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ON DIVISIBILITY PROPERTIES
OF SEQUENCES OF INTEGERS

by
P. ERDOS,' A. SARKOZI> and E. SZEMEREDI!

Let ¢, =a, - ... be an infinite sequence of integers of positive lower logarithmic
density, in other words
: 1 1
1) lim sup—— — =0
( Bl plog .\‘MZx a
DaveNpoRT and ErRDGs [1] proved that then there exists an infinite subsequence
a,, =a,,= ... satisfying a, a,. . .

In this note we will give various sharpenings of this result. The sequence
ay<a,=... will be denoted by 4. an infinite subsequence a,, = a,, =... satisfying
a,la, ., will be called a chain, ¢,, ¢,, ... will denote positive absolute constant.

Turorem 1. Let the sequence A satisfy (1). Then it contains a chain satisfying
for infinitely many v

(2) D l=c(loglog y)*.

<y
Theorem 2. Let the sequence A satisfy

. 1 I
3 ] = — ———————— = [} = 0
(3) _\_!T__ﬁsul} log log x a"Z{; a,loga, &

Then it contains a chain satisfying for infinitely many x

(4) > 1=c¢yloglog x.

By <X

We will not give the details of the proof of Theorem 1 since the methods of
Theorem 2 can be used and Theorem 2 seems more interesting to us, but we outline
the proof of the fact that Theorem 1 is best possible. Let the sequence m; =ni, =...
tend to infinity sufficiently fast, our sequence A4 consists of the integers a for which
(v(a) denotes the number of distrinct prime factors of a)

log log m; — (log log m;)* = v(a) =log log m; + (log log m,)*
holds for some 7 (i=1.2,...). It is easy to prove by the methods of [2] that our
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sequence satisfies (1) and if the n¢; tend to infinity sufficiently fast a simple compu-
tation shows that we have for every chain
> 1<=3(loglog x)*
g, <X
in other words Theorem 1 can not be improved.
It is easy to see that in Theorem 2 ¢; can not be greater than ¢,. but perhaps
the following result holds: For every sequence A there is a chain satisfying

1 . 1
(5 lim su ? I = limsu — —
) i P log] oglog y ,,,, i i P loglog x .=, a,loga, "
We have not been able to prove or disprove (3).
Before we prove Theorem 2 we show that in general (4) will not hold for all x.
In fact we shall show that to every increasing function f(n) there is a sequence 4
of density | every chain of which satisfies

(6) a,, =1{i)

for infinitely many i. (6) of course implies that no lover bound can be given for the

growth of 3" 1. We construct our sequence as follows: To each integer m we
Uy <)

make correspond an interval /,, = (a,,, b,) where a, and b, are sufficiently large,
also b, =a, ,, in other words the intervals I, are disjoint. An integer belongs to
our sequence A if and only if it is not of the form

mi a,=mu<=>b, 1=m-—=+ =,

m

In other words our sequence 4 does not contain any multiple of m in the interval
I,,. but contains all the other integers. It is casy to see that 4 has density 1 and that
it satisfies (6), we leave the simple details of the proof to the reader.

Now we prove Theorem 2.

Lemma 1. Let b, < h,=... be a sequence of integers satisfying
I - v
bilogh, ~ *

Then there are two b’s b; and b; satisfying b;/h; and all prime factors of b;/b;
are greater than b,.

The lemma is almost identical with a theorem proved in [3]. the condition
that all prime factors of h;/b; are greater than b, is not stipulated in [3].

Let & be so large that

13
(7) 2

. . x .
and let x be sufficiently large. The number of integers y = y all whose prime factors
b

> Oy

Iogb

i
are greater than A, is by the sieve of Eratosthenes and a well known theorem of
MERTENS (¢ 1s Euler’s constant)

(8) (|+0(|] [[ 1——] ]—I—GI))blgb

r p=hi
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Hence by (7) and (8) the number of integers not exceeding x of the form b,y,
where all prime fuctors of y are greater than b, is greater than x. Hence there are
two indices i and j i = j for which
[9) b;}'l = bj)'-_).

where all prime factors of y, are greater than b; and all prime factors of y, are greater
than b;. But then a simple argument shows that b,/b; and all prime factors of b;/b,
are greater than b; as stated.

Consider now a sequence A satisfying (3), we split it into disjoint subsequences
{ai?}=A" | =r= +e as follows: e} =a,. Assume that ai".al". ....q/", has

" ay e "
already been defined. af is the smallest a,=af", for which 2 l=i=k-11s

(s
never an integer all whose prime factors are greater than a!'’. Suppose that the
sequences 4'Y, ..., A" have already been defined. Let B, be the sequence which
we obtain from 4 by omitting all the elements of 4® (1=i=r—1). We define
A" = BV asa subsequence of B, in the same way we defined A'Y as a subsequence
of A. Clearly «}”/a{” can never be an integer all whose prime factors are greater
than a", hence by Lemma 1 we have for every r

(10) Z = ¢4
=~ af™ iog (I“"
{r! o .
Further to each a{” there is an a{"~" so thal "y, is an integer all whose prime

factors are greater than a{"~" (for if not then by our construction a;” would belong

to A"~ V). Thus if say a, does not belong to U A® there is a sequence a;,, @,,, ...,
s=1

o> @;,,, = @, Where a; is in AY) 1=j=r and all prime factors of the integer

et n
a : e
Yuti o are greater than a;,. We will call such sequences divisibility sequences of
ij i
length r+1 belonging to a,.
Now we can complete the proof of Theorem 2. By (3) there is a sequence x;
tending to infinity sufficiently fast for which

< 1 l
S e e}
(1) % aToga = 3¢ 108 log x;
Put
(12) : ¢, loglogy;, | =r
4c, 2 log logy; | =r,
and define a subsequence A*={a}i<a%<...} of A as follows: a, belongs to A4*

if and only if there is an i so that @, =x.and a,¢ U AY (clearly if such an i exists
J_

it must be unique, since if the x; tend to infinity sufficiently fast U 'A% contains
=1
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all the a,=x;). We will denote this unique i corresponding to af by h(a}). By
(10), (11) and (12) we have for every i

1 I

(1 3) et _Q';IE&;: = "'1'.' C: lOg IOg Xi.

From (13) we obtain by a simple argument that the sequence « satisfies (1)
hence by the theorem of DAVENPORT and ErDGs quoted in the introduction there
is an infinite 5ubsequence of A*{a; .aj,. ...} satisfying a}, ,a%,,,- Consider now
a subsequence of the aj, say d, =d,=...for which .-‘:{dH,) -h(d,)+1. By our
construction (see (12)) d; is not contained in

Fhidg) ; l
(14) ) AW ["'h:d;‘! = [ ¢y loglog x4, ]

i=1 4y
hence as stated previously, there is a divisibility sequence of length ry,, + | belong-
ing to d,; we denote by ef" =ef® = .. = E"':‘,J(d‘ ,+1=d, the members of this divisibility

sequence (they all belong to our sequence 4 but not necessarily to 4%). If d tends
to infinity sufficiently fast then by (12) and (14) ryy, ., =2d, therefore at least
3 Pugae . Of the ef** 1) are greater than d,, let e} " be the least ef**+ 1) which is greater
than d,. By what has been said

i i
(15) Skt 1 =2 n(as e

To complete our prool we now show that the infinite sequence

(16) e, 1=k<+ow, H=j=rgy+l1

forms a chain satisfying (4). First we show that the sequence (16) satisfies (4) with
"“}']"{}]v._‘ ¢, and x=x,,,. Clearly by the definition of the e{* and x,,,,

(17) e =d, = X0

Hence by (12), (13), (15), (16) and (17) the number of the terms of the sequence (16)
not exceeding X, is greater than

I ]
5 Frcdyy = 5 E(::Ioglog Xnear | = -mlog 10g Xy

as stated.
Thus to complete our proof we only have to show that the sequence (16) really
forms a chain. In other words we have to show that for each k ¢®*D is a multiple

o ) .
of ¢n4y+1=d,. To show this observe that
v B{L+Ir
(k+1) . — plk+1) Syttt
(18) e Ay g o ] b i
k O=t=rugdy 4 ()= %k+1 k1)
'e\k+|+!

By our definition each prime factor of the integer

(ki +1
3k;;+l’+l
u+1j
es»c 1A
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is greater than e““”_ =d,, hence if (fk’fe“‘*‘” we obtain from (18) that dfd.,

which contradicts (Imur assumption, hence lhc proof of Theorem 2 is completed.
1t would be easy to show that Theorem 2 holds with ¢; =(1 —¢)ec, e ¢ for every ¢ =0
in [1] DavenporT and ErpGs prove the following theorem: Let A satisfy (1),
then there is a k so that
1 = 1
lim su = 0.
X= e ) log x rr%- a;
Perhaps the following stronger result holds:

1 a, | |
19 lim su = lim su
[ ) X=4 oo ple_—\ag’t i X= 4= p \uk xak

It is casy to see that if (19) is true it is best possible.

{ Received October 12, 1965)
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