-system 7 = (F, M, S)
such that [F,MNS,/=1 (j.‘.EM v=w) and F,(B,#0 (¢=p=w,).

If S"is a complete sub-graph of (7). then |S"MS,|=1 (v=w). Therefore,
S is countable and tp 8" =, . If §”c S and tp S” = w{, then S” intersects infinitely
many of the sets S, (v=w). Hence B, S§” for some ¢=w, and F,[15"=0
(0 =p=mwm,). Thus, §” is not (#, 8,)-free. This proves the Theorem.

The next Theorem generalizes Theorem 6. 2 in one direction.

(%) TueoreM 10.4. Let m=8,: ax=wm)=v; f=Z(¢<=v)f,;: 0=f,=
=f,=...=p,. Then =[x, fl,.

Proor. let #=(F, M,S) be a (m, f)-system such that tp F, =z (ue M).
Then S= U(Q"-\)Se (tp), where tp S,=pf, (e<v). Let F,={o: F,(5,#0}
(ueM). Then tp F—<o (ueM). By TheOrem 6.2, v=[x, v],. Hence, there are
sets M’, N’ such that |M’|=|N'|=m, M'c M, N'c[0, v) and ¢4 F, (0€ N": nc M").
The set U(eeN")S, is (#, m)-free and has type f.

& [7], Theorem 5.
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(%) THeoreM 10.5. If 8, =R,:a, 0=0;

Bl =N, then
Ooaf=lo,p, ooy,
Proor. By Theorem 4. 6, it is enough to prove that
(10. 3) w2=[w,, 09y,

Let #=(F, M, S)bea(R,.m»x)-systemsuchthat tp F;=w, (A M). We may assume
that S is the set {(¢, 0): ¢ =w,; 0 <=a} ordered anti- ]cxlCOEmpthd]]y For A€ M, put

F,={o:0=wo,(0.0)€F, for some o-=u}.

By (6.2), we have o,=[w,, »]y,. Therefore, since tp F; =w, (A€ M), there are
M’ e[M]% and AC—[O w,) such that tp A =wm, and F,,ﬁA 0 (ue M’). The set
{(0,0): 0€A: 6=a} is (F, §,)-free and has type . This proves (10. 3) and hence
Theorem 10, 5.

Although not required for the discussion of (10. 1), we include here the following
result.

Tueorem 10.6. If v=0 and o=w,,,, then

W, 4o ::Q[Q)S)+ 1s 0y 4 Z{I] Y

w2t

Proor. Let [M|=m=¥8,,, and let S={(4 0): A<=w,,,; 0=u} be ordered
anti-lexicog:aphlca[ly Let # =(F,M,S)bea (m, w, . ,u)-system such that tp F, =g,
(e M). Since m=m" =R, it follows that there is r=w and M’'c [M]" such that
tp F, =}, (peM’).

Suppose that %: whenever S'C S and tp S"'=w, -2, then there is Xc[S']<"
such that j{;:rM’ F,(1X=0}<=m. Then we define ordinals ¢, ty=m,,, and
sets X, S for 0 =}, by induction in the following way. Let f =], ; and suppose
we have already deimed Oy T, =, and X, § for ¢ =0. Then we can choose
g =w,., such that o, 1,=0p (p=0). Put T,={(4, 0)iop=A<=w,,,: 0=0a).
Then tp Ty =w, ;2. Tllcreforc._ by 7, there is X, €[T,)=" such that

(10. 4) {ueM’': F,N X, =0} <m.
Since |X,| =m’, there is 1,—=w,, , such that
(10.5) Xyc{(ho):ioy=Ai<1y g=a}.

It follows by induction that there are oy, 1,<®,., and X, § for 0=}, such
that (10. 4) and (10. 5) hold. Moreover, by the construction we have

(10. 6) O, =T, <05<T, (p=0=0wl.y).
By (10. 4), there is some pe M’ such that F,(1X,=0 for all 0 =w},,. Therefore.
by (10. 5), there is 4, and g, such that 6, = 45 =7,: 0y =2 and (4j, g,) € F, (0=} ,).

By (10. 6). we see that tp {i,: 0=w], }=wl,,.
It has been proved in [7] that, for a=w,,,,

Wy (@54 )L

It follows from this partition relation that there is <o such that tp {4,: 0 =@’
0y =0}=w, . Since {(4p. 0):0<=w,,; gp=0}CF,, it follows that tp F,=wl,,.
This is a contradiction.
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Hence % 1s false and there is a set "< S such that tp 8" =w, , ,2 and
(10. 7) HueM’: F,NX=0}=m (Xe[ST<m).
LetAd={o=0o:[{(4 0): A=0w,, >} (1 S’| =m). Then tp 4 =a. Consider any sequence”

-

0gs ---s O, ,, Which repeats each ordinal, p€ 4 R, , times, i. e. such that
(10. 8) Ho,: y=w,,2: 0,=0}l=m  (e€A).

Let ¢=w,,, and suppose we have already defined x,€ 5" and pu,eé M’ for y—=e.
Then we can choose

(10.9) X, €8 N{(4, ¢)A=w,1 )}~ U(y<e)F, U{x,}.
Also, by (10. 7), there is yu,€ M"~{u,: y =g} such that
F, M{xg, «np X} =0.

This defines by induction X={x:6<=w,;,}, S and M"={p,:e=w, .}, M
such that F, X =0 (u€ M"). Hence, X is (#, m)-free. In addition, if o€ 4, then
by (10. 8) and (10. 9),

-

XN {(4, 0):h<w, ., }| =m.

Therefore, tp X =w,,,2. This proves Theorem 10.6.
By the last Theorem we have, in particular,

(10. 10) w0 =[wf, W]y, (o0 =w,).

This is not the best possible relation when o = 1 since, by Theorem 10. 4, w, =[f, w,]y,
(f =w,). We do not know if (10. 10) is best possible in the case « =w. Thus, we have
PROBLEM 5. (7) w,o=[w]+ 1, w,0]y,.

Incidentally, the condition @ =, , in Theorem 10. 6 cannot be relaxed. For,
by Theorem 10. 1, we have w,w, —[w, + 1, w,m,]5,.

We require the following two lemmas,

LemMA 10. 1. Let s,n=w; =’ n=f<=w,. Let SoOB=(1=[)B, (tp):
tp B,=w| ™ (A=R). If #=(F, M, S)is a set system such that |M| =R, and®

(10. 11) B Q(4).

then either (i) there is a set X < S which is a complete subgraph of (. #) and |X 1\ B,| =8,
(A=P), or (ii) there is a (F, 8,)-free set Y < B such that tp Y =w] ™ n.

Proor. We shall use induction with respect to n. For #=0 (ii) holds trivially.
We therefore assume that n =0 and that the result is true with n—1 in place of n.
We will assume that (i) is false and deduce (ii).

We will show that there is some A= f and a set M’ €[M]® such that

(IO. 12] tp (B}.N l-Jl(ﬂE M') FF)‘:G)}-'—"-

7 We may assume o =0.
5 We remind the reader that Q(7) = {xe S:|{uc M: x< F.}| = [M|}.
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Suppose this is not the case. Then, by the hypothesis (10. 11),

tp (B, ~V(x)=wit* (A=f:xER),
where V(x)= U(uec M: xe F)F,~ {x} is the set of points of S joined to x by edges
of the graph %(_#). Let Ay, ..., )"“1 be a sequence of ordinals such that 2, = f (1 =w))

and
{0 =w,:2y=2) =%, (A=p).

Let 0 =, , and suppose we have already defined x,¢€ B for ¢ = (. As we have already
remarked,

(10.13) w]* =(w] *).

Therefore,

p U(e=0)(B,~ V(x,) =i (A=p).

Hence, there is x,€ B, ({0 =0)F(x,). The set X={x,: 0=, } is a complete sub-
graph of %(#) and _X 1B, =8, (4= f). This contradicts our assumption that
(1) is false. Hence, there is some /£ c.-ﬁ and M c[M]* such that (10. 12) holds.

If n=1, then (ii) holds with ¥=B, ~ U(uc M")F,=Y,. Suppose n=1. Then
the hypothesis ff 'rnimplicslhntﬂ =w. Hence, tp [4, ) =1, since f# is indecomposable.
Let ¢ =(F, M’, S)and let B'= (1 =p0=f})B,. Then it follows from the induction
hypothesis and the assumption lhdl_ (i) is false, that there is a (', 8,)-free set Y — B’
such that tp Y =®| ™ (n—1). Then the set Y=Y, Y is (7, RE)-free and has
type w| " n. This proves the Lemma.

Lemma 10.2. Let r=w;0=fF=w,; B=U(L=B)B,(tp); BC S:lpB,=w|'"
(A=p). If |M" R, and § =(F, M, S) is a set-system such that BONO(¥)=0 and
tp B, F,=wi ™" (A=p: u€M), then there is a (f, \,)-free set X S such that
X le“—&, (A=p).

Proor. Let Ay, ..., 4, be a sequence of ordinals such that i,=f (0 =w,)

and such that [{0 ‘_':“Jl:{ili:)'H:&l (A=p). Let 0=w, and suppose we have
already chosen x,€B and p,6€ M for g—=0. By (10. 13) and the hypothesis that
tp B, F,=w}*" (A=f; pe M), it follows that there is

Xg€ B~ U(e=0)F,, U{x,}.

Also, since each x¢ B is a member of only countably many of the sets F,, there is
HoE M~ {ug. ..., iy} such that
Mg Xy =10:

Ha

Put X={x,, .... %, } and M'={u,, .... A, ). Then XMNF,=0 (ueM’) and
[X(MB,)| =8, (A= ,G’) This proves Lemma 10. 2.

THeOREM 10. 7. Let n,r.s<=w: f=0: n=f<=w,. If f=[x 1]y, then
wl|'+.s'+t!')l_._[mti+ialr wsli—In]?\._l

ProOF. Let # =(F, M, S) be a (¥, o, 5!f)-system. We will assume that
there is no complete sub-graph of %( #) of type @} T'a and deduce that S contains
a (#,8,)-free subset of type wi"'n.
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Suppose that tp Q(#) = "' . Then O( )= U(A<p)B,(tp), where ' =" 8
and tp B, ="' (A=f’). By the hypothesis ’ is indecomposable and n=f’ <=, .
By the assumption that %( #) does not contain a complete sub-graph of type & 'a
(=w,f), it follows from Lemma 10. 1 that there is a (#, 8,)-free subset of Q(#)
of order type w$*!n.

Hence, we may assume that tp Q(#)=tp S. Since tp S is indecomposable
we have (e. g. see [7]) that

tp S—(tp S.tp S)".

Therefore, B= S~ Q(#) has type w;"*"'f. Therefore, B= (1= f)B; (tp), where
tp By =wi***! (A<f). For pueM, put F,={i<B:tpB;NF,=wi*'}. Since
F,(ue M) is a complete sub-graph of 4(#), it follows that tp F,, =« (u€ M). The
hypothesis =[x, 1]y, implies that there is M’ ¢ [M]¥ and n=f such that 7§ F,
(LEM’), i.e.

(10. 14) tp F,NB,<wi*5  (ueM’).

We may write B, = (¢=w})T,(tp), where tp 7T,=w(t! (¢ =w}). By (10. 14),
tp F,NT,<w\*! (¢9=wj; p€ M’). Therefore, by Lemma 10. 2, there is a set Y B,
such that ¥ is (7, &;)-frec and [V 7,/ =8, (e =w}). Hence tp Y=w{t'. Ifn=1,
there is nothing more to prove. If n=1, then f=w and the set U(zx<=21=p)B;
also has type o("™**!ff. Now a simple induction argument on n achieves the result.
We omit the details.

The results we have proved so far are sufficient to analyse (10. 1) for inde-
composable ordinals x=w{. The case z=wm, has already been dealt with in §9.
The case w; = =w{ is summarized by the formulae (10. 15)—(10. 24). In these
formulae, r+s=m=w;n=w; i u, v=w,.

(10. 15) ot = [4, o7y,

(10. 16) it = o, 1y,

(10.17) oftt = [0 o,

(10. 18) ot - [0t o TR,
{10.19) ot 4+ [T + 1, ofoli,.
(10.20) ottt = [l A, @i nlg, .

(10.21) Wt @Y o [t Y, ottt ! m”"]m .
(10.22) ol Y 4 [0 41, o T e TR
(10.23) @t 1ol ety — [pir Lo YAV, aitia)l |
(10.24) e A S O

(10. 15) follows from Theorem 10. 4 and (10. 16) follows from (6. 15). (10. 17)
follows from Theorem 10. 7 and the fact that 1=+[1, 1],. (10. 18) is a consequence
of Theorem 10.2 since w{*'+1=X(¢=w{*"i, if I, <o, (e<=wi*!). (10. 19)
is an immediate deduction from Theorem 10. 1. Since w, =[/4, 1] by (10. 15), Theorem
10. 7 implies (10. 20). (10. 21) follows from Theorem 10. 5. The negative relations
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(10. 22) and (10. 24) both follow from Theorem 9. 1. Finally, (10. 23) follows from
Theorem 10. 7 and the fact that ' ** ™ =[w' **** 1]¢ (in fact, by Theorem 10. 5,
{!)I+u+\ﬂ[0)]+u+\ CJ] }

The relations (10. 17} (10.20) and (10.23) refer only to 2-graphs and we cannot
prove the corresponding results for 3-graphs. For example. we cannot prove either

(M w0 ol
or
(7 of -], o},
However, we can prove

{'10 25) (I)’iH—l -4-[{,:) U}m+1}¢ o
and
(10.26) o o —~[w,m, wp TN,

which respectively strengthen special cases of (10. 17) and (10.23). We omit the
details of (10. 25) and (10. 26) since the method used to establish these results is
rather similar to that used in the proof of the next theorem.

Tueorem 10. 8. If n=awm, then o ~[w?, oi]g .

Proor. Let #=(F, M, S) be a (8,,®7)-system. We will assume that there
is no (7. 8, )-free subset of § type w" and deduce that there is a ((#, = &,)-complete
subset of type wf.

Since F, (ne M) is (7. = Rg)-complete, we may assume that tp F, =} (u< M).
Hence, there is r = and M"€[M]® such that tp F, =} (neM’).

Suppose there is a sub-system #”c #'=(F, M’, S) such that | #”|=§, and
tp (S~ Q(F"))= S 1. Then, by lemma 10.2, S contains a (#”, 8,)-free subset
of type w. This is a contradiction since such a set is also (7, 8,)-free. Therefore,

(10.27) tp (S~Q(F) =it  (F'CH5 1" =8y

Since tp S=w?, we may write S=U(Ll=w?)S; (tp), where tp §,=awi""
(A=w?). Let [0, 09)={Ag, ..o A, }»- If XES we write M'(x)={uc M’ :x¢ F;}:
Also, if XS, we put M’ {X)— M EeX)M'(x)={uc M’ : XC F,} and we write
Jx=(F, M’ (X), S).

Let ! =, and suppose we have already chosen x,€ S for ¢ =0 in such a way
that [M'(X)| =8, for every finite set X < {xg, ..., Xy}. Then, by (10. 27),

tp (S~Q(F)) <o (1X] =R X {Xo, -.on To))-

Since there are only countably many finite sets X' {x,, .... ¥;} and since o}*" —

— (7t it follows that we can choose

Xy € SAHOQ(fx),
where the intersection ranges over all such finite sets X. If X is any finite subset
of {Xg,...,fo} thenx, € O(Fy), i.e. |{n€ M'(X): x,€ F,}| =8, and |[M’ (XU {x,}| =, .
This defines. by induction, a set Y= {x,, ..., £, } = § such that

IM(X)[ =8,  (XE[Y]M).
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Thus Y is (7, = Ng)-complete. Also, since x,€S,, (0=w,), we have tp V= w{.
This proves the theorem.
The relation given in Theorem 10. 8 is clearly best possible since

(10. 28) o?+[o+1, of]g,
by Theorem 9. 1. In contrast to this we have by Theorem 10. 5
(10. 29) of =[w, ofly,.

In addition, if g, v =, n is finite and 7=}, then by Theorems 10. 5 and 9. | we
have respectively

(10. 30) of o't = [, wf ol tialy,,
(10.31) of@' Y 4 [0tV 4 1, of o' HHE .

These relations,” together with (10. 15)—(10. 24), give an analysis of (10. 1)
for indecomposable ordinals x=m¢*'. In fact, the analysis can be extended slightly
to include the case x=wm7*!. By Theorem 10.4,

(10. 32) wftt =4 0Pt g, (A=),
and Theorem 10. 3 gives

(10. 33) ot oy, 0f]y,

We will prove that

(10. 34) ot ~[wyi, ollf, (A=w:n=w).
This is best possible since, by Theorem 10. 2,

(10. 35) oY 4 [wP !, @, + 113,

Finally, to complete the discussion of (10. 1) for the case x=w9*!, we will also
show that

(10. 36) O[OV O [

This seems to be as far as we can go using the present methods. We omit the details,
but we can analyse relations of the form

w? o —~[B, 7§,
if f=w¢*! and Theorem 10. 2 shows that
o o+loft, mo+ 11,
However, as we remarked at the outset of this section, we cannot prove or disprove
() ofH'o-[wpt!, o,0lf,.

s and (10.33).
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Proor oF (10, 34). Let #=(F. M, S) be a (§,,w{"")-system and suppose
there is no complete sub-graph of #(#) of type w?Ad. Then tp F,=w{i (e M).

We may write S= (¢ =w,)S, (tp), where tp §,=w9 (¢-=w,). Since ;= [4, @]y,
by Theorem 10.4, we can assume that
(10. 37y tp F,NS,=wf (REM:; 0 =wm,).

Suppose that there is some ¢ =m, such that tp (_S,_, ~0(f)) =Y. By (10.37)
there is r—=w and M’'c[M]¥ such that tp F,MS,=w] (neM’). We may write
S,~Q(7)=U(A=w?)B; (tp), where tp B;_(_u’,“ (. =wY). Therefore, by Lemma
10. 2, there is a (7, ¥,)-free set X< § such that (X B, =8, (A=w?). Therefore,
tp X =w?. We may assume, therefore, that

tp(S5,~0(f) =0t  (¢=0,).

Since wf —~(w?)}. it follows that tp S,(10(7)=w? (¢=w,). Therefore, Q(F)=
=1J(v= w‘{”)zt.. (tp), where tp A, =] (v=w?*"). Since there is no complete
subgraph of %(#) of type w¢*t!, it follows from Lemma 10. I that S contains a
(.7, 8,)-free subset of type wf*!. This proves (10. 34).

Proor ofF (10. 30). Let #=(F, M,S) be a (®,,®{"")-system and suppose
that there is no complete subgraph of %(#) of type w$¢*'. We must deduce that
there is a (7, &,)-free subset of type w,.

Suppose tp{S CO(F))=w9t. Then S~Q(F)=J(l=w)B, (tp), where
tp B, =Y (1=w,). Since tp F, =w¢™ (ue M), it follows that £here is A(u) =w,
and s(u)=w such that

tp F,N B, <wi® (HEM: A()=i=w,).
There is M'€[M]* and s=wm such that s(u) =5 (g€ M"). Therefore,
tp F,N B, =wi (WEM": A(u) = A=w,).

Let m=w, and suppose we have already defined x, €S8 and pu,€ M” for g =n.
There is some A= m, such that 2= 4A(u,) for all ¢ =n. Therefore,

tp U(e<n)F,, N B, <wi*!

and we can choose x,€B;~ U(¢=mn)F,, U{x,}.Since each element of S~ Q(%)
belongs to only countably many of the sets F,, it follows that there is p, e M’ ~
~{ug, ..., iy} such that F, (M {x,, ..., x,}=0. By induction, it follows that there
is a set X:{.\‘a, ,,,.}#CS and M” —{;10, coos fly, }» © M such that X F,=0
(HeEM”), i.e. X is a (#, §,)-free subset of cardinal Ny .

We may therefore assume that tp Q(#)=w$"!. It now follows from Lemma
10. 1 that there is a set Y Q(#) which is ((#, 8,)-free and tp Y=w,. This proves
(10. 36).

We conclude this section by studying relations of the form

(10. 38) a—=[B, 713,

in the case x| = 8,. We essentially consider only the case when « is a power of w,.
It is convenient to use another symbol in our discussion,

(10. 39) o —~[[B, 7ls,
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which is related to (10.38). The statement (10. 39) means the following is true.
Let #=(F, M, S) be any (X, ®)-system of sets such that (i) tp F,=f for all n€ M,
(i) each element of S belongs to only a finite number of the se ta F,. Then there is
a (. Ry)-free subset of S of type y. If a system # satisfies (ii) we will say briefly
that # has the finite property. It is easy to see how the symbol (10. 39) can be gene-
ralized but we have not investigated such problems.

If f is indecomposable then (10. 38) is stronger than (10. 39). For suppose that
p is indecomposable and that (10.38) holds. Let # =(F, M, S) be any (8,, )-
system satisfying (i) and (ii). These conditions imply that each point of S is joined
by edges of %(#) to a set of order type less than . Hence, there is no complete
subgraph of %( #) of type ff. Now (10. 38) implies that there is a (7, 8,)-free subset

of type 7.

[t is an easy deduction from the partition relation
(10. 40) @} (@)L (n=w)
that
(10. 41) ' =[wh, ofly, (n=w).

Since (10. 38) is stronger than (10. 39) for indecomposable ff, our Theorems 10. 9—
10. 15 together with (10.41) and (10. 49) give a complete analysis of the symbol
(10. 39) in the case 2 =wm{ (A=wm,). We are unable to analyse (10. 38) with the
same completeness and there remain several open questions.

TueOrReM 10. 9. If' % is indecomposable, ¢ =u=w,, then

a—[o, @f1%,

Proor. Let # =(F, M, S) be any (8, rx}-system of sets such that § contains
no (7, 8y)-free subset of type w{. We will deduce that there is a complete subgraph
of 4(7) of type «. We can assume that

tp F,=a  (LEM).

Suppose that whenever #"=(F, M’, S) is an infinite sub-system of # and
S”is a subset of S of type 2, then S* contains a (#’, 8,)-free subset of type ",
for any n<=am.

Let n=wm and suppose we have a!rcady defined T, S, M, c[M]% and pu,c M
for v—=n so that tp T =wy, Mo M, :J OM,_, and so that T,(1 F, =0 if v=n
and p€ M, U {ug, ..., i,}. The set §"'= S~ U(v<=n)T,UF, has order type o There-
fore, by the assumpuon contained in the last paragraph, there is 7, 8" and

M,€ [M,_,]% such that tp T, =} and T, F,=0 (u€ M,). Now choose u,€ M, ~
~{lgy ooy fiy}. The set T= U (ne )T, deﬁned inductively in this way has order
type at least w9 and is (7, 8,)-free since TN F,=0if p€{uy., ..., A,} . This contra-
dicts the initial assumption that there is no (j' 2\0) free subset of type oY

We may therefore assume that there are n=w, M’ c[M]¥ and S‘ CS such
that §” has type « and does not contain any (_#’, 8,)-free subset of type w’, where
FJ'=(F, M, S).

If N is any finite subset of M’, then V.\ ={xeS": {neM": xc F,} =N}
(7', Ro)-free and therefore has type less than w'. Therefore, in view of the relation
(10. 40) and the fact that M’ has only countably many finite subsets, the set V=
= U(Ne[M]<®0)Vy has type less than wf. Therefore, tp (S~ V)=a and each
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clement of S"~V belongs to infinitely many of the sets F, (u€ M’). Therefore,
since there is no (7, 8y)-free subset of S’ with type w', each element of S~V
is joined to all the elements of S”~ V by edges of the graph %(#) except for a set
of type less than of. We may write 8"~ V=U(A<=a)B, (tp), where tp B, =w.
Let f be any (1, 1) mapping of [0, @) onto [0, ). Let 0 =, , and suppose we have
already chosen elements x,€ By, for v=0. Since each point x, (v=0) is joined
to all the points of B, by edges of the graph ¥(#) apart from a set of type less
than wf, it follows from (10. 40) that there is x,€ B, such that {x,, x,} is an edge
of 4(¢) for all v=0. The set X={x,:0 =w,} defined by induction in this way
is clearly a complete subgraph of ¥(#). Also, tp X=tp {/(0): 0 =w,)=x. This
proves Theorem 10. 9.
The last theorem gives the best possible result in the case cf (x) = .

THeOREM 10, 10. If 2=, and cf (&) =w, then
oo+ [[oy @F + 1y,

ProOF. By the hypothesis, x =a5+ ... +d,, where 0 =opg =o, =... =4, =u=0,.
Let S=U(l=w)S, (tp), where tp S, =u, (A=w). Then tp S=u. In view of the
partition relation
#;4(0y, o, ..., ©9)! (A=w)

already referred to in the proof of Theorem 10. 3, it follows that there are disjoint
sets A4,, =8, (v=w) such thattp 4, =w} (v=w)and S,=U(v=w)4,, (A=)
Let M =[0, w) and consider the set-system #=(F, M, S), where
F,=UG=p=W4;, (1<o).

Clearly, tp F,=ay+...+o, =« (n=w) and each element of S belongs to only
finitely many of the sets F,. Suppose that C is any subset of S of type w¢ - 1. Then
C is not cofinal with S and there is some 1= such that tp CNS,=w}. Let
{tto p11. ...} < be any infinite subset of M. Then there is k = such that p, =2,
If CMF, =0 then CM S, U(v=p)A4;, and we obtain the contradiction that
tp C(1S;, =w?. This proves that C is not (£, 8y)-free and completes the proof
of Theorem 10. 10.

The condition cf (zx) =w in Theorem 10. 10 is a necessary one.

Traeorem 10: 11, If o =A<=w,, then ot ~[[w{™", of ',

Proor. Let #=(F, M,S) be any (¥q,®f"!)-system which has the finite
property and is such that tp F,=w}*! (ue M). If x€ S we write M(x)={ucM:
XEF}

Let 7= and suppose that we have already defined N,, ,, T, for ¢ =n so that

(10. 42) N, € [M]=¥e,

(10. 43) HEM~ U(a=0)N,,

(10. 44) M7l (o0=0),

(10. 45) T,cS~U(e=0)F,_ .

(10. 46) T, is a cofinal subset of S of type w?*!,
(10. 47) M(X)=N, (x€T)).
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We may write
S~U(e=mF,, = U(v=w)P, (tp),

where tp P =w{ (v=w,). For each v =, there is, by (10. 40). a finite set N, = M
and a set @, P, such that tp O, =} and

M(x)=N,, (x€0,).

Heme there is some finite set N, M such that N, =N, for %, values of v. Put
"{N =N)Q.. Then tp T, —w;‘” and T, is cofinal with §. Now choose
‘[!"[ M~ (n )N, U {po s ooy iy} The formulae (10.42)—(10. 47) also hold if ¢ =n
and we can assume, hy induction, that these hold for all o = w.
If 6 =9, then F,NF, =0 by {Itl 45). Also, if ¢ =p, then u, < N, by (10.43)
and (10.47) again implies that T, ( =0. Hence, by (10. 44) the set T= Ule=e)T,
is (7. 8)-free. Moreover, (10. 46) |mplles that tp T=w$*"'. This proves Theorem
10. 11.
The next theorem shows that the result of Theorem 10. 11 is best possible

in the case cf (£) =w.
THEOREM 10,12, If Z<=w, and cf(L)=w, then
it o, o8+ 1y,

Proor. Let S=U(v=wm,)S, (tp). where tp S,=w?. By theorem 10. 10 there
is, for each v =w,, a (X,, wf)-system # =(F", M, S,) which has the finite property
and is such that tp F)=0,=wi (ue M) and there is no (#,. Rg)-free subset of
S, of type w{+ 1. Consider the set system # =(F, M, S) where

F"::LJ(I.'-:.w])F;” (HeM).

Clearly # has the finite property and tp F, =0, =wf. Also, if C is any subset
of Sof type w{ ™! + 1, then there is some v <= w, , so that tp Cﬂ S, =w$ + 1. Therefore.
C is not (#,, 8y)-free and this implies that C is not (7, xo)-free.

In contrast with the last result, it is possible to strengthen Theorem 10. 11
in the case cf (1) = w.

Tueorem 10. 13, If y<=w,, m=i=w,, cf (A)=w, cf (A7) =w, then
ot —~[[of, o Y],
Proor. The hypothesis implies that
ot = (v=w,)wi !
where w=4,=4,=...=1, = Let #=(F, M, S) be any (8. w})-system such
that tp F,=w} (€ M) and # has the finite property. We want to prove that S
contains a (¢, Rq)-free subset of type w$¢*!y. We can assume -y:-O

We may write S= U(v=w,)S, (tp) where tp S,=w?*1. There is some § = w,
such that

(10. 48) tp F,N S, <wi*! O=v=w,: ucM).
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We can assume that if "=y, S” is a subset of S of type @} and _#’ is an infinite sub-
system of #, then S’ contains a (#, 8)-free subset of type w$*+ 'y, which is not co-
final with S§.

Case |. y=7"+ 1. There are, by assumption, €[5, w,), My€[M]% and T §
such that tp T=w?*'y, T U(v=0)S, and TN F,=0 (ue M,). By (10.48) and
Theorem 10. 11 it follows that there are 7" S, and M’ € [My)%e such that tp T’ =
=wf*!, and T'( F,=0 (ue M’). Then the set TU T’ is (£, Ry)-Tree, is not cofinal
with § and has type 9™y,

-

Case 2. y=y¢+ ...+ 7}, where yo=7,=...=%,=7. Our assumption impliea
that there are 7,, M,, u, for ¢ =w such that tp 7, = w9 'y,, T, precedea T, in the
ordering of S'if e =71, M, c[M]¥, Myo M, >..., p, e M, ~{u,, ..., i,} and

T,NF,=0 if peM,U{ug, .... A}

Then the set T=J(c=w)T, has order type w$"'y and is disjoint from the sets
F, if pe {pg, ..., fi,} and is not cofinal with S. This completes the proof of Theorem
10. 13.

It follows immediately from Theorem 10. 13 that

(10. 49) o +[[of, o7t Y]ly, f o=pt+l=i=w,; y=0,.

We will prove (Theorem 10. 14) that w¢*'y cannot be replaced by w¢*2 in (10. 49).
We need first a lemma.

Lemma 10.3. Let tp S=wit', M=[0, w) and let M, ..., M, be countably
many infinite subsets of M. Then there is a set-system F=(F, M, S) such that
tp F,=wy (u=w), # has the finite property and

tp (Sw (e M) F, )f-.' w7 (i =wm).

ProoF. Let i, j=w. Suppose that m,; =m has been defined for all pairs (i’ j*)
which alphabetically prcc.cdc. (i,j) and such that i"+j =i+j. Then we choose
.WI,-_,-EM so that my; is larger than all the m, ., so far defined. Then M; =
={m;: j=w}.C M .md the sets M, are mulually disjoint.

Smce wf(1, w,, w, .91, it follows that there are disjoint sets C,— S
(n=w) such that §= 1J (n UJ)C,, and tp C, =w'. If p=m;; for some i, j=w with
j=1, then we define
(10. 50) F,=U(m; ;—y=n=my;)C,.

IT the integer p = my; for any integers i, j (with j=1), then we put F,=0.

The system _# —(F M, S) so defined has the properties descrlbed in the lemma.
Since tp C, = wf, it follows from (10. 50) that tp £, =w{ for all u€ M. Also, since
the sets C, are disjoint and the inequality

m; j =H=m

for fixed n is satisfied for only a finite number of pairs it follows that # has
the finite property. Finally, for i=w we have

' UueM)F,oU(j< w)qu =U(my=n=w)C,

so that tp (S~ U(ue M)F,) <ot <w?
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(%) THeoreM 10. 14. If a=w,, then a-+[[w?, @]y,

ProOOF. There is no loss of generality if we assume that « = @/ and that o + 1 = <
< wz. We are going to assume that if y<pf then the following is true:

I M =[0, w) and tp S=w{, then there is a set-system § =(F, M, S) such
that ,}" has‘ the finite property, tp F, =w! (u=w) and such that there is no (£, 8¢)-free
set of type w?+2.

The statement #, clearly implies that

(10. 51) w] [0}, o7y,

We want to deduce that #, is true.
Case 1. cf (f)=w. Let S=U(v=w)S, (tp), where

tp S,=wit=wl=tp S.

By our assumption, there are set systems #,=(F™, M, S,) for v=w such that
#, has the finite property, tp F; =wof{ (u<=w) and there is no (#,. 8,)-free subset
of type w{*2. Now put F,= U{\' fm]Ff,"’ (1t =w). The system ¢ =(F, M. S) clearly
has the finite property and tp F,=o} (u=w). Also, if C< S has order type wf*2,
then there is v = such that tp C1 S, =w{ 2. If follows that C is not (#,, &,)-free
and hence not (7, 8o)-free. This proves that #; holds in this case.

Case 2. ef(wf)=w,. Then we may write S= U(v=®,)S, (tp) where tp S, =
=} =wf=tp S. Let My, M, M”[ be all infinite subsc:h of M.

By the assumption 2, (y = ;’; ) it follows that there are sets F, = S, (v=w,:
i-=wm) such that each point of S, belongs to only a finite number of the sets F,,.

tp F{, =}, and such that
(10, 52) tp (S,~ UREMF,)<wf*?  (v=w,; M €[M]*).

Also, by Lemma 10. 3, there are sets Fy,c S, (v=o,: =) such that points
of S, belong to only a finite number of the sets FY, (u=w), tp ), =wt (n=w)
and so that

(10. 53) tp (S, ~UueM)F,,)<w? (0=v=aw,).

Now put Fo=0 and F, ., =U(v=a)F,,UF;, (u=v).

The set system ¢ =(F, M, S) so defined has the finite property and tp F, = o
(;t=w). Also, if M [M]%0, then M"= M, for some ¢ =, and therefore, by (10. 52)
and (10. 53),

tp (S~ UeM)E)=08y+08,+... +8,, =
where 6, =w9*? if v=p and d,=w{ if p=v=eo,. Hence s =wy*? and so there
is no (j, No)-free subset of S of type w(*2. This proves that 2, holds in case 2.

By induction 2, holds for all ff =, and hence (10. 51) holds with y=f. This
completes the proofl of Theorem 10. 14.

The next theorem gives a strengthening of Theorem 10.9 in the case x=w]
and cf A =w.
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TuaeoreM 10, 15, If y=w$™, o =A=w,, cf (1) Zw then
ot~k R,

PrOOF. Let #=(F, M, S) be any (8, wi)-system. Suppose that there is no
complete subgraph of ¥(#) of type w}. Then tp F,=w} (n€ M). We will deduce
that S contains a ([, Ny)-[ree subset of type 7.

If tp (SNQ(,}"’J):&J;‘, then Theorems 10. 11 and 10. 13 imply that § contains
a (7, 8g)-free subset of type at least w9™!. Therefore, we may assume that
tp 0(J) =of. _ )

Let n=w. Suppose that there is a set S"c Q(#) such that tp S'=w{ and §’
contains no (¢, 8g)-free subset of type w?. Then each point of S” is joined by edges
of the graph %(#) to all the points of S” except for a set of type less than w?}. We
may write S = U(v=w})S, (tp), where tp S, =w". Let f be a (1, 1)-mapping of
[0, w}) onto [0, ,). Let 0 =w,, and suppose that we have already defined x,€ S,
for ¢ =0. By (10. 40) it follows that there is some x,¢ Sy, so that {x,, x,} is an
edge of %(#) for all ¢ =0. The set X={x,: 0=w,} defined by induction in this
way is a complete subgraph of %(#) of type w?. This contradiction proves that
any subset of Q(#) of type w{ contains a (7, 8,)-free subset of type w!.

Using a simple inductive argument it follows that if S’ Q(#) and tp §' =%,
then there are w,, N,, T, for n=w such that N,e[M]*, NyoN,>D..., i, €N, ~
~{Htoy eos Bu)s tp T,=01, T, 8"~ U(e<n)F, and

T,NF,=0  (ueN,).

The set T=U(n=w)T, is ([, 8o)-free and has order type at least w{. Therefore
any subset of Q(#) of type wi contains a (¥, 8,)-free set of type w?.

There is 0 =, such that y =w9$d. Suppose that any subset of Q(#) of type
wf contains a (#, R)-free subset of type w9e for all e = . Our proof will be complete
if we deduce that any subset S* < Q(#) of type wf also contains a (#, ®,)-free
subset of type w{d.

Case 1. d =¢+ 1. By the induction hypothesis there are A< §* and M’ ¢ [M]No
such that tp A =w7e and A F,=0 (ué M’). The set 4 is not cofinal with S* and
so there is a set 7% < S* such that 4 precedes S** in the ordering of S and tp S** =
=w?. There are B— S** and M” ¢ [M’]¥° so that tp B=w9 and B F,=0 (ueM”).
Therefore, the set 41U B is (F, 8y)-free and has type w$9.

Case 2. 6=0y+...+0,, where ,=9 (v=w). Using a similar argument we
find successively K,, M. ut, for n=e such that M, c[M]¥, Mo M, >..., tp K, =
=wP0,, K,NF,=0if pec M,U{tg, ..., fin}s #a€M,~{po, -... i} and K, precedes
K,+1 in the ordering of §. The set K= U(m=w)K, has order type @9 and is
(7, 8g)-free. This completes the proof of Theorem 10. 15.

There still remain a number of unsolved questions in connection with the
symbol (10. 38). For example, we do not know if the last theorem can be improved
to strengthen Theorems 10. 11 and 10.13 to similar relations of the form (10. 38).
Thus we do not know if the relation

() of~lwl, 09"k, (0<i=w,; ()=o)
is true. In fact we cannot even establish the following weaker result
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PROBLEM 6. (?) wf—[of, 0f™']§, (0w =Ai=am,).
We have proved (Theorem 10. 14) that
(%) of +of?, 0T,  (A=w,)
but there is still a gap between this negative result and Problem 6. For example,
we formulate
ProBLEM 7. (7) 7" —[of. ot u)d, (v=1 or 2).

§ 11. The relations (2.9) and (2.10). In this section and the next three we study
the relations

(11. 1) (a, m, n, c)<* —s
and
(11.2) (a, m, n, c)<k—>»s

defined in § 2. Our discussion is not complete and we shall mention a number
of unsolved problems of this kind. In this section we establish a few general results.
Finite and denumerable problems are discussed in §12 and §13, and in § 14
the symbols (11. 1) and (11. 2) are discussed for arbitrary cardinals.

Theorems 11. 1 and 11. 2 remain valid if — is replaced throughout by —~.

THEOREM 11. 1. Letm=m,;n=n,:c=c.;5=s5,:k=k,. Then(a, m, n, c)=*—s
implies (a,m,n,,¢,)* -5, .
This follows immediately from the definition of (I1.1).

THeorREM 11.2. (i) If m=R, and (a, m, m, ¢)<*—s, then (a, m’, m’, ¢)=* —~s.
(ii) If a=%, and (a, m, n, a)~* —s, then (a’, m, n, a’)=F —s.

ProoF. (i) Let # =(F. M, §) be any (m’, a)-system of subsets of § such that
there is no (7, m’)-free subset of § of cardinal ¢. Let N= U (uc M)N,, where the
sets N, are mutually disjoint, 0 =[N, | =m (uc M) and |N|=m. Consider the (m, a)-
system #*=(F* N, S), where Ff=F, if véN, (ucM).

If X8 is (#*, m)-free, then there is N €[N]" such that FfX=0(vEN").
Put M'={ucM: N'(IN,=0}. Then [M'|=m" and F,MNX=0 (ucM’), i.e. X
is also (_#, m’)-free. This shows that there is no (#*, m)-free subset of S of cardinal .
Therefore, by the hypothesis (a, m, m, ¢)<% ~s, it follows that S= J(A=0)4;,
where |0 =s5: |4,]=a and the sets 4, (0=A=0) are (f*. =k)-complete. This
proves the result since any (#*, = k)-complete set is also (¢, = k)-complete.

(ii) Let # =(F. M, S) be any (m, a’)-system such that S contains no (7, n)-free
subset of cardinal a’. There are mutually disjoint sets 7, (41€S) such that 7=
= J(A¢ 8)T, has cardinal a, |T,| =a (A€S) and such that

(11.3) J(AeS)T; =a (S €[S]%).
Consider the (m, a)-system #* =(F*, M, T), where
Fa=UQeF)T,  (neM).
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Il X< Tis (#*, n)-free, then there is Ne[M]" such that X F}=0 (ueN). This
implies that the set Y={i€S: T, X=0}is (#, n)-free, since YNF,=0 (LEN).
Therefore, | Y| =a" and | X =a. Hence T contains no (_#*. n)-free subset ofcardinal a.
By the hypothesis (a, m, n, a)=* —s, it follows that 7= U(e=0MA,, where 0] =s:
l4p| =a and the sets A, (0=¢=0) are (F*, <k)-complete. Put B,={ic S:T,(
NA,#0} (0<9¢=0), By=S~U(0<0=0)B,.If 1€ By, then T; N A,=0(0<¢=0).
Therelore (A€ BT, A,. Since |4, = a, it follows from (11.3) that |B,| <=a’.
Let 0=p=0 and let U€[B, 1<% Then there is a set V<[A4,]<F such that Vﬂ T,=0
for d” A€ U. Since A4, is (,,?’ < k)-complete, it follows that there is some pe M
such that V' Fr=U(A€ )T Hence Uc F,. Therefore, B, is (#. =k)-complete
if 0=p=0. The result now follows since §= U(e=0)B,.

The next theorem establishes certain connections between (L1 1), (I11.2) and
the polarized partition relation (2. 14). We write

[l

if the following is true. Let A B be disjoint sets, |A|=a, |B|=b;[A4, B]"'' =
= U(e=AK,: K,(NK,=0 (n=0=2). Then there are n =2, CE[A], D<[B) such
that [C, DJU'( IJ'\ =0. In the p:lI’tILLIId[‘ case when A=2 it will be noticed that
(11.4) is qull\"dlu‘l[ to the polarized partition relation

. i 5
a € £
[f.'?] l(." c."}
The first part of Theorem 11. 3 is expressed in terms of (11. 4), but we only apply
the result when 4 =2,

TuroreM 11, 3. (i) Let a=c=Ry: ¢ =s. If (a, m, n, ¢)? —~5, n’:enl ] [ ]
wis)

(i) If a=c=YRy, then the relations (a, m, n, c)*—-2 and [ ] l ] are
non

(’{;’H.‘[ﬂ.’{ﬂf )

Proor. (i) Let m=w(s). Suppose that l:}] >[;] . Let A, M be disjoint sets
such that |4|=a, |M|=m. Then there is a ﬂnmion‘;{: AXM—[0, m) such (hat
(11. 5) [, ) 2 C, ue N} =[0, )  (CE[A); Ne[MT).

Put §=U{x£A4)S,, where S,={(z, v): v=m}. Then |S|=a-s=a. Consider
the system of sets # =(F, M, S), where

F,= U@ {(a, x(z, 1))} (e M).

Let XC[S], Ne[M]". 1t follows frem the hypothesis ¢ =s that there are
vi=m and CE[A4]" such that

(. v)EX  (2£C).
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By (11.5) there are «, € C and p, € N such that y(x,, yt,) = v,. Therefore, X F,, =0.
This proves that .S does not contain any (¢, n)-free subset of power ¢. Let T¢[S]=%
Then S, S5~ T for some 2 € A. Since S, is a complete subgraph of the complementary
graph of @, (7), it follows that S~ 7 is not the union of fewer than s compleie
subgraphs of %,( #). Therefcre, (a, m, n. ¢)>+4s. This proves (i).

1.1
(i) If a=c=y, and (a, m, n, ¢)* ~2, then by (i) [;] D[E] . As we have

L1
G, a ¢

already remarked, this is the same as [m]—-[ 3 l :
non

Suppose now that ¢ =c¢ =48, and that (a, m, n, ¢)*> 2. Then there is a (m, a)-
system = (f, M, S) such that § has no (7. n)-free subset of power ¢ and such
that [S~A,|=a whenever 4, is a complete subgraph of %, (7).

[t follows by transfinite induction that there are disjoint sets {x,, y,},.C S
(%= w(a)) which are edges of %* the complementary graph of %,(#). lLet W=
=[0, w(a)) and put WxXM=K,UK,, where (z, )£ K, if and only if xc W, pe M
and x,4 F,.

Let Uc[W], Ne[M]". We want to show that UXNTK, (¢=0or 1). Since
the sets {x,: xc U} and {y,: 2¢ U} have cardinal ¢, they are not (#, n)-free. Hence,
there are oy, o,€U and p,, ;€N such that x, € F, and y, €F,,. Therefore,
(o, )€K, Also, since {x,,.»,,}, is an edge of %*, it follows that x,, ¢ F, . i.e.

1.1
. . il 2 .
(5. pa) € K. This proves that l;f] -.»[( n] and completes the proof of Theorem
H
11.3

Since Theorem 1. 3 1s the first occasion that we have mentioned the polarized
partition relations it is convenient to collect here the known results which we employ
in § 14, It is proved in [2] that

F o i o
. a a a o
(11.6) la —-la a] if a" = 8,
and
1] 1.1
o’ o dad
(11.7) !a+ 4(a a} Jor any a= 8.

Also, if Z(e)y={a,a’,a*, (a’)"}, then

. 1,1
(11.8) [“] *["“' “] if and only i Z(a)\Z(b) = 0.
b, b b

§ 12. A finite problem. Il a=§, and m, n, k, s are finite, then the relation
(a,m, n, ¢)* s does not essentially depend upon a and ¢. In fact, as we show in
Theorem 12. 1. the last relation is equivalent to (2. 11).

THeOREM 12, 1. Let a=8,,a=c=1:k,m n,s=%,. Then the relations
(a.m, n, o) —s and (m, n)* ~s are equivalent.
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PrOOF. Suppose (a, m, n, ¢)*-s. Then there is a (m, a)-system § =(F, M, S)
such that S contains no (7, n)-free subset of cardinal ¢ and such that § is not the
union of a set of cardinal =a and s—1 (¢, k)-complete sets, Put

S’=L\J(S“JU(JIE N)F,)

where the outer union extends over all sets Ne[M]". Since the sets S~ U(ueN)F,
are (7, n)-free, it follows that |S8" =a. Therefore, $~ 8" is not the union of s —1
(7, k)-complete sets. Since S~ 8§ is covered by the union of any »n of the m sets
F,(ue M), it follows from the definition of (2. 11) that (m, n)* 5.

Now suppose that (m, n)*-+s. Then there is a set §, and a system of m sets
Jy=(F, M, §,) such that S, is covered by the union of any n of the m sets F,
(& M) and such that S; is not the union of s—1 complete subgraphs of %, (7).
Therefore, the comp]ement’trv k-graph %47 of %,.(#,) is not (s—l)t.hmmatic
It follows from a result in [1] that there is a finite set S, < S, such that %; is not
even (s — I)-chromatic when restricted to §,. Therefore, there is no loss of generality
if we assume that §, is finite. Let |4, =g and let T=A4 X S,. Then [T|=a-|S,|=a.
Consider the (i, a)-system 7" =(F’, M, T), where

Fr=d%F, (e M).

Then T is covered by any n of the m sets F, and, since ¢ = I, T contains no (¢, n)-free
subset of power ¢. Let T=J(1l=ys)7,. where |7, =a. Then there is some %€ 4
such that

{}x S, cU(0=1=5)T;.

If T, is a complete subgraph of %, (#') then D,. the projection of 7, on S, is a
complete subgraph of %,(¢,). Since S, =D,U.. L D, it follows that not all
of the sets Ty, ..., T are complete subgraphs of %, (¢"). Therefore, (a, m, n. c)-s.
This completes the proof of Theorem 12. 1.

It is clear from the definition that (m, n)* +s if n - s. In the more interesting
case n =y we have the following result.

THEOREM 12.2. Let mon k,s<=Ro:n=s. Then (m,n)—s holds if m=
=kin—s+1)+s5—1.

Proor. We establish first the special case
(12. 1) (knn—k +1,n)f 2

Let F,cS(u=kn—Fk+1) and suppose that § is covered by the union of any »
of these sets F,. Then, if x€ §, {x} is disjoint from at most n— 1 of the F,. Hence,
if Xe[§17k lhcn there is some pu— A(n—{H I such that X F,. This 5h0w'» that
the k-graph (S, E) is complete, where £ = J[F, . Hence (12. ])

Let M=[0,m), where m=k(n—s+ I1+s—1 and let # =(F', M, S') be a
system of sets such that 5" is covered by the union of any n of the sets £, (it =m).
Let T=8"~ F{.'_.'... JF Then T is covered by the union of any n—y5+2 of
the sets F, (s—2 m} 'lherelnre T is a complete subgraph of %, (¢") since

(m—s+2. n—s+2¥=2
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212 P. ERDGS, A. HAINAL AND E. C. MILNER

by (12. 1). Hence, S=TU F,!J...|JF,_4 is the union of s—1 complete subgraphs
of 4 #"). This proves that (m, n)*—s.
We conjecture that Theorem 12. 2 gives the best possible result, i. e.

ProsLEM 8. (?) (m,n)—es if m=k(n—s+1)+s5—2 and n=s.

For k=1 this conjecture is clearly true. In Theorems 12. 3 and 12. 4 we confirm the
conjecture in some other special cases.

There is a certain connection between Problem 8, in the case k=2, and a
conjecture of KNeser. Let S=[{1, 2, ..., 2n+p}]" and let ¥ =(S, E), where

E={{1,,1,}:11,,,€S; I, N11,=0}.
Kneser [6] conjectured that the graph ¢ is not (p+ 1)-chromatic. This means that

S cannot be expressed as the union of p + 1 complete subgraphs of ¥*, the comple-
mentary graph of . Put M={1,2, ...,2n+p} and

Fo={TeS: i) (ie M).

Then the graph %(#) associated with the set-system # =(F, M, S) is the same
as %*. Also the union of any n - p+1 of the sets F; covers .S. We know by Theorem
12. 2 that

Cn+p,nt+p+1)2*—-p+3

and this implies that KNEser's graph % is (p+2)-chromatic. KNESER'S conjecture
is cquivalent to showing that p + 3 cannot be replaced by p+2 in the last relation.

Turorem 12. 3. Let 2=n,k, s=%,. Then

(12.2) (kn—k, n)k=+2,
(12.3) @Cn—1,n+ 143,
(12. 4) (542, s+ 1?5

Proor. Let §=[0, k) and let # be the system of kn—k subsets of S given by
F. (i=kn—k), where

Fi=S~{j} if j=k and jin—1)=i=(j+1)(n—1).

Each element of S is disjoint from exacily n— 1 of the sets F; and so S is covered
by the union of any » of these sets. Since |S' =k and S< F; for anyi<=kn—k, Sis
not a complete subgraph of 4,( 7). This proves (12. 2).

Let m=2n—1; S"=M=[0, m). Consider the system 7' =(F’, M, S’), where

F,={A: A=m; pzin+i(mod m) for all i=n} (i=m).

Each element A¢ S” is a member of exactly n—1 of the 2n—1 sets F, and so the
union of any # + 1 of these sets covers S If A=m —1 and g—<=m, then {J, A+ 1} F,.
Otherwise ¢ would be incongruent (modulo m1) to the numbers An+iand (A + 1)n+i
for all i =n. which is impossible. Similarly, {0, m—1} is not an edge of the graph
G(F"). Hence, 0,1, ...,m—1,0 is a cycle in %~ the complementary graph of
%(#'). Since m is odd this implies that %* is not 2-chromatic. Therefore, S’ is not
the union of two complete subgraphs of ¥(#'). This proves (12. 3).

Aetaw Mathomatic Veadenine Scivntigrim Hungaricae rp. 1960



ON THE COMPLETE 5UBGRAPHS OF GRAPHS DEFINED BY SYSTEMS OF SETS 213

Let M,={1,2, ....5+2}, T,=[M,? and let #°=(F®, M,, T,) be the system

of sets given by
FO={{h ny: 2€Mo~ () (nEM).

Each element of T, belongs to exactly 2 of the s+2 sets F{” and so T, is covered
by the union of any s | of these sets. Therefore, in order to prove (12. 4) it is enough
to prove

(12. 5) T, is not the union of s—1 complete subgraphs of & (§'s").

We will prove (12. 5) by induction on s. Clearly (12. 5) holds if s=2 since
the elements {1,2} and {3.4} of 7, are not joined by an edge of %(#'?). Now
ﬁssuxpe that s=2 and that 7,_; is not the union of s—2 complete subgraps of
FLv-1),

Let T,=4,1J... UA,_, and suppose that 4, is a complete subgraph of % (#Y)
for 1 =i—=s. Since T, = Ns+ 1)(s+2)=3(s— 1), at least one of the sets A, contains
4 or more elements. We can assume that {X,. X,, Xy, Xy}, A, . Since | X[ =2
and X, [1X;=0 (1=i=j=4), a simple argument shows that r( =i=4)X,=0.
In view ot thc symmetry of the graph on 7. we can assume that s +2€X; (1 =i=4).

i.e. X;={4;,5+2} (1 =i=4) where {},. 4, 3. L} C[l, 5+2). Since A,_, is a
con'mTcte subgraph of %( 7", it follows that T,_,(A4,_,=0. Hence T, ,=
=U(l=i=s—1DT,_; M A;. The graph %(#"Y) restricted to T,_, is identical

with % ;f‘“ My and so T\_, [ A4; is a complete subgraph of @( #“~ "), This contra-
dicts the induction hypothesis. Therefore, (12. 5) holds for s =2 and this implies (12.4).

By Theorem 12. 2 we have that (32 —4, n)* -3 for any integer n. We can show
that this result is best possible in the cases n=3.4.5 but we give details only for
the case n=>5,

Turorem 12. 4. (10, 5)° +3.
PROOE. Let S=[{0, 1, ..., 9}]*. Consider the system # of 10 subsets of § given by
:I"J- — {X—'_ S .": ,3./} (, - |0)

Since cach element X'€ 5 is a member of exactly 6 of the sets !—‘,-._ it follows that
S is covered by any 5 of these sets. We will assume that S=UU V and that U, VV
are complete subgraphs of 4, (#) di'td derive a contradiction,

We first show that o X,, X5 U then X, N X,=0. If this is not the case then
U contains 2 ¢ n.mt.lm of § which are uu;mnl ln view of the symmetry, we may
suppose that {0, 1,2 ?} and {L_,() Tye U, If {i, j}. [0, 8), then the three elements
{0 1,2.3), f4_ 3, {) 74 {6,7.8,9} of S do not form an edge of ¥,;(#). Therefore,
{r’.j. 8.9V (0=i<j=7). SIiniiﬁrI}-‘. the elements {0,1,4,9}, {2.3,5,9} and
{6.7, 8,9} do not form an edge of %,(7). Since V is a complete subgraph and
{6,7.8,9}€ 1 we can assume, by symmetry, that {0. 1.4, 9}€ U. Since {0, 1, 2, 3},
{0, 1,4,9) € U, it follows that {5, 6,7, 8}€ V. Also, {2,3,4, 8}V since {0, 1,4,9}
and l4,u.ﬁ 7)€ U. Hence, {2,3,4.8}, {5,6,7,8} and {0.1,8,9} ¢ ¥. This contra-
dicts the assumption that V is complete.

Thus, we may suppose that if X, ¥ are disjoint elements of S, then one of these
is in U dl’ld the other is in V. Suppose {0.1,2,3}€U. Then {4,5, 6,7}V
8,9.0, 1} € U: {2,3,4,5}€V;{6,7,8.9} € U. This is a contradiction since {0, 1, 2, 3}MN
8 {6 . 8.9} =0. Therefore, (10, 5)> 3.
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The simplest problems which are not answered by the above theorems are'®
() (8,6 +4,
(7 (13,6)* 3.
% 13. The denumerable case. From Theorem 6.1 we have, in particular, that
Ro = [Ro, Mol
The next theorem is a strengthening of this relation.

THEOREM 13. 1. (R0, Ro» Ro» Ro) N0 —=8,.

Proor. Let # =(F, M, S) be any (8y. ®¢)-system which is such that § contains
no infinite (¢, R,)-free subset. We will assume that S cannot be expressed as the
union of a finite set and a finite number of (., = ¥,)-complete sets and deduce
a contradiction.

Put M,=M. Let A =w and suppose we have already defined M, c[M]%° and
elements v, ¢S§ and u, €M for v=4. Let

T=S~U(=4)F, U{x}

It T P{y;), where 7, =(F, M,, S), then T is (,f, = §,)-complete by (2. 4). There-
fore, § is the union of the finite set {x¢, .... x;} and the (f, = §,)-complete sets
T.F,... F, . This contradicts our assumption. Therefore, we can suppose that
T P(#;). Hence, there are x; €T and M; ., €[M;]* such that x;4F, for all
peM; .. Now choose i, € M, .y~ {uy, ... f1;}. In this way we define by induction
X={y:i=w}., S and M ={u;: i=w}, M so that X[ F,=0 for all pecM".
This contradicts the fact that S does not contain an infinite (., ®y)-free subset
and the theorem follows.
It will follow from Theorem 13. 5 that

(13. ) (Rp. Vo, Ro. Nn)‘:“u""'” (n==8~g)

so that Theorem 13. 1 gives the best possible result. However, if instead of (= &, )-
graphs we consider only k-graphs where & is finite then we obtain the following
much stronger result.

THEOREM 13.2. If 1=k =284, then (Xg, Ro» Ro» 8o)F =3

Proor. Let 7 =(F, M, S) be any (%,. Ro)-system such that § does not contain
an infinite (¢, Ny)-free subset. Suppose that S 18 not the union of a finite set and
two complete subgraphs of %, (7). Then, if T is any finite subset of S, the k-graph
4+ complementary to ¥,(#) is not 2-chromatic on S~ T.

Let 2= w and suppose the finite sets K. ..., K, — S have already been defined.
Since %+ is not 2-chromatic on 4= S~ U(v—=4)K,, it follows by the theorem of
Erpds and de Brunn [1] already referred to, that %* is not 2-chromatic on some
finite subset K, 4. Hence, there are disjoint finite sets K, < § (L1=w) such that

i

%* is not 2-chromatic on each K.

R, K. Guy has now seitled these relations and, in collaboration with E. C. MILNER, has
confirmed the conjecture contained in Problem & in a number of other cases.
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There are sets K; © K, and M, € [M]*for A=wsuchthat MO M, =M, >... and
K,NF,=K; (A=w; peM)).

Since K is a complete subgraph of %,(#) for 1 —=w and since %* is not 2-chromatic
on K,, it follows that there is P, ={y;,. ..., yix}» © K, ~ K, which is a k-edge
of %*. Therefore,

Py~ F,=0 (A=wo;ueM).

For A=w choose ;€ M;~ {ug, ..., f;} and write F;=F, . Consider the
partition
[FR=Li Wil

where W=1[0, w) and {4, v}. €L, if and only if y,, € P,~ F;. Since ¥q—(8o)7 by
RAMSEY'S theorem [8], it follows that there are o€ {l, 2, ..., k} and Ne[W]¥ such
that [N]Zm: L,.

Let A, ve N If 2=, theny,, € P, ~ F; and so },,,u F. it =y, then e M, M,
and therefore K, (1 F; = K, and y,, € F}. Thus,if Y= {p,,: vE N} and M’ = {pa:d EN}
then Y11F, —0 for ;sz 'lherefore. Y is an infinite (7, Ng)-free subset of S.
This contradiction proves Theorem 13.2

Trivially, of course, we have that {&U. No. Rg. 8g)' =2, but for k=1 the last
theorem gives the best possible result. In fact, we have the following negative theorem,

Tueorem 13, 3. If m=Ny, then (m, m, m, m)* 2.

ProoOF. Put o =wm(m). Let M =[0, o) and S={(0, 4): 0 =2: A =2} and consider
the system of sets 7 =(F. M, S), where

F,={(0,4): A<pu}U{(1, 2): A=pn} (1t = ).

Let M"e[M]" and let T= U(ueM)F, I'Fx' x. then there is pe M’ so that
A= L Therefore, {0, A): A<=} T. Also, if pEM’, then S~Tc{(l,1): A=y}
Thus | S~ T|=m, 1. e. S does not contain any (,6’ m) free subset of power m.

IfAC S re are 4, p== such that Z=p and (0, p), (1, 4) €
€8~ A. Since {(0, p), (i. z.)}-.-ﬁ P,. fm any v=u. it follows that §~ 4 is not a complete
subgraph of %(#). This proves the theorem,

The next two theorems are included here by way of contrast with Theorems
13. 1—3.

THeEOREM 13. 4. If n=2N8,, then (Ry, Vo, Ro, 1) " N0 =2,

Proor. Let 7 =(F. M, S) be any (8,. N¢)-system of sets such that § does not
contain a {7, R,)-free subset of n elements. Suppose that S is not the union of
a finite set and a (f, = §)-complete set.

Put M,=M. Let Z=n und suppose that we have already defined x, €S8 for
v =/ and an infinite set M, — M. As in the proofl of Theorem 13. 1 we can assume
that 7= S~ {xq, ... $,} L P(F,), where #,=(F, M,, S). otherwise S is the union
of the linite set {x,. ..., ¥;} and the (7, = Ny)-complete set 7. Hence, there is x; €T
and M, €[M,]% such that x;¢ F, (ueM,,,). After n steps we obtain a ‘\Ct
X ={xg,....%,} = § and an infinite set M, M such that X1 F, =0 for all uc M
This contradiction proves the result.
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THEOREM 13. 5. If | =n=8,, then
(13.2) (8o, Ros 1, Ro)“Mo—n+1,
(13.3) (8o, Ro, 1, Ng)“No—ton.

RemARK. Theorem 11.1 and (13.3) imply (13.1).
We prove first a simple lemma.

LemMmA 13. 1. Let n=t=w and let K be a set with [;]ek’.menm. Then there

are t sets Ay, ..., A, K such that K is covered by the union of any n-+1 of these
sets but not by the union of any n of them.

Proor. Let K={k,, ..., k,},, where p:(; ] Let[{L2s.cot}'={B) soces. By} &

and let
A=K~ U@eB 1=v=p)ik} (I=7=0).

Since each element of K is disjoint from exactly n of the sets 4., it follows
that K is contained in the union of any n+ 1 of these sets. On the other hand, for any
o(l=p=p), UGrEB)A, =K~ {k,}, so that the union of any n of the 7 sets A,
has a non-empty complement in K,

PrROOF OF THEOREM 13. 5. Let #=(F, M, S5) be any (%,. Ng)-system such
that S does not contain a (#. n)-free subset of power ¥,. Let Ne[M]". Then § -~
~ U(ue N)F, is finite. Hence S is the union of a finite set and n sets which are
(7. = ¥g)-complete. This preves (13.2).

Let T=U(m=m=w)K,, where K, :[”,;_-; l] and the sets K, (n=m—= )

are disjoint. By the lemma, there are m sets A,q, ..., A, © K, such that K, is covered
by the union of any # of these but not by the union of any n—1. Put 4,, =0 if
m=p=w. Let M* =0, ) and consider the set-system 7*=(F* M*, T), where

Fr=Um=m-=w)4,, (v—=w).

Let Ne[M]". Then, by definition of the sets F, it follows that K, = U{veN)F}
provided m =y for all vEN. Therefore, T~ U(vEN)FT is a finite set and so T does
not contain any (", n)-free inﬁnite subset. Let Y be any finite subset of 7T and
suppose that T'~Y=X,U...UX,_,, where each X; is a (#*, =Rg)-complete
sel'. There is an Jntchr r w.:.h that Yc Um=m=r)K,. Therciore, K,=

Ul =i=nK.MX,. Since X, (I =i= u] is (F*, = §y)-complete, it follows that
then is some v, £ M* such that K.NX;cF,NK,=A,,. Let N'={v;: | =i<n}. Then
KclU(veN’ _]A,\.. This comu.du.ls the dcﬁnition of the sets A,, since |N'|=n=1.
This ],rovcs; (13. 4).

I,Q .} i -

§ 14. The general case. In this section we study relations of the forms (2.9)
and (2. 10) for arbitrary cardinals. Most of our results refer only to 2-graphs and
the methods we employ do not seem to extend to k-graphs for k =2. For example,
it follows from Theorem 14. 1 that

(8, 8y, 800 82—,
but we cannot answer
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PROBLEM 9. (7) (8, 8, 8, 8,)°—§,.
THEOREM 14. 1. Let a be any cardinal, m=8,. If m=n™ or if m" =¥, then
(14. 1) (a, m, m, m)* —+m.

Proor. Let #=(F, M, S) be any (m, a)-system such that § does not contain
any (#, m)-free subset of power m.

If @ = m, then (14. 1) is obvious since each element of S is a complete subgraph
of ¥(#). Therefore, we can assume that ¢ =m. Also, an examination of the proof
of Theorem 13. 2 reveals that (14. 1) holds in the case m =§,. For the argument
used there was essentially that if m =8, and § is not the union of a finite set and
two complete subgraphs of %(#), then S contains an infinite (7, m)-free set. Since
this is not the case it follows that S is in fact the union of a finite set and two complete
subgraphs of @ (7). Since cach element of § is a complete subgraph of %(#), it
follows that (14. 1) holds for m=§, and any a. Therefore, we can assume that
a=m=¥,-

For the rest of the proof we will assume that § is not the union of fewer than
m complete subgraphs of %(#) and deduce a contradiction,

If xé § and M M. we write

M'(x)={ueM :xeF,}.

Case 1. m=n". Let Sy={xeS:|M(x)|=m} and §, =85~ 5,. Since there
is no (7, m)-free set of power m, it follows that each point of S, is joined by edges
of (.7) to all the points of § apart from a set of power less than m. Therefore,
each connected component of 4%, the complementary graph ol %( ), restricted
to Sy has power less than m. Let T, (p=10) be the connected components of the
graph @* restricted to §,. Then §, is the union of these disjoint sets 7, and
0=|T,/=n (¢=0). Also, [T,, T,]"'c U(ueMF,] (p<0o=0). For p-=0, let
T,={x,;: A=w(m} (we do not assert that the x,; are distinct for different values
of A). Put X; = {x,;: 0=0} for A=m(n). Then X, is a complete subgraph of % (¢).
Therefore, § = lU(Z=w(n)X; is the union of fewer than m complete subgraphs
ol G{5).

Let ¢ =w(m) and suppose that we have already defined x,€ S, and p,c M
for A=eq. If

;o SH !__|('./'- . (p]]j}u I {\;}

is empty, then S, (and hence §) is the union of fewer than m complete subgraphs
of (). This contradiction proves that there is some x,c7. Also, since each
v; (A=) is contained in at most n of the sets F, (u€ M). it follows that there is
ty €M~ {ug. ..., fi,} such that {x,,...,x,}(1F,=0. It follows by transfinite
induction that there are sets X = {x,: ¢ =(m)},. = Sgand M, ={p,: o =w(m)}. C
M such that X171 F, =0 for pc M,. This contradicts the fact that there is no

(7. m)-Iree subset of § of power m. This proves that (14. 1) holds in the case m=n".
Case 2. m" =8,. By the carlier remarks, we can assume that m = 8, . Therefore,
we may suppose that
m=mg+m;+ ...+,
where Ro=my=m, =...=m,=m and m;=m, for k-=uw.
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Let k=w, S’ S, M'c [M]" and let ¢ =(F, M’, S). We will show that if
S’ does not contain a (¢, m)-free subset of power m,, then S’ is the union of fewer
than m, complete subgraphs of @(#).

Put So={xeS":|M'(x)]=m} and S]=8"~S8;. If S does not contain a
(#’, m)-free subset of power my, then each point of S7 is joined by edges of the
graph % ( #’) to all the points of S” except for a set of power less than ;.. Since every
edge of ¥( #7)is also an edge of %(_#) it follows that the connected components of %*,
the complementary graph of %(#)., when restricted to S| each have power less
than my (we use here the fact that my =m,). Using an argument similar to that
applied to the set S, in case 1. it follows that S| is the union of fewer than m, complete
subgraphs of %(#).

Suppose that | Sg| =m, . For each x € Sg, there is an integer n(x) such that | M’(x)| <
<M, Therefore, since my =n, =R, there is a set Sgc S, and an integer n such
that | S5 =m, and |M’(x), =m, for all x€S8;. The set S, intersects at most n.-1,
of the sets F, (u€M’) and is, therefore, ( #’. m)-free. Hence, if " does not contain
a (#'. m)-free subset of power my. then |S; =m,. It now follows that S’ is the
union ol lewer than my, complete subgraphs of % (#), and this proves our ecarlier
assertion.

Put My, =M. Let &k =w and suppose we have defined aiready M, €[M]
sets S, S and M; < M for »x—L such that | S} =M} =m, (x=Fk) and

n

and

(14. 2) SINF,=0 if peM; and i, ==k

Put Sg =S~ UueMi:x<k)F, and let ¢, =(F, M,, S). Clearly. S; is not
the union of fewer than m;, complete subgraphs of ¥ ( #) otherwise, by the definition
of S;. S is also the union of fewer than 1, complete subgraphs which is contrary
to our initial assumption. Therefore, in the light of our remarks above, S; must
contain a (., m)-free subset of power m,. Hence there are Sy < 5; and M., < M,
such that |8 =my. M, =m and

SiOE,=0  (EMy,y).

"

Now let M be any subset of M, ., of cardinal power . It is easy to see that (14. 2)
remains true if we replace & by k + 1. Therefore, by induction, there are sets S{ < S
and M; M for k= such that | S| = M| =m; and (14. 2) holds for all k=w.
If 8= Uk =w)S; and M* = U (k =w)M, . it follows that S* [ F, =0 for all pc M*.
This contradicts the fact that S does not contain a ((#, m)-free subset of power 1.
This proves that (14. 1) holds also in the case m’ =8, and concludes the proof
of the theorem.

We do not know if (14. 1) holds also in the case m =m" =, . Thus we formulate

PrOBLEM 10. (7)) (N,,. Rops Nops Ro,)? = R,

In some cases the next theorem gives stronger results than Theorem 4. 1.

() Tureorem 4. 2. If m,n =8, then the relation
(14. 3) (1. m, m, n)* =2

holds if and only if {m, m*, m’. (m") } 1 {n, 0t 0’ (n') "} =0.
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Proor. This is an immediate consequence of Theorem 11.3 (ii) and (11. 8).
The next theorem shows that (14. 3) can be extended to more general graphs
il m. n satisly more stringent conditions,

() Tueorem 14.3. (i) If 0’ =m™, then (n,m, m, n)=" =2, (i) If m"=n",
then (n, m, m, n)" 2.

Proor. Let 7 =(F, M, S) be a (m, n)-system such that § does not contain
a (7, m)-free subset of power n.
(i) By this assumption, we have that

S~ U(ueM)F,|=n whenever M’¢c[M]".

Since M contains only m ™ distinct subsets of power m and #" =m™, it follows that
the cardinal of the set
T=U(S~Uue MHF)
M’

is less than n (the outer union extending over all subsets M M of power m).
Therefore, |S~ T =n. Let X be any subset of S~ T such that |X|=m'.. Suppose
X F, for all pe M. Then there is M, €[M]" and an element x€ X such that x{ F,
for all pe€M,. This contradicts the hypothesis that XS~ 7. Hence S~ 7 is
(#, =m’)-complete and the result follows.

(ii) If m”=n"*, then there is A < S and M, €[M]" such that F, = A forall ue M,.
Since the set S~ A is (7, m)-free, it has power less than n. Now (ii) follows since
A is (F. n)-complete.

From Theorem 14. 2 it follows that

il .y =
(Bo ¥y Ny B)™ 2 "; 2=n=wm
and

(14. 4) (Ree Biy B R)P42 0 i=0o0r 1.

Theorem 14. 5, which is a partial strengthening of Theorem 14. 1. also shows that
(14.4) is best possible in the case =0, i.e.

(14. 5} (Nmr ¥o. R lez w3,
In Theorem 14. 5 we obtain an even stronger result that (14. 4) in the case i=1.
() Tueorem 14,4, I m" =R, =k, then (. m, m, m)*—=3.

REMARK. In particular we have (8., 8., 8. 8,07 =3 and this implies (14. 5)
by Theorem 11.2 (i).

Proor oF THEorEM 14.4. The case m =8, has alrcady been dealt with in
Theorem 13,2, We therefore assume that m=8,. Then there are cardinals i,
(Z-=w) such that m=m,+m, +... and m,=m, =8y +mgy+... +m;)" (L=w).

Let # = (F, M, S) be a (m, m)-system which contains no (¢, m)-free subset
of power m. We will assume that S is not the union of a set of power less than m
and two complete subgraphs of %,( #) and we will obtain a contradiction.

The first part of our argument is similar to that used in the proof of Theorem
13. 2. Our last assumption implies that %*, the k-graph complementary to %,(.9),
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is not 2-chromatic on any set S’ S if S~ 8 =m. It follows that there are m
disjoint finite sets K, (¢ € R), where |R|=m, such that ¥* is not 2-chromatic on K,
We can assume that the index set R is disjoint from M.

For Z<=w there are R;C R and n; =w such that |R;|=m,; and |K,|=n, for
o€ R,. It follows from (11. 8) and the fact that 8, =m,; =m5, =m, that

1.1
(14. 6) [":;"] e [m“' m“] (A=),

m,....m g,

where t, = 2"+ is the number of distinct subsets of K, if o€ R,. It follows from (14. 6)
that there are sets M"Y < M and R, R, for } =wsuch that M~ MO o pmh =
IMP | =m, 'R, =n,; and such that

KNE. =K, (0ER: neMP; J=mw).
Choose sets M, M"Y such that M; =m,;,, for A=w. Then
(14.7) KNF,=K, (QER.: NEM;; 0=/—=w).
Put R"=U(L=w)R; and M'=U(L=w)M,.

Since K, is a complete subgraph of %,(#) for o€ R’. and since % is not
2-chromatic on K, it follows that there is a set

)D" - {,.‘.g[' AT ..]Ir_Jk}; c !\‘l_.- i K-(: ('Q€ R’}
which is a A-edge of %*. This means that

(14, 8) P,~F,#0 (0ER';uEM).

Put 7,;,=R; and 7,, (=M, for i=w and put T=_U(A=)T,=R"M"
Now consider the partition
[T =gl v U,

where J,=[RTPUMT? and {o, u}.€J, if | =n=k, 0 R peM’ and p,4F,.
In view of (14. 8). every element of [T} is in at least one of the sets J; (i=k).
By Lemma 6. 1 there are disjoint sets T, = 7, for A= w such that 7| =m;, and

1 o T,r}]] = Jowp Sor  a=fi=o.

where w(x, f)=k (for a=pf=w). Now put R, =T;, and M =T5,,, for i~ w.

Then R;CRj, M;cM, for A<w and |R]|=my;, |M)|=my;s,. If 0€R; and
pweEM;, where 2, 0 <w, then {o, nt}. éJy, by definition of J,. In fact, if {a g}. =
=124, 20+1},, then {p, p}€J, and

Vun & Fs
where n=n(o. f)cll, k+1).
By Ramsty’s Theorem [8], there is an integer ¢ (1=¢ =4k} and an infinite
set N[0, «) such that
n26+1,20)=q for {o.l}.CN.
By the last paragraph, this implies that
(14.9) Ve & F, (0€ER;; neM,; {a, 2}. C N).
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Let R*=U(LEN)R; and M*=U(LEN)M_. Then |R*|=!M*|=m. Suppose
o€ R* and p€ M*. Then o€ R’ and € M, for some 4, 6 € N. If A<a, then

(14. 10) Y& F,

by (14.9). On the other hand, if ¢ =2, then (14. 10) again holds since, in this case,
Vg € P,CK,~ K, and (14. 10) follows from (14. 7). Therefore, (14. 10) holds for
arbitrary ¢ € R* and p€ M*. This implies that the set ¥ ={y,,: ¢€ R*} is (#, m)-free.
Since Y| =m this is a contradiction and the theorem follows.

By using a very similar method to that used in the proofs of Theorems 13.2
and 14. 4. we can prove that

(14. 11) (m, m, m, my* -3 (k=w)
if m is an inaccessible cardinal satisfying the Ramsey-type of partition relation
(14. 12) m—(m, m)*.

It is well known'! [5] that if n satisfies (14. 12), then m is inaccessible and there
is a non-trivial 2-valued m-additive measure function defined on the subsets of
a set of power m. We cannot prove, however, that if there is no such non-trivial
measure for the cardinal m then (14. 11) is false.

For inaccessible cardinals we have also the following result.

() Tureorem 14. 5. If m is a regular limit number, then
(m, m+, mt, my* 4-m.
REmaARK. This gives, in particular, that

(Ro» ¥y, 8y, 8o)*+Ro.
Therefore. by Theorem 11. 2 (ii),
(14.13) (R Rps 8, Rp)28
and this is stronger than (14. 4) when i = 1. We do not know if (14. 13) is best possible.
PROBLEM 11. (?) (R, 81, 81, Ro)? =Ry

Proor OF THEOREM 14. 5. Let 2 =w(m) and f=w(m™). Since m is a regular
limit number,

m'=m=ngy+m,+...+m,

where mg =mi, = ... =i, =m.

Let §= U(A=a)S;, where |S;| =m; (A<=). Then |S|=m. Let {B,, B, ..., By},
be the set of all those sets BC S such that |B|=m and [BMS;|=1 for all /<.
There are m* = mg-m,...n, such sets by (). Let M =[x, ). By a method similar
to that used in the proof of Theorem 9.1 we will show that there are sets F,C S
(n€ M) such that [F,NS;|=1 (A=2) and F,NB,=0 (if ¢ =p).

‘' In the notation of [3], the property P» implies P{.

Vera Mathematica Aeademiae Scivatiorin Hungaricae 17, 1Gha



222 P. ERDOS, A, HAJNAL AND F. . MILNER

Let u¢ M and let {Cy. ..., C,}. ={B,, ..., B,}. Since |C,/=m for ¢=a (and
each C is a B), there are Ol'dll‘ld.ls Alo)=u such that A(0)=i(1)=... = A(x) =x
and

C,N Sy =0  (0=a).

Put F,=U(e=2)C,M S}, . These sets F, (uc M) have the properties described
in the lael paragraph.

Consider the set system # =(F, M. S). If 8¢ [S]". then there is ¢ = f such
that B, §". This implies that S"(1F, =0 if u=o. Hence there is no (¢, m)-free
subset of § of power m. Now suppose that S is the union of sets T, Ty. T, ..., Ty
where 0 =o and |7/ <=m. Then there are /== and y =0 such that |S, F T_ >I
Otherwise, we would have the contradiction that |S,| = T|+ |0 for all j— . Since
F, (18, =1 for all ue M, it follows that T, is not a complete subgraph of 4 (#).
This proves that S is not the union of a set of power less than m and fewer than
m complete subgraphs of %(¢#).

We use the next lemma to establish further negative relations of the form (2. 9),
but the result seems to have an interest independently of the problems discussed
in this paper.'?

() LemMa 14.1. Let |S|=m* =8, and let § =[S)? be the set of edges of
the complete graph on S. Then it is possible to colour the edges e €& with m™ colours
in such a way that whenever X, YT S, | X|=m, | Y, =m™, then there is some xcX
such that all the m* colours occur among the edges [{x}, Y1'' which join x to the
elements of Y.

Proor. Let a=w(m), f=w(m?*) and let S={x,, ..., 5}.. We will colour
the edges by assigning to each ¢4 an ordinal number 0(e) = fi.
Put M=[0,8), F=MS% D=[S["XF. If K=(B.f)éD, then Bc S, B|=m
and fis a function
Ji S~ M.

We write S(K)=B8and fy=/. Let K. K,, ..., !\"H be a well-ordering of the elements
of D. We now describe the colouring of the elements of ¢ in the following way.
Let yt=fi. Then the power of the set

J={i1l=p, S(K)) {xp. ... X, }}

it at most m. Therefore, there is some 5= such that {K;: A€J}={Ly, L,.....L},.
Since |S(K) =m for each K& D, it follows that we can choose elements z, (¢ =+5)

such that
2.€S(L)~ {26, s 2} (@=3).

We colour the edge {z,, v, }. €& with the ordinal f; (z,) for ¢ <=s. The remaining edges
which have x, as a last element, i.e. {z,x,}. for z€ {x,, ..., %, }~{z0, ..., L}
may be coloured arbitrarily, e. g with the ordinal 0. Since p is an arbitrary ordinal
=[5, this procedure defines a colouring of the elements of &. It remains to prove
that the colouring described has the properties stated in the Lemma.

2 Lemma 14, 1 is a strengthening of Theorem 17A [2].
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Let X, Y S, X|=m, |Y|=m". Suppose that for each element xeX there
is one colour o(x)=pf which does not occur among the edges [{x}. ¥Y]"'. There
is some f€ F such that f(x) = o(x) for x £ X. Also, there is y = ff such that K, = (X, f).
Since |Y|=m™, there is d=f such that =17, x;€Y and X< {x,, .... ¥;}. With
the colouring described above, there is some x"€ X such that the edge {x', x;}. is
coloured f(x") = g(x”). This contradicts the definition of ¢ and the lemma follows.

We use Lemma 14. 1 to prove the next two theorems.

(%) Tureorem 14.6. Let m=R8,, m=n. Then

(14. 14) (m*.mt,m*, mt) 4-m
and
(14. 15) (m*,m*,mt, my?4-n.

Proor. We will prove (14. 14) and (14. 15) together. Where the details of the
two proofs differ we will refer to them respectively as cases (i) and (ii).

Let |A|=|B|=m™. AN B=0. Put f=w(m™). Suppose the edges of the complete
graph on 4 UJ B are coloured in the manner described in Lemma 14. 1. The m~
different colours being denoted by the ordinals less than f. If A€ 4 and p€ B, then
7 (4, 1) denotes the colour of the edge joining 4 and y. For case (i) we define 7 = w(m)
and for case (ii) we define 7=aw(n).

Let S= L(2€4)S;, where S; ={(A. v): v=mr} (A€ A). Consider the (m™*, m")-
system ¢ —(F. B, §), where

Fo={(A v)ES: y(4 p)=v}) (e B).

Since there is no edge of the graph % (#) in each of the sets &, (L€ A4), it follows
that S is not the union of a set of power less than m™ and fewer than = complete
subgraphs of @( 7).

Let B be any subset of B of power m™. Also. let §” be an arbitrary subset
of S such that |8’ =m™ in case (i) and |S’|=m in case (ii). In both cases |S’| =|x|.
This implies that the set A= {ic 4: §'(1S; =0} has cardinal at least m. By the
property of the colouring on [4 L B)?, it follows that there is A'€4" such that
{72, p):peB}=10, ). There are p=n and p €B’ such that (4, 0)€S" and
2(A ' )y=o. Therefore, S'(1F, 0. This proves that there is no (¥, m")-free
subset of § with power m™ in case (i) or with power m in case (ii). This proves (14. 14)
and (14, 13).

The condition that m =n for the relation (14. 15) to hold is not necessary in
the case of an inaccessible cardinal m. Thus we prove the following result.

(#) Tueorem 14. 7. If m is a regular limit number, then
(m=™, m omt, m)* .

Proor. Let a=w(m), f=w(m"). There are cardinals m,=m (¢ ==) such that
My =01~ 1y = ... = 1, ~ .

Let 4={(0.0):0o=2;0=f} and let B be any set of cardinal m™ which is
disjoint from A. As in the prool of the last theorem, consider a colouring of the
elements of [4 | B]* with m™ colours (the ordinals less than f) so that the condition
described in Lemma 14. 1 holds. The colour of the edge joining A€ 4 and pu€B is
denoted by y(4. ).
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Let S=U(p<=a;0<=f)S,,, where S,,={(¢0.,0.7): t<=w(m,)}. Consider the
(m*, m*)-system #=(F, B.S), where

F,={(0, 6. D€S: 1((0, 0), p) =7}
for peB.

The sets S,,((¢. 0)€A) are complete subgraphs of the complementary graph
of 4(4). Therefore § is not the union of a set of power less than m™* and fewer
than m complete subgraphs of %(#). Let S ¢[S]" and B'€[B]"". Since m’=m,
it follows that there is 4 € [A]" such that 8" S,, 0 for (g, 6) € A”. By the property
of z, there is some element (¢’,6")€ A" such that {y((¢", 6), p): p€ B’ }=[0, p).
It follows that there are t—=w(m,) and p'€B" such that (¢’,¢",7)€S" and
A’ o), w)=1,i.e. (1 F, =0. This proves that there is no (,#, m*)-free subset
of § of power m.

We do not know if the last theorem can be extended to the case of singular
limit numbers.

PROBLEM 12. (1) (8,41s Nosts Norps X228, (v=aw o o).

We can, however, prove that the condition m =#n for (14. 15) to hold is a neces-
sary one in the case of a non-limit number m. Thus we have that

(Rya2s Bopas Ry R )2 = Roag (v=0).
This is a special case of the following theorem.
THEOREM 14. 8. If 8. =N,.,. then
(14. 16) (a, 85, 8) Rypg)? =841

Proor. Let # =(F, M, §) be a (§;, a)-system such that there is no (7, §,)-free
subset of power 8,.,.

Let So=S8~0Q(#). i.e. each element of S, is a member of fewer than N,
of the sets £, (ueM). If S, contains a subset §” of power ®,.,, then S” has a non-
empty intersection with fewer than 8; of the sets F, (€M) since N;=8,,,.
Therefore, S” is (7, 8;)-free. This is a contradiction and proves that | Sy =N, ,.

If x£Q(7), then x is joined by edges of the graph %( #) to all the points of
S apart from a set of power less than R, ,. This follows from the lact that there
is no (f, §,)-free subset of power &,,,. It follows that the connected components
of the complementary graph of %(#) each have power at most 8, when restricted
to O(#). Hence Q( #) is the union of 8, complete subgraphs of @ ( #). The theorem
now follows since each element of S, is a complete subgraph of (7).

In contrast with (14. 16) we have that

(@ 8. X R)2=2 i a=8,, N;=8,+,.

This follows directly from Theorem 11. 3 (ii) and (11. 8). Similarly, we have that
(@ 8y, Xy, D=2 if a=8;, 8i=>8,4,.

By Theorem 11.1 this relation implies

(14.17) (@, 85, 8, 822 0 a=8;, 8. =81,
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The condition §;=®,. is essential in (14. 17) since
(14. 18) (m*, m*, m,m*)Y4-m if m=y,.

This last result is a direct consequence of Theorem 11. 3 (i) and Lemma 14. 1 which

implies that
1.1
m-‘] m*
b :IJ
m? M wm

(in fact the suffix o(n1) can even be replaced by w(m™)).
If the final m™ on the left side of (14. 18) is reduced, then we obtain a positive
result. By (11. 7) and Theorem 11. 3 (ii)

(m*, m*, m, m)> 2.
Similarly, using (11. 6) instead of (11. 7), we deduce the relations

(m*t,m,m,m?* =2 if m=8,
and
(mym*,m,m? =2 if m' =R,.

However we are unable to establish either of the relations stated in the next problem

ProOBLEM 13. (7) (R, 8, 8, a)* =2 (=8, or N\,).

We conclude this section by giving another proof of (14. 18) which employs
a different idea to that used to establish Lemma 14. 1. :

Proor oF (14. 18). Let u=w(m), f=w(m™). Let S=UA<=/)S;, where §,=
={x;,: v=a}. Then |S|=m*. Put M=[0, f) and let [M]"={Ny, ..., N;}.. We
define a (m™, m™)-system f—(F‘ M. S) by defining the intersection of the sets
F, (ne M} with each of the sets S, (1=p). .

LLt L<f. Then there is some n=n(l)=2 such that {Ngy, ..., N;}=
{M,.:v=mn)}.. Since ecach of the sets M, (v=m) has cardinal power m, it follows
that lhel are ordinals ji;,. (v=n(1); T=0o) such that

Jinr{'—‘&{ (T '_:Q‘J

and such that p;,, = p;e unless v=1" and r=1". We define the sets F, for uneM
so that
X € F, if and only if pu=;,. for some v=n(i).

From this definition of the sets F, (u€ M), it is clear that §, c U(ueM,,)F,
for v=m(A). Therefore.

S, cU(ueEN)F, if A=0.

This implies that there is no (#, m)-free subset of S with power m™.
Since the ordinals p;,, are distinct for v=mn(4), T =« and a fixed value of A(= /),
it follows that
IFNSI=L (eM, A=<p).

Therefore, the set S, (A<= pf) does not contain an edge of the graph %(#). Hence
S cannot be expressed as the union of a set of power less than m™ and fewer than
m complete subgraphs of %(#). This proves (14. 18).
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§ 15. In this final section we establish a few results and state a few problems
concerning the symbol

(15.1) (m, o, f)2 —n

defined in § 2. We consider only the case when « is infinite and indecomposable.
Clearly (15. 1) holds if |ff| =n=|«| since a set of type « (indecomposable) can be
decomposed into || disjoint sets each of type =.

THEOREM 15. 1. If o is infinite and indecomposable and o—(x, f)*, then for
any m=1

(15.2) (m, o, B)* 3.

Proor. Let # =(F, M, S) be any (i, «)-system of sets such that %(7) contains
no complete subgraph of type . The hypothesis % —(x, £)* implies that the comple-
mentary graph of % ( #) contains a complete subgraph of type «, i. e. there is a set
T'cS such that tp T=o and [TNF,[=1 (ue M). We may write T=T,UT,,
where T, T, are disjoint sets of type «. Put 7, =S. Then § is the union of the
three sets T, (¢ —=3) which each have type « and for each pc M there is o(u) =2
such that F,(17,,,=0. This proves (l5.2).

An immediate deduction from Theorem 15. 1 and the partition relations (3. 4)
and (3.5) that, for arbitrary m,

(15.3) (m, @, w)* —+3
(15. 4) (m, @2, B> =3 if B<o.

SprckER showed [9] that @®+4+(w?, 3)%, and a simple modification of SPECKER’S
construction gives that
(m, 0, 4243 if m=N,.

HOWGVE‘[‘._ we cannot answer
ProeLEM 14. (7) (8, %, 57 +4.

The relations (15. 3) and (15. 4) are best possible in the sense that the number 3
cannot be replaced by 2. This lollows from the following simple result,

TuroreMm 15. 2. If m =« =0, then (m, o, 3)* 2.

Proor. We may clearly assume x| =8,. Let S be an ordered set of type «
and let x,€ S. Consider the graph % =(S, £) formed by joining x, to all other
points of S by edges. ¥ does not contain any triangle. Let # =(F, M, §) be any
(m, a)-system which is such that U(uée M){F,}=E. Such a system exists if
m=|E|=|z.

Suppose that S=S,JS, and S, <0 (g=2). Since x, is in one of the sets
S,, there is some u € M such that #,(1S,70 (¢=2). This proves the result.

The next result should be contrasted with (15.3) and (15.4) (and Problem 14).

THEOREM 15.3. Let 1 =2=w,;n=8,=m. Then
(m, w*, w)2-n.
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Proor. Let tp S=w? Since 1=A=w, we may write S=U(v=w)S, (tp),
where |S,| =8, for v=wm. Let S,={x,,: 0 =ow}.. Let F=(F, M, S) be a (m, w*-
system which is such that {F,: €M} coincides with the set of all finite subsets
of S of the form

{'\'l'u‘.’u \“I“l bt '\"k":’k}‘:

where k=w; vg=v,=...=v, and gy =0, =... =g;. It is easy to see that the graph
%(¢) does not contain an infinite complete subgraph.

Suppose that S=A4,U...\UA,, where tp A;=w” (i<=n). Then n=0 and we
can choose integers v; (i=n) so that vo=v, =...<=v, and [S,.N4;| =8, (i=n).
Now we can choose integers 0, ;...., 0, 0o su(_u:aswely so that o Oye1= =< 0p
and x,,,, € A; (i=n). The set {x,,,:{=n} belongs to the set-system # and intersects
each of the sets A; (i=n). This proves the theorem.

The integer n in Theorem 15. 3 clearly cannot be replaced by &,. In fact for
any cardinal ¢ =8, we have the trivial relation

(m, a, a)® —a.
We have the following stronger result in the case of singular cardinals.

() TuHEOREM 15.4. If a=a’, then for any m,
(m, a, a)* ~(a’)*.

Proor. Let #=w(a’). Then there are cardinals a; =a for A-=o such that
a=ay+a,+...+4, and a,=a,=(@ +ay+ ... +d;)* for A=a. Let §=(F, M, S)
be any (m, a)-system such that %(#) does not contain a complete subgraph of
power a. Let f=w((a’)"). We want to prove that there are sets T,€[S]* for 0 <f
such that S= (0 =T, and each set F, (1€ M) is disjoint from at least one of
the sets T, (0 =f).

Suppose there is some A=z such that 4 (#) does not contain a complete sub-
graph of power a,. Since'?

a—~(aya) (2=

it follows that the complementary graph to %(#) contains a complete subgraph
of power «, for each p ==«. Hence there are sets S, €[S]% for g == such that

(15.5) [F,NS,=1 (HeEM; 0 =u).

Each set S, (¢ =x) can be expressed as the union of (a”)* disjoint sets S,y (0 =)
such that |S,/=a,. Put Ty=S and T,,,=U(p=2)S, for 0=pf. Then
S=U(0-= ﬁ)Ta and each set 7, has power a. Also, by (15.5), if u€ M and o<z,
then there is 0(u, 0) = f such that

F.MS,=0 if 0=0(u, o).

There is ¢ = (1) = ff such that ¢ =0(u, g) for all ¢ =a. It follows that F,[17,=0.
Therefore, we may assume that there are sets S, S for A=u s‘uch thdt Y}
is a complete subgraph of %(#)=(S, E) of power a,. By Lemma 6. 1, there are

14 E. g. see [3], Theorem 34, Corollary 2.
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disjoint sets S; < S; (A=a) and a function f[[0, «)]* -{0, 1} such that |S}| =a,
(A=2) and

( [Si, ST NE=0 if f(4, v)=0,

(15. 6) T
l1S5, SIcE i 10, v)=1.

Put T,=S for 0€[x, f) and Ty=U(0=2=ua)S; for 0 <«. Then |T,|=a for 0 <p.
Let pue M. Suppmc that F,MNTy=0 for all 0<o. Then there are ordinals 1, <
such that A,<A,<..<1, Z 2 and

(15.7) E Y8 #0 (v=u).

Put §* = U(v=2)S, .Then |S*|=a and S$* is a complete subgraph of %(#) by
(15.6) and (15. 7). This contradiction proves that F, is disjoint from at least one
of the sets 7, (0 =u) and completes the proof of Theorem I5. 4.

The next theorem shows that the relation given in Theorem 15. 4 is essentially
best possible in the sense that (a”)* cannot be replaced by a

(#) THEOREM 15.5. If m=R,=>R,=NR,, then
(m, w,, @+ 1)* 4.

PROOF. Let S= U(A=wy)S; (tp); tp S; <tp S=w, (A<wy). Let F=(F, M, S)
be a system of sets such that {F,: uc M} is identical with the set of all sets Fc S
which are such that [F|=¥, and [F(S,;|=1 for all 1=aw,. Clearly, there is no
subset of § of order type @, + 1 which is a complete subgraph of %(#). Suppose
that §=U(A=wy)4 ,-‘.and |4;|=8, for A=w,. Then there are ordinals v, =wy
such that vo=v,<=..<?,, =@, and such that 4,MS,, #0 (l=w,). Choose
X,EA;MS,, for A fcuﬂ and let F={x;: l=wm,}. There is some €M such that
F — F and so F,(14;#0 for all 1<=wj. Thls proves the theorem.

We do not have comparable results to Theorems 15.4 and 15. 5 for regular
cardinals. Thus, if @ =5b", then we have nothing between the trivial relation

(m, a, a)* ~a

already mentioned and the following result.
() TrHEOREM 15.6. If m=a=b"=8,, then (m, a, a)>*+R,.

Proor. It follows from Lemma 14. | that if |S|=a, then therc is a graph ¢ =
=(S, £) such that whenever 4, BC S, |4|=a and |8| =b, then there are elements
x, €A and z€B such that {x,z}€E and {y, z},q E. Since the graph contains
no complete subgraph of power «, it follows by () that there are just a
complete subgraphs of @. Hence, if m=a, there is a (m, a)-system ¢ =(F, M, S)
such that {F,: nc M} is the set of all the complete subgraphs of %.

Let §= U(v=w)AY, where |4 =a (v = w). We want to show that there is some
(e M so that F, (14" <0 for all v <. Let n=w and suppose that we have a]reddy
defined x,, ..., £,€ S and A" C AP for n=v<w so that x,€A™ (p=<n), |4V =
(n=v-—=w) and

(¥, VILEE if o=n and yelJ(v=n)a™m.
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There is some element x, <A™ such that
A= (Y EAD: (5, v} € E)

has power a for all v=n. If this were not the case then for each x¢€ A" there is
some v(x)€[n+ 1, w) so that x is joined to at most b points of AV, by edges of .
There is X €[4 such that v(x)=1v, for all x¢X. Hence

Y= AW~ U(xeX){p: {x, )4 €E)
has power a and
[X. Y"'NE=9.

This contradicts the definition of the graph %. It follows by induction that there
are elements x,6 A\ (n=w) such that F={x,,...,%,} is a complete subgraph

of %. This completes the proof.
The first problem of this kind which we cannot settle is

PROBLEM 15. (7) (m, 85, 8,)° —8;.

It follows from a result in [2]'* that if (%) holds and a =¥,. then there is a
graph % = (S, £) such that |S/=¢", ¥ contains no complete subgraph of power
¥, and is such that whenever 4 €[S}, B€[S]*, then there is an edge of % joining
some point of 4 to a point of B. Using this result and the same method emploved in
the proof of Theorem 15. 6 we can prove

(%) (m, a®, 8,)+8 (m=at).

{ Received 30 July 1965)

References

[1] P. Ernds and N. G. pE Brunn, A colour problem for infinite graphs and a problem in the
theory of relations, fudig. Math., 13 (1951), pp. 311—313.

[2] P. Erpds, A, HainaL and R. Rapo, Partition relations for cardinal numbers, Acta Math.
Acad. Sci. Hung., 16 (1965), pp. 93—196.

[3] P. ErDds and R. Rapo, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (3), pp.
427—489,

[4] P. ErpOs and E. Specker, On a theorem in the theory of relations and a solution of a problem
of Knaster, Coll. Math., 8 (1) (1961), pp. 19-—-21.

[5] P. Ernds and A. Tarskl. On some problems involving inaccessible cardinals, Essays on the
Joundations of Math., The Hebrew University, Jerusalem, 1961.

[6] M. Kneser, Aufgabe 360, Jahresbericht d. Dentschen Math. Vereinigung, 58 (2) (1955).

{71 E. C. Mu~er and R, Rapo, The pigeon-hole principle for ordinal numbers, Proc. London
Math. Soc., (3) 15 (1965),

[8] F. P. Ramsey, On a problem of formal logic, Proe. London Math. Soc., (2) 30 (1930), pp.
264—286.

[9] E. Sprcker, Teilmengen von Mengen mit Relationen, Commentarii Math. Helvetici, 31 (1957),
pp. 302—314.

[10] A. Tarski, Quelques theorems sur les alephs, Fuad, Marh. 7 (1925), pp. 1—13.

" It is proved in [2] (Theorem 10) that a* +(a*3, 3, ...)y,. This, together with the fact that
#2-(3, 3, ...)§,, implies that @+ 4 (82, @*,)*. In fact, the proof used in [2] of this relation actually
gives the stronger result stated in the text.

Agta Mathomatica Academiae Scientigrum Hungaricue 17, 1966



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71

