
Jim sup -
X= + .

	

log

	

109X a,, <x a,, log a,,

Then it contains a chain satisfying for infinitely many x

(4)

	

Z 1 > c, log log x .

(3)
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ON DIVISIBILITY PROPERTIES
OF SEQUENCES OF INTEGERS

by
P. ERDŐS,' A . SÁRKÖZI 2 and E. SZEMERÉDP

Let a 1 < a, < . . . be an infinite sequence of integers of positive lower logarithmic
density, in other words

1(1)

	

lim sup		> 0.
X=+-

	

logxa;<x a i
DAVENPORT and ERDŐS [1] proved that then there exists an infinite subsequence
a,,, < a„, ` . . . satisfying a,, ./a,, .+, .

In this note we will give various sharpenings of this result . The sequence
a1 < a2 < . . . will be denoted by A, an infinite subsequence aa , < a„, < . . . satisfying
a,,,/a, +, will be called a chain, c t , c 2 , . . . will denote positive absolute constant .

THEOREM 1 . Let the sequence A satisfy (1) . Then it contains a chain satisfying
for infinitely many y
(2)

ani<y

THEOREM 2 . Let the sequence A satisfy

a,,, < z

1 > C , (log log Y)=- .

=c 2 >0.

We will not give the details of the proof of Theorem 1 since the methods of
Theorem 2 can be used and Theorem 2 seems more interesting to us, but we outline
the proof of the fact that Theorem 1 is best possible . Let the sequence m1 <m2 < ., .
tend to infinity sufficiently fast, our sequence A consists of the integers a for which
(i,(a) denotes the number of distrinct prime factors of a)

log log ini-(log log ni,)2' < v (a) < log log mi+ (log log mi)-'

holds for some i (i=1 . 2, . . .) . It is easy to prove by the methods of [2] that our

' Mathematical Institute of the Hungarian Academy of Sciences, Budapest .
2 Eötvös Loránd University, Budapest .
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sequence satisfies (1) and if the mi tend to infinity sufficiently fast a simple compu-
tation shows that we have for every chain

S 1 < 3 (log log x)=

in other words Theorem 1 can not be improved .
It is easy to see that in Theorem 2 c,- can not be greater than c, . but perhaps

the following result holds : For every sequence A there is a chain satisfying

(5)

	

lira sup - -- 1 - Z 1

	

llm sup

	

1

	

1
Y = + -

	

log logy a ,, ,< y

	

X=+-

	

log log x

	

x a;, log a,,
We have not been able to prove or disprove (5) .

Before we prove Theorem 2 we show that in general (4) will not hold for all x .
In fact we shall show that to every increasing function f(n) there is a sequence A
of density I every chain of which satisfies

(6)

	

a,,, >f(i)
for infinitely many i . (6) of course implies that no lover bound can be given for the
growth of

	

1 . We construct our sequence as follows : To each integer m we
11" i

I,

make correspond an interval I(a,,,, b where a and b,„ are sufficiently large,
also b,,, <a,,, + , in other words the intervals /,, ; are disjoint . An integer belongs to
our sequence A if and only if it is not of the form

niu a,,, < nitt < b,,, 1 - irt <

In other words our sequence A does not contain any multiple of ni in the interval
I,,,, but contains all the other integers . It is easy to see that A has density 1 and that
it satisfies (6), we leave the simple details of the proof to the reader .

Now we prove Theorem 2 .

LEMMA 1 . Let b, <h z

	

be a sequence of integers satisfying

1

~

	

_ác
b

	

4
i i logb

Then there are two b's h ; and b ; satisfying b ilb ; and all prime factors of bjlb t
are greater than b t .

The lemma is almost identical with a theorem proved in [3], the condition
that all prime factors of b;lb ; are greater than b; is not stipulated in [3] .

Let k be so large that
I

(7)

	

bt log bi

	

c~

and let x be sufficiently large . The number of integers y- x all whose prime factors

are greater than b; is by the sieve of Eratosthenes and a well known theorem of
MERTENS (c is Euler s constant)

x /I

	

I

	

(1

	

xe - r

(g)

	

(1 +0(1))- -

	

1

	

_

	

-}-0(1)~	
bt v--n ;

	

P

	

bt log bi .
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Hence by (7) and (8) the number of integers not exceeding x of the form b iy .
where all prime factors of y are greater than b i is greater than x . Hence there are
two indices i and,i i- . j for which
(9)

	

biyI = bjy2

wberc all prime factors of y , are greater than b i and all prime factors ofy2 are greater
than h i . But then a simple argument shows that b ; ;b j and all prime factors of b jlb i
are greater than b i as stated .

Consider now a sequence A satisfying (3), we split it into disjoint Subsequences
{u " ) }=A (" ) i -=r=- +- as follows : a (,' ) =a1 . Assume that a" ) , a" ) , . ., aO I has

already been defined . a(' ) is the smallest a,>ak'_) , for which ~a, ~ 1 -_i-k--1 is

never an integer all whose prime factors are greater than aM . Suppose that the
sequences A" ) , . . ., A (" - ' ) have already been defined . Let B" be the sequence which
we obtain from ,4 by omitting all the elements of A ( ' ) (1-fEi-r-1) . We define
A°~ =B as a subsequence of Br in the same way we defined A ( ' ) as a subsequence
of A. Clearly a; " ) lay" ) can never be an integer all whose prime factors are greater
than aii " ) , hence by Lemma l we have for every r

t(10)

	

a` r) log a~ ")

a I'' )
Further to each ai" ) there is an a,

	

so that ("'
1)

is an integer all whose prime

factors are greater than ai("-') (for if not then by our construction a;" ) would belong
r

to A ( " - ' ) ) . Thus if say a„ does not belong to U A (' ) there is a sequence ai,, a,2 , . . .,
s=1

a j ,,

	

-a , where a is in A (j) 1 ~j-I, and all prime factors of the integer1 r á

	

1r+1

	

11

	

A~

a''+' are greater than a ; . . We will call such sequences divisibility sequences of
a, .
length r + 1 belonging to a„ .

Now we can complete the proof of Theorem 2 . By (3) there is a sequence x ;
tending to infinity sufficiently fast for which

and define a subsequence A*={a;<a*2< . . .} of A as follows : a„ belongs to A*
r,

if and only if there is an i so that a,, -< x . and a„ i U Atj ) (clearly if such an i exists
j=1

ri+ i

it must be unique, since if the x i tend to infinity sufficiently fast U AU ) contains
j=1

13
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all the a„--x;). We will denote this unique i corresponding to a„ by h(a,*,) . By
(10), (11) and (12) we have for every i

-,

	

1

	

I
(13)

	

u,
, a ;, log a;

> -4 c, log log x; .

From (13) we obtain by a simple argument that the sequence á„ satisfies (1)
hence by the theorem of DAVENPORT and ERDŐS quoted in the introduction there
is an infinite subsequence of A* {a,*,, a?, . . .} satisfying a*„ ./a*,, , . Consider now
a subsequence of the an . say dl < dz < . . . for which h(dk+1)~h(dk)+1 . By our
construction (see (12)) dk is not contained in

r,,,ak)

	

1(14)

	

U A(j)

	

1'h(d1;) -

4C4
C2 log log xh(dk)

j=1

	

4
hence as stated previously, there is a divisibility sequence of length r,, (d ,. ) + 1 belong-
ing to dk ; we denote by elk) < e;k) < . . . < e,(. < <, )+1 =dk the members of this divisibility
sequence (they all belong to our sequence A but not necessarily to A*) . If dk tends
to infinity sufficiently fast then by (12) and (14) '. h(d, +,) >2dk therefore at least
i 1'h(dk+ , ) of the eIk + 1) are greater than d,., let e;,k,±,1) be the least e ;

(k+1) which is greater
than dk . By what has been said
15

	

Sk+1=2i h(dk+1)'

To complete our proof we now show that the infinite sequence

(16)

	

e(k) , 1 -~ k < l ~, Sk `J i" h(dk) + 1

forms a chain satisfying (4) . First we show that the sequence (16) satisfies (4) with

C3 1 - c- c~ and .1=xh(d,,) . Clearly by the definition of the e~') and x,, ( ,, )
a

(17)

	

e, k l -dk

	

. V11(dkl'

Hence by (l2), (13), (15), (16) and (17) the number of the terms of the sequence (16)
not exceeding x,,(dk) is greater than

1

	

l

	

l l1

	

l- og09Xh(d k ) _og log - )~Wdk)h(d,z)

	

2

	

4e,

	

10c á
2 r'

as stated .
Thus to complete our proof we only have to show that the sequence (16) really

forms a chain . In other words we have to show that for each k e(k+') is a multipleIf, -
of

	

=dk . To show this observe that
(k+1)( 1 8 )

	

e(k+1)

	

= d

	

e(k+1)0

	

eSk+, t+1
rn(dk)T 1

	

k1 '

	

Sk~1

	

(k+1)<r~rn~dk „) ak"
eSk+,+t

By our definition each prime factor of the integer

e(k+ 1
S k + , +t+1
e(k+ 1)
Sk 1+t
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is greater than e(k+ 1 + t >d,., hence if djesk+t) we obtain from (18) that djd,,+I
which contradicts our assumption, hence the proof of Theorem 2 is completed .
It would be easy to show that Theorem 2 holds with c3 >(1-e)cz e for every e ::-O

in [1] DAVENPORT and ERDős prove the following theorem : Let A satisfy (1),
then there is a k so that

l
litre sup

	

f 1 > 0 .
.< -+ ro

	

log X aklai a i
Perhaps the following stronger result holds :

(19)

	

lim sup -t- -

	

ak

	

lim sup-

	

-f-
logxai< ai

	

X-+-

	

L logX"

	

k
aki ai

It is easy to see that if (19) is true it is best possible .

(Receised October 12, 1965)
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