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§ 1. Introduction’

Let » be a cardinal number. A graph % is said to have chromatic number =
if « is the least cardinal such that, the set of vertices of % 1s the union of x sets, where
no two clements of the same set are connected by an edge in .

A graph % is said to have colouring-number «, if z is the least cardinal such that
the set of vertices of % has a well-ordering < satisfying the condition that for every
vertex x of % the number of those vertices y < x of ¥ which are adjacent to x is less
than «.

We consider a graph % as an ordered couple (g, G) where g is a set the elements
of which are called the vertices of %, and G is a subset of the set of all unordered
pairs of g. The elements of G are called the edges of %.

As a generalization of graphs we will consider set-systems # =(/i, H) where
his a set and H is a set of subsets of /. It is easy to generalize the concepts of chroma-
tic and colouring numbers for general set systems instead of graphs. We mention
that several properties of set-systems have been investigated in the literature which
can be expressed using the notion of chromatic-number. We do not try to give
complete references but we point out one important property which can be expressed
using it,

In [11] MILLER defined property B of a setof sets. A set H of sets is said to have
property B if there exists a set B which meets each element of A but does not contain
any of them. In [5] we have investigated property B in greater detail. It is obvious
that a non-empty set of sets H has property B iff the corresponding set-system
# ={(|! H, H) has chromatic number 2.

Our main aim in this paper is to study the colouring- and chromatic-numbers
of (infinite) graphs. The introduction of set-systems has several purposes. First
we are going to generalize some easy theorems proved in this paper for general
set-systems. Meantime we will state and prove some theorems for set-systems which
will serve as lemmas to prove the results for graphs. Finally we will give some gene-
ralizations of known theorems concerning finite graphs, for more general finite
set-sytems.

§ 1. A. A brief summary of the results and the history of the problems

In § 2 we explain the notations and introduce several concepts involving graphs
and set-systems.
In § 3 we give the proof of two theorems (the first of which is well known).

' For a detailed explanation of notations and terminology used in this paper see § 2.
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3. | states that the colouring number is not smaller than the chromatic number
provided H consists of finite sets of at least two elements. 3. 2 states under the same
conditions for H that if .# has colouring number ¢, then there exists a well-ordering
< of h satisfying the condition appearing in the definition of colouring number
such that typ = Al

The problem considered in sections 4 and 5 has a long history. TuTTE and
independently Zykov were the first who proved that for every integer n there
exists a graph which does not contain a triangle and has chromatic number =n
(see [14],[19]). This theorem was independently proved by some other authors.
See e. g. [12]. P. Ernds and R. Rapo generalized the TurTE—ZyKkov theorem for
every infinite cardinal x(see [7]). P. ERDOs gave a different generalization of the
TurTE—ZYKov theorem for finite graphs. He proved that for every pair of integers
n, s there exists a graph which does not contain circuits of length =s and has chro-
matic number =n. This proof gives a very good estimation for the minimal number
of vertices of a graph of the above property (see [4]).

The question arises whether the ERDOS—RADO theorem has a similar genera-
lization. That is, does there exist for every infinite cardinal «, and for every integer
s a graph % such that % has chromatic number =« and does not contain circuits
of length =s. ERDOS™ theorem in [4] trivially implies that the answer is positive
if x=w.

A surprising result of this paper is that for o = the answer is no. Corrollary
5. 6 implies that if % does not contain a quadrilateral (or more generally an [[/, »,]]
complete even graph for every integer i), then % has colouring number at most w.

In § 5 we prove a sequence of theorems of the type that a graph of colouring
number = necessarily contains certain types of subgraphs, mostly large complete
even graphs. We construct some counter examples to show that the results are
the best possible. The results are summarized at the end of §5. We obtain the
positive results by generalizing a construction of [11]. This is given in § 4.

On the other hand to complete the results concerning the possible generaliza-
tions of the Turte—ZyKov, ERDGS—RADO theorem 1n an earlier paper [6] we
proved that for every x and s there exists a graph % which has chromatic number
=y and does not contain circuits of odd length =s. We did not know whether this
result could be improved so that % has only a vertices for x=w. We give this
improvement in § 7 (Theorem 7. 4).

In §6 we prove some simple lemmas, and state generalizations of theorems
of N.G. pE BrunN and P. ErpGs and G. FODOR concerning set-mappings.

In § 7 we consider similar problems as in § 5. and we prove some special
results concerning graphs with chromatic- (or colouring-) number =w. 7. 1 states
that every graph of colouring number = contains an infinite path. We also prove
an entirely finite graph theorem 7. 6 which states that every graph which does not
contain circuits of odd length =2j-+ 1, has chromatic number at most 2j.

In § 13 we come back to the problem of generalizations of the TUTTE—ZYKOV
theorem or more precisely of ErRpOs’ theorem in [4]. In Theorem 13. 3 we give a
direct generalization of ErpGs’ theorem for finite set-systems which consist of
k-element sets, after having defined in 13. 2 what we mean by the expression that
such a system does not contain ““short circuits”. Here we use the so-called proba-

bilistic method.
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In § 8—11 we consider a problem of an entirely different type. A theorem of
N. G. pe BrununN and P. ErDOs [2] states that if & is an integer and every finite sub-
graph of a graph % has chromatic number at most k, then % has chromatic number
at most k. (This theorem turns out to be an easy consequence of general “compactness
arguments” like Tychonoff’s theorem or Gdédel's compactness theorem.)

R. Rapo pointed out to us a possible analogue of this theorem, namely, that
if every finite subgraph of a graph % has colouring number at most k then % has
colouring number at most k. It is obvious that if this result is true it cannot be
expected to be a consequence of the compactness arguments, It turns out that for
k =2 the result is false, but a weaker form of it is true.

We prove the following Theorem 9. 1.

If every finite subgraph of a graph % has colouring number =k then % has
colouring number =2k —2,

Theorem 9. 2 shows that this result is the best possible.

More generally we consider the problem involving four cardinals under what
conditions for the cardinals w«, f8, y, é is the following statement true.

Every graph % of « vertices, every subgraph of fewer than y vertices of which
has colouring number = f§, has colouring number =4. In §8 we expose the general
problem and give some preliminaires.

In §9 we discuss the case y=w, f=w.

In §10 we try to generalize the negative result 9. 2 for y=w. Here we have
only partial results; we will point out Problem 10. 3 which clearly shows the range
of unsolved problems.

We mention that the counterexamples given in §§ 9 and 10 are unfortunately
rather involved and possibly they can be replaced by much simpler ones.

In § 11 we consider the cases f=w. As an easy consequence of the results
of §5 we obtain some positive theorems but we do not know in most cases whether
they are the best possible. We point out some simple unsolved problems which
seem to be difficult.

Finally in § 12 we turn back to the type of problem considered in §5 and
prove a result of this kind for set-systems # =({h, H) where H consists of subsets
of k elements of /1, 2=k =w.

§ 2. Notations, definitions

We are going to employ the usual notations of set theory, but for the conve-
nience of the reader we are going to collect here all the notations and conventions
used in this paper which are not entirely self-explanatory.

§ 2. A. General notations, conventions

The letters x,y, z, ... usually denote arbitrary elements or sets, the letters
A, B, C. ... denote sets. =, €, O, v, n, U, [ denote the inclusion, the membership
relation, the empty set, and the operations of forming the union or intersection of
two sets and of arbitrarily many sets, respectively. Note that if A4 is a set of sets | A4
denotes the set Uy 4 X. 4~ B denotes the set-theoretical difference of 4 and B.
F(A4) denotes the set of all subsets of A4.
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{x} is the set whose only element is x, {x, ¥} is the unordered pair whose ele-
ments are x and y. (x,y) is the ordered pair with first term x and second term y.

If @(x) is an arbitrary property of the elements of the set 4, {x€4: @(x)}
denotes the subset of all elements of 4 which possess property @. In some cases
the set 4 will be omitted from the notation.

If /is a function, we will denote by Z(f) and 2 (/) the domain and the range
of frespectively. If x€2(f) the value of f at x is denoted by f{x) or by f,. fis con-
sidered to be the set {(x, f(x)):x€Z(f)}. We denote by #4 the set of all functions
with Z(f)=B, R(f)SA. If f¢P4 and CE A we denote by f~1(C) the set
{vEB:f(y)EA}). If fis a function with Z(f)=A. BE A, then f+ B denotes the
function f restricted to B.

We assume that ordinals have been introduced in such a way that every ordinal
coincides with the set of all smaller ordinals. The letters £, {, n, o, . v denote ordinals.
w 1s the least infinite ordinal. We call the finite ordinals integers. the letters
i,j.h.l,m,n,r, s, u v denote integers. £ <={, {=¢ and ¢<{ are equivalent. We will
denote by . X*the addition of ordinal numbers. The difference ¢+ of ordinal
numbers is defined to that ¢ ~{ = 0if ¢ <= and é~{ =nif £={ and {+n = E

If for a function f, 2(f)=¢&, f will be sometimes called a &-rermed sequence.
and its values will be written in the form f;, { =¢. Note that if a {-termed sequence
is defined by its elements 7., { =&, f does not necessarily denote the corresponding
function. '

If A is a set and a is a one-to-one &-termed sequence of range A we will briefly
say that « is a well-ordering of type ¢ of A.

By a cardinal we mean an initial ordinal. «, f3, y, J, &, %, T denote (not necessarily
infinite) cardinals. Every finite ordinal is a cardinal called integer.

By +.2, .. 11 we denote the usual addition and multiplication of cardinals.
respectively. Note that 2+ f is not necessarily equal to «+f, but a+f = xuf
if & or f is infinite.

We mention that we use the usual notations for the number-theoretical opera-
tions on integers, and that the sign - of the multiplication will be sometimes omitted.
In section 13 of this paper where we deal with entirely finite problems, 7, /. ... run
over the set of all integers (positive or negative). There naturally we do not assume
that every integer is the set of smaller integers. % ,(4), and & ,[A] are the sets of
all subsets of A4 of power =o or of power =, respectively, i.e.. % (4) =
= {xeF(A): x| =a}, JA] = {x€P(A4):|x| = «}). We define the cardinal power
o by of =|P%. x* denotes the least cardinal greater than .

If there exists a [/ such that i+ =# then &~ denotes this f, if such a [ does not
exist o~ =a.

The letter ® sometimes with subscripts will denote order types.

If 4 is a set and R a binary relation defined on 4 which is a simple ordering
of A of type @ we write typ A(R)=@. Simple ordering relations usually will be
denoted by < (sometimes with subscripts). typ &(=) will be identified by ¢,

For every x€A4, A|<x = {y€A:y<x}.

When A is a simply ordered set by < the subset B= A is said to be confinal
with A if for every x€A4 there is a y € 8 such that x=y. If B, C£ 4 and x <y for
every ¥€B, yeC we write B<C.
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@, is said to be confinal with @, if there is a set 4 simply ordered by < and a
BES A confinal with it such that

typ A(<) = @4, typ B{<) = @,.

By this definition the ordinal { is confinal with & iff there is a sequence ¢ €5(
such that ¢, =g, for n<g<¢ and { = U, g, +1).

For every { the confinality index cf {{)is the least ordinal £ such that { is con-
final with & For every {, cf ({) is a cardinal ={ and cf (cf ({))=cf ({). { is a limit
ordinal if there is no 5 such that { = y-+1. Thus  is a non-limit ordinal iff of ({) =1.

An infinite cardinal « is said to be a limit cardinal if ¥~ =, a strong limit
cardinal if =2 implies 2% <z, a singular cardinal if ¢f (%) =« a regular cardinal
if cf (o) =ar.

A regular limit cardinal is said to be inaccessible: a regular strong limit cardinal
is said to be strongly inaccessible.

We denote the strictly increasing sequence of infinite cardinals by gy, @,. ...
vy Wy o] Wy =0,

By the continuum hypothesis we mean the hypothesis that 2“=w™. by the
generalized continuum hypothesis we mean the hypothesis that 2*==a* for every
o =wm. They will be denoted by C. H. and G. C. H.. respectively.

If fis a sequence of sets with Z(f)=D we denote the Cartesian product of
the sets [, for x¢D by P,cpf, i.e.

P\\'ED.){:\’ = {g.Q‘(g]:D and -q‘;l{t for every “"ED}'

It is convenient to use a different concept of product if the set #(f) is disjointed.
We denote by PI.,f. the set

{[yeF(U(R():ynfl=1 forevery xeD}.
If especially D =Kk we use the alternative notation

Pieofi=Lfos s fimil

§ 2. B. Special notations, graphs, set-systems

By a graph % we mean an ordered pair (g, ) where g is an arbitrary set and
G< S,[g]. The elements of g are the vertices of %, the elements of G are the edges
of @. As a generalization of graphs we are going to consider ser-systems. By a set
system # we mean an ordered pair (h, H) where /i is an arbitrary set and U HC .

It is obvious that every graph is a set-system. The well-known concepts of
colouring and chromatic numbers of a graph as weil as many other concepts of
graph theory can be generalized for arbitrary set-systems, and many results con-
cerning graphs can be generalized under natural conditions for arbitrary set-systems.
Some of the results concerning sets of sets considered in the literature can be easily
formulated and generalized using this terminology. In what follows in this section
whenever a notation is defined for an arbitrary set-system # =(h, H) we will use
the corresponding notation for graphs by interchanging the letters #, i, H by the
letters %, g, G. respectively.
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If there is no danger of misunderstanding we will not always distinguish the
set of sets H and the set-system # =(UH, H).

DerFmNITION 2. 1. We denote by a(#) the cardinal |h|.

DeriNITION 2. 2. We say that the set-system 3, contains the set-system #, or
A5 is a sub-set-system of # | if h, © h,,and H, < H,. We briefly write then 2, T, .

DEFINITION 2. 3. Let & be a set-system, and i E h. By the set-system spanned
by I’ in # we mean the set-system # (h') = (W', Hn(I')). If % is a graph, g'S g.
then %(g’) is a graph.

DeriNiTION 2. 4. If H is a set of sets, we denote by x=(FH) the least cardinal
» for which 4| =x for every A€ H. # is said to be uniform if |4 =|B| for every
A, BE H. A set-system 2 is a graph iff # is uniform and »(H)=2.

DerFiNITION 2. 5. Let H be a set of sets. H is said to have property C(y, d) if
|MH|<d for every H'EH, |H'|=7.

Let / be a sequence of sets. / is said to have property C(y, 8) if | epfil =0
for every D’SZ(f), |D'|=y.

If for some 0, |4| =46 lor every A€ H and H has property C(2, d), H is said
to be almost disjointed.

DEeFINITION 2. 6. Let # be a set-system. A subset 'S/ is said to be g fiee
set (or independent ser) of 4 if A-LN for every A€H.

DEFINITION 2. 7. Let # be a set-system, x £/, and i € i we denote by V(x, ', #)
theset {4 H: x4 and A~ {x}= N} and let

v(x, W', H)y = UV(x, I, 5)~ {x}
t(x N, ) = |o(x, b, )

5

t(x, ', ) is the valency of x in # with respect to A'. If A'=h we briefly write
w(x, ', #)=1(x, #) and t(x, #) is the valency of x in 4.

DeriNiTION 2. 8. Let # be a set-system such that |4 =2 for every A€H.
H 1s said to have chromatic number i 1f f is the smallast cardinal such that /& is the
sum of fi free sets, The chromatic number of 3 will be denoted by Chr ().

Chr(#)=1 iff H=0.

In [5] we investigated the property B of a set of sets H. H is said to possess
property B if there exists a set B such that An B = 0, 4€ B for every A€ H. It is
obvious that Chr (H)=2 iff # =0 and H possesses property B.

DermITION 2. 9. Let # be a set system, and f a weil-ordering of tyvpe & of
the set . Let h.={f,:n<={} for every {<=<C. f'is said to be a B-colouring of J iff
t(fe, hey H) < f for every (<&

Alternatively, if < is a well-ordering of A, < is a f-colouring iff
t(x. ) <x, #)<=f for every xéh.

A is said to have colouring number fi if f§ is the smallest cardinal number for
which 2 has a f-colouring. The colouring number of # is denoted by Col (#).
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H has colouring number 8 in type £ if Col (#)=f and there is a f-colouring of f
of type &.

DEerFINITION 2. 10, If A4 is a setand £ is a function f€ 4% (A) and x ¢ f(x) for every
x €A then fis said to be a set-mapping defined on A. A subset BE A4 is said to be a
free set of fif x4 f(y) and v ¢ f(x) for every x, y € B. [ is said to be of order § if 6 is
the smallest cardinal for which |f(x)|=4é for every x€A4.

DerNiTION 2. 11. The graph % ={g. S,[g]) is called the complete o-graph if
(%) =u0o. 1t will be denoted by [[«]].

DermviTioN 2. 12, The graph @ is called a compiera %, f-even graph (or brzeﬂ)
an o, fi-graph if there exist g,. g, such that |g4|=2, g,/ =p. g¢ong,=0.g,ug, =
and G=[g,.g,]. It will be briefly denoted by [[x, £]]).

DEFINITION 2. 13. (i) The graph % =(g, G) is said to be a path of length i if
there are distinct elements x,, ..., x;_, such that

g={Xos s X1}y G={{xo, %1 }s coes {Ximzs X1 }}-

(it) If i=3. ¥={(g. G) is said to be u circuit of fength 7 if there are distinct
elements xg. ....x;_, such that
g=1{xos s Xim1 ) G={{xo; X1}, oo {¥y-25 Xima}s (X5 Xo}}
P(Xgy ooy Xj— )y C(xg,y ooy x;_ ) Will denote paths and circuits of length 7, respect-

ively.

DerFiNITION 2. 14, The graph % =(g, G} is said to be an infinite path if there
is a well-ordering f of type @ of the set g such that

G={/i-fis:1}: i=o}
Infinite paths will be briefly denoted by 2(f) or by Z._.

§ 3. Two theorems for chromatic and colouring numbers

Tis well known that Che(%)y=Col (%) for every graph 9. As an casy pene
ralization of this we prove

THeoREM 3. 1. Let # be a set-system such that HS % (h) and |A| =2 for every
A€ H. Then Chr(#)=Col(#).

PrOOE. Put Col(#)=§. Let { be a fi-colouring of type £ of #. We define
a function ¢ < f by induction on { =¢ as follows. Assume ¢, is defined for 5 -={

[ ¢, By the assumption and by (2. 7) and (2. 9) the set
A = {p=p: o=gp, for some y={ for which f,€v(/:. he, #))

has power —f. Let ¢ be the smallest ordinal which belongs to ff~ A.
For every o<f let 4, = {f¢h:q.=0}. The sets A, are obviously disjoint
and their union is /4. Assume X € H. Then X is finite, by the assumption. Let f. be
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its greatest element in the well-ordering. Considering that X has at least two ele-
ments, there is an #={ such that f,€X. Then f, cv(f;, h;, # ) hence ¢,=¢. and
XL A, for every o. The sets 4, are free. This proves 3. 1.

The condition HS & () of 3.1 is necessary as is shown by the set-system
H ={w, S (o)), {Col(#’)_l Chr (# )=w). This example clearly shows that the
concept of colouring number can be useful only for set-systems which consist of
finite sets.

THeoreM 3. 2. Let 3 be a set-system, x(A# ) =, Col ()= f. Assume H= 5 (h).
Then # has a f-colouring of type o.

3.2 is trivial if 2=pf. Hence it is a corollary of the following

TueorREM 3. 3. Let # be a set-system, x%(H )=z, Col(H )=p. Assume
HZ S, (h), i =a. Let [ be an arbitrary f-colouring of type ¢ of # . Then there exists
a fi-colouring " of type o of A satisfving the following condition:

If f.=f, then v(f,, h, #)Y=v(fy, hy, X ) for every [ <& n<a.

(Here, according to the definition 2. 7, h. = {f,: 0 =<{}. hy = {f; 10 =n} fore very
{ ¢ and n =0, respectively.)

Proor. 3.3 is trivial for =< m. We assume z =w.
For every { =¢ and for every i we define v({) and v({) by induction on i as
follows:

(1) v =v(fes hp, YO {2} v (D) = U e(fys by HYO0(0)
fo€ i)
v() = U vld).

It is easy to verify that

(2) @ = U v(@u{f} for every {<¢.

foc vl fo bz, H)

Let ¢ be a one-to-one x-termed sequence, with #(¢)=<_. For every n-—=x let
(3) Ay = v(gy)~ U v(e,).
]
Then
= U 4,.
n<a

We define a well-ordering < of /i as follows.
Assume

) FislocEhy fiEhy fikAg,

f:=<fe. iff either g=n or p=n and {={".

We are goingh to prove
(5) typ h(<)=u.

Considering ff =2 and that by (3) and (4)

typ (<) = 2" typf 1 (4,)(<)

"<
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to prove (5) it is sufficient to see that

(6) |4, <p*uw for p<o.
Considering (3) this follows from

(7) [w()=pruw for every (=¢.

Considering that |[v(f.. h..#) <f by the assumption (7) follows by trans-
finite induction on { from (2).

Hence (5). (6) and (7) are true.

By (3) there exists a one-to-one z-termed sequence /" whose range is /1 satisfy-
ing the condition f, <f; for o <=n<uo. Let hy={f;: 0=n} for n<uo.

Assume that 4 € H and f; is the element of 4 with the greatest subscript. Let
¢ be the ordinal for which f €A,. Then f,cv(p,) by (3) and 4Sw(¢,) by (1). It
follows from (4) that then f; is the greatest element of 4 in the well- ordermg s

Assume now f, =/, for some n<u, { =¢. By the above remark using HE S,,(h)
it follows from the definition 2.7 that V{f", Iy, #)= V(f:.h.,#) and conse-
quently o(f, . h,.#)=v(f., h.. ). Hence [’ satlsﬁcs the requirements of 3. 3.

Note that the condition <o can be replaced by the weaker one that ==
and « 1s regular if fi=2x since the proof of (7) immediately gives that [v({)|=fuwm
if fis regular. In case z=Jf, x singular the theorem is false. We omit the simple
bur not entirely trivial proof of this. Condition HE %, (h) of 3. 3 is necessary as
is shown by the following simple example due to E. C. MILNER.

Leth=w,+w H = {XSh:X=h~w,u{y} for some y€w, }. Then obviously
< is a l-colouring of # of the type ®, + m, but every well-ordering of tvpe w,; of
his a fi-colouring of # only if fi=wm.

§ 4. Lemmas. Generalization of Miller’s inductive construction

First we restate a theorem which we will use later.

LemMA 4. | (Theorem of TARSK1). Let # ={hi, H) be a set-system with 2(#) =
= y=w. Assume that |A| =0 for every A€H. Then |H| =7y if one of the following
conditions (1), (i1) and (ii1) holds.

(1) The G.C. H. is true, 0=w, H has property C(y",d) and cf (y)=cf ().

() The G.C. H. is true and H has property C(y*,d") for some &' =9,

(i1i)  H has property C(y*,9d) for some 6" =a.

These are really corollaries of Theorem 5 I, p. 211 and Corollary 6. p. 213
of Tarskr's paper [13]. Note that the theorems in [13] are stated under the stronger
conditions that C(2,4) and C(2, 6") hold, respectively, however the proofs give
the somewhat stronger results stated in 4. 1.

Now we need a generalization of a construction given by E. W. MILLER in
[11]. This will be similar to that we have used in [3], but for the convenience of the
reader we will give here all the details.

In what follows in this section % = (g, G) will denote a fixed graph, with (%) =
= x=wm and 7 will be a fixed cardinal number =0. We remind that by the definition
2.7 for every x=g and g'S g V(x, g’. %) is the set of edges of ¥ emanating from
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x whose other endpoint is in g, v(x, g’. %) is the set of vertices in g’ connected to
x in %, and that |V (x, g’. %) =lv(x, g, %) =1(x, g’. %) is the valency of the vertex
X in % with respect to g’.

implies that x€g’, for every xég.

Considering that g itself is t-closed for every 7 and that the intersection of any
number of t-closed subsets is again t-closed, for every g’ ¢ there exists a minimal
t-closed subset containing g”. This will be called the t-closure of g" in % and it will
be denoted by Clos (g, %. ).

Let ¢ be a well-ordering of type o of g. We are going to define a sequence g
¢ =u of subsets of g by transfinite induction on & as follows.

DerFINITION 4. 3. Assume g, is defined for every (=¢ for some =% Put
he = |) g If h.=g put g.=0. If g~h;=0 let x,=¢, for the least ¢ for which

L<§

¥,€g~h; and put
g: = Clos (h. U {x;}, 4, 1)~ hg.

The following facts are immediate consequences of the definitions.

Lemma 4.4, (1) g= |J g: and the sequence g.. <= is disjointed.
E<no )
(i) g: = heoy~he for every &=u.
(ili) hg;, is -closed for every ¢ <o, and as a corollary of this t(x. hy; . %) =1
for every &=u, x€g, provided ¢ <C(.

Lemma 4. 5. Assume x€g:, E<o. Then
i) txh. 9=t if 1=,
(i) t(x, h:.9) =7 if 1=o.

PrOOF. 1(x, h:. %) = —U_r(x, he:y,%) by 4.3 and 4.4, t(x. h.. . %) =1 for

<5
every { =¢ by 4. 5. The union of an increasing sequence of cardinals =t is =7 if
7 is infinite and is =7 if T=w.

LemMa 4. 6. Assume g'Cg, |g'| =7, outt=y. Then
IClos (g".%.1) =7

provided one of the following conditions (1), (ii), (iii) holds.

(1) The G.C. H. is true, % does not contain a [[y". t]] complete even graph
and cf (y)=cf (7).

(i) The G. C. H. is true and % does not contain a [[y™, d]] complete even graph
for a d=r1.

(ili) % does not contain a [[y*. d]] complete even graph for ¢ 6 <=w, d=r1.

Proor. Let ¢ = wutt. We define a sequence A..-=¢ of subsets of g by
transfinite induction on ¢ as follows.
(1) Assume A4, is defined for every (=¢ for some {<e Put B.=g'v |J 4
:<é

and A; = {x€g— Bsit(x, B;, ) =1}.
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For every ¢<¢ let H = {v(x, B;, 9):x<A,}.

As a corollary of Definitions 2. 5 and 2. 12 we have
(2) If 0=96=1 and H. does not possess property C(y*,d) then % contains a
complete even graph [[3+. d]].

We are going to prove by transfinite induction on ¢ that
(3) |B: =y forevery {=e.

Assume (3) is true for every [—=¢ l'or some =g, If ¢ is a limit ordinal
B. =g'v U B. by (1) hence |B'“': =y. If £ =41 then B; = B,ud,. It

follows Imm (2) that H, possesses propel t) C(y*, 1) if (i) holds and H, possesses
property C(y*, 8)if (i1) m‘{m]hold UH,E 'md|B,,| =y by 1hemduct10n hypothe-
sis. It follows from Lemma 4. 1 that :H,,' —-} if one of the (.ondmons (i), (ii), (111}
holds. Using again the conditions (i)...(iii) it follows that |4,/ =y. Hence |B; =7y
for every &=f.

We prove
(4) B, i1s t-closed.

If xeg~B, then v(x, B,,%) = |J v(x, B:. %) and 7(x, B;, 4)<=1 for every

S<E
& =e. Considering that t =g and ¢ is infinite and regular it follows that there is a
g =¢ such that 7(x, B,, %) = 7(x, B, %) =1.

It follows that Clon[g’_ %,1)=B, and thus 4. 6 follows from (3).

LemMA 4. 7. Assume w=f,7=f and Col(4(g.))=p for every &<o. Then
Col (%)= p.

For every £=u let <. be a fi-colouring of the graph %(g.).

If x, }Eglct X<y if and only if xég., yeg, and enherC Cor{=<¢and x < ).
By 4. 4 (i) < isa well- ordering of g. For every y€g: v(y. gl <y. %) = v(y, hy, 9)U
Uo(y, gl <:v. 9(gy). It follows from 4.5 that [v(y. g/ <y.9)|=1t"uf = B, and
so < is a fi-colouring of g.

§ 5. Theorems and problems concerning graphs with Col(%) =fi=®

We are going to consider the following problems involving four cardinals
%, ﬁs ¥s ()

Let % ={g. G) be a graph, 2(%) =2 with colouring number = f (or chromatic
number = f§, respectively). Under what conditions for the cardinals =, 5, 7. 6 does
then % necessarily contain a complete even graph [[y. d]]?

The results of this section are relevant only if ff=w.

To have a brief notation we introduce the relations

Col (a. . 7, 9), Chr(x, fi. 7.9

Derinimion 5. 1. The relation Col («, fi. 3, d) 1s said to hold if for every graph
G w(%)=u. Col (%)=[ implies that % contains a complete even graph [[y, J]].

The relation Chr (o, ff, 7. d) is said to hold it for every graph % «(G)=ux,
Chr (%) =f implies that % contains a complete even graph [[y. d]].

LemMa 5.2, Col (= .y, 0) implies Chr (2, f5, 3. 0).
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By 3. 1.
As a corollary of the definition we have

Lemma 5. 3. Both relations introduced in 5. 1 are decreasing in variables =, 7. &
and are increasing in f.

DEerFmNITION 5. 4. For every infinite cardinal » we denote by o«(x) the smallest
cardinal #=x for which cf (x)=cf(») e. g 2()=0, If x=0, 2()=w if
®=a,.

@i

THEOREM 5. 5.2 Assume ff=w. Then Col (x, i, f*.0) is true provided one of the
following conditions (V. (ii), (iii) holds.

(1) The G.C. H. is true, 6* =f and »=u().

(i) The G.C. H. is true and 6+ =.

(i) 6= w.

Proor. We prove the theorem by transfinite induction on a.

If %(%)=/ then Col (¥)=/ hence Col (v, ff, 7, 0) holds for every «'=« and
for every 7. 4. Assume that z=/ and Col (. fi. ﬁ*_ d) holds for every «'=a and
let % be a graph with (%)==,

(1) Let r=9¢ if (i) holds, and let =0" il (ii) or (i) hold.

We assume
(2) % does not contain a complete [[f7. J]] and using (2) we prove Col (¥)=7F.

We consider the sets g. defined in 4. 3. We prove
(3) |gel<u for every {=u.

To prove (3) we prove by transfinite induction on ¢ the following somewhat
stronger statement.

(4) |h: = pu¢] for every ¢=u.

Assume that (4) is true for every {=¢ for some {=u. h;= U g; hence (4)
<£

is trivial iff & is a limit ordinal. Assume ¢ = (-+1. Then by 4.3 and 4. 4
Clos (h;u {x;}, 9, t} = h;y. Then |, U {x.}| =f|]. Put f|é|=7. Then y=owuUt*
It follows from 2.6 (i), i), (i) and (2) that |h] =y = BI&].

By (3), 2(%9(gs) == for every & By (2)., ’4(0] does not contain a [[f*, d]]. It
follows from the induction hypothesis that Col (?}’ g )) B for every &==. Con-
sidering that f=® and t=f, by (1), Lemma 4.7 1mpllcs that Col (%) =4.

COROLLARY 5. 6. 1If Col {‘9}>u then % contains an [[7, @]] graph for every 7.
We do not knou whether in Theorem 5. 5 condition (i) the assumption %= z(J)
is necessary. The simplest unsolved problem here is

ProBLEM 5. 7. Assume the G, C. H. Is it true that Col(®w,:, @, ®,, @) or
Chelw,:y, ;. w;, ®) holds, i.e., is it true that every graph with %(%)=w,:,
which does not contain a [[@,. w]] has colouring number =, ?

THEOREM 3. B, Assume the G. C. H. is triee, and p=w. Then Chr (. 8, ., )
is not trie.

Instead of 5.8 we are going to prove the following slightly stronger

= It is to be remarked that we originally proved Theorem 3. 5 for the relation Chr (zx, £, 3, 9).
R. Rapo pointed out to us that our preof really gives the stronger result for colouring numbers.
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THEOREM 5. 9. Assume the G. C. H. is true and f =w. Then there exists a graph
G for which 0(9)=p*, Chr (9)=[", 4 does not contain either a [[8, B1] graph or
an [[w]]-graph.

We do not know whether the condition [[w]]5% can be replaced by the
stronger one [[3]] £ %. i. e., that % does not contain a triangle. The simplest unsolved
problem 1is

ProsrLem 3. 10, Assume the C. H. Does there exist a graph with «(%)=w,
such that Chr(9)=w,, [[w,®]]+ % and [[3]1L%?

An affirmative answer to 5.10 would be a consequence of the following assertion:

Every graph 4 with 2(%) = a=w, Chr (%)=uz contains a subgraph %" with
#(%4")y=n, Chr (%') == such that [[3]]S %"

We do not know whether this assertion is true or false for any infinite 2 even
if we replace [[3]] by [[k]] for some 3 =k <.

We have some special results on problems of this type which we preserve for
fater publication.

If we replace the chromatic number by colouring number we can prove the
corresponding result without using the G.C. H.

THEOREM 5. 1. Assume [ =ew. Then there exists a graph & with 2(%)=[".
Col (%)=p" which does not contain either a [[i. f1] graph or « circuit of odd length.

Proor oF THEOREM 5. 9. We define the graph % ={(g. G, as follows. Let

g = [i" «f". Let f be a well-ordering of type f© of ¢ and let ¢,y £#7 fi* such that
.f.f:f:rf;- 11’5) for {=p*.
Let further g: = {{}Xf*. g = U g
f<p+

(1) Let H = {4<g: There is a set T(4A)E 7, |T(4) =p such that [g.nA4| = f
for every {€T(4) and g:n A4 = 0 for i+~ T(A4)}.

Considering HE %, (f") it follows from G. C. H. that there exists a well-
ordering @ of type fi* of H.

We are going to define a sequence B. ¢ =¥ of subsets of ¢ by transfinite induc-
tion on ¢ satisfying the following conditions.
(2) (i) |B:=p for E=p*

(i) 1B;nB;<p for {=C<p*

(i) @,nB; # 0 for L~ =p"

(iv) |B:ng]=1 forevery (=f* for {=f*.

Assume B, is defined in such a way that it satisfies (2) for every { = ¢ for some

o}

¢=p". Then J; can be defined using the fact that if F is a set of power = f§ of &.s
and B is a sct of powsr = f of B,'s already defined and @, ¢ F then by (1} and (2)

there are f# ’s belonging to T(&,) such that g, ~ U B is non-empty.
Now we define the set of edges of G as follows.

(3) {f2.f,}EG iff f,eB.,p:=q, and Ys=1,.

It follows immediately from (3) that [[w]] £ % because if a complete graph is
contained in % then either the first or the second terms of its vertices form a decreas- -
ing well-ordered sequence of ordinals.
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Assume now C,,C,Sg, C,nC, =0, [C,,ClEG, C)|= C, =f. Using
the same idea, it follows that there are sets D,, D, =g such that D, = |D, =f.
[D,.D,]E[C,.C.]=G. and there is an n=p* for which D, Cg,.D,= U g,

il f.=f:€D, then D, = B, n B; by (3), in contradiction to (2) (ii). It ['ollmu 1l‘|d[
[ pliEe.

Assume now that Chr (%) =f*. Then ¥ is the sum of fewer than /" free sets.
Considering that 7 is regular then there exists a free subset C< g such that the set

L= {}? ‘::Jr.;-!—:;Cmng == -”1}

has cardinal 7. It follows from (1) that there existsan ¢ T such that d) o
T(P)ET- ~(n+1) for some {=f*. Then there exists ¢={ such that f.cC “‘q
and W, =1, for every o€f~1(d,).

Then B N d, =0, by (2) {m) and B:n @, S v(f:, P, %) by (3). This contradicts
the assumption that Cis a free set, hence Chr {") ,B*

% satisfies the requirements of 5.9,

PrOOF OF THEOREM 5. 11. We define the graph % ={(g. G, as follows.

By a well-known theorem (see, e.g., [13]), there exists a set H of subsets of
power f§ of f# such that || =f" and H has property C(2, ). Put g = ffu H. Define
G = {{x, y}€8,[g]: x€g and y€H and x€y}.

It is obvious that z(%)=f", and that % contains neither [[f. #]] graphs nor
circuits of odd length. We prove that Col (¥)=p". Assume that % has colouring
number = f§. Then by 3.2 % has a ff-colouring f of type *. Then there is a £ <=fi*
such that h: = {/,:n=¢)} contains f. Then |v(f;, h;. %)|=f in contradiction to
the assumption Hence Col (%)=pf".

Using the G. C. H. we can summarize the results of this section concerning
the re]ations Col («, p. y,0) and Chr (z, fi, 7. 8) as follows.

If « = f§ both relations are trivially true. Hence we assume x = f =w. The trivial
example of the complete [[f*]]-graph shows that both relations are false if
Max (. d)=f*. We assume f*=7y=0.

Under these assumptions we distinguish the cases A) o7 =fl, B) o =/,
C) ()'?_i‘ﬁ.

In case A) both relations are true by 5.5 (i).

In case B) both relations are true for a =«(0) and it is not known whether
they are true or false for a=ua(d) if =y=f" = é**. That means that we do not
know the answer to Problem 5.7 even if we replace w, by @, or .

In case C) both relations are false by 5. 9.

§ 6. Set-mappings, and ordering numbers of graphs

Dermnition 6. 1. Let g be a set and / a set-mapping on g (see Definition
2. 10). fis said to have chromatic munber i if fis the least cardinal such that g is
the union of i free sets.

4 ={(g, G) is said to be the graph induced by the set-mapping f defined on g if
{x,y}€G iff x€f, or y€f,.
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As an immediate consequence of the definitions we have that if % i> the graph
induced by the set-mapping then both have the same chromatic number.

DEFINITION 6. 2. A graph % is said to have erdering number f if fi is the least
cardinal such that there exists a simple ordering —« of the set ¢ such that

t(x, gl <x, %) =p for every xtg.

The ordering number of % will be denoted by Ord (9).
We have the following

THEOREM 6. 3. Assume [ is a set-mapping of order = [} defined on a set ¢, and let
G={g, G) be the graph induced by f. Then Col (G)=f if B is infinite.

6. 3 is a slight generalization of a theorem of G. Fopor [8]. His theorem states
the same assertion for chromatic numbers instead of colouring numbers. 6. 3 implies
this theorem by 3. 1, but it can be proved using the same ideas. We omit the proof.

THEOREM 6. 4. Col(%)=0rd (%) if Ord (%) is infinite.

Proor. Put Ord (%) =f. Let -< be an ordering of g such that t(x, g| <x, %)= f
for every xeg. Let f be the set-mapping on g defined by the stipulation

Jlx) = v(x. gl <%, 9%).

Then by the definitions 2. 7 and 6. | % is the graph induced by f and fis of order
=fi. Hence 6.4 follows from 6. 3.

A theorem of N. G. pE BRunN and P. ErRpGs [2] states that if fis a set-mapping
of order = f§ = then f'has chromatic number =2 — 1. (Fopor’s theorem mentioned
is a generalization of this for infinite f#’s.) This theorem also has a generalization
corresponding to 6. 3.

We have

THEOREM 6. 5. If f is a set-mapping of order =[}=w defined on a set g, and
4G =(g,G) is the graph induced by it then

Col (%) = 2f = 1.

If % is finite the proof given in [2] applies, but the procf of the general result
becomes more involved. Since we do not need this result in this paper we omit the
proof but we mention that it can be carried out quite similarly to the proof of 9. 1,

Similarly to 6.4 this theorem has the corollary that if Ord (%) is finite then
Col (%) = 20rd (%) — 1, but this corollary is not best possible because 9. 1 will
imply that Col (%) = 2 Ord (%) —2.

THEOREM 0. 0. Let % be a graph and f = w. If every finite subgraph of % has ordering
number at most fi then Chr(%)=/.

6.6 is an easy consequence of TYCHONOFF's compactness theorem. We omit
the prool.
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§ 7. Some special results and problems concerning graphs
with Col (¥) = o and Chr (%) >w

THEOREM 7. 1. Every graph of colouring number = contains an infinite path 2.

PROOF. It is obvious that if there is a g’S g such that g'=0 and 7(x, ¢", %) =w
for every x<g’, then g contains an infinite path.

We assume that
(1) Every non-empty g’= g contains an x such that t(x, ¢, 9)=w.

We define a sequence x; of clements of g by lrans[}nite induction by the stipu-

lation that x; is an clement of the set g: = g~ {x. (=} satisfying t(x;, g:. ¥)<w
whenever g: is non-empty. It is obvious that there is an 1 such that g, is empty and
thus ¢ = {x.:é=pn). Let x:<x, iff (=& Then t(x., gl <x; %) = 1(x;. g5, 9)

hence Ord (%)= and Col(¥)=w as a coroilary of 6. 4.

In fact we proved here that if Col (%)= then there exists a non-empty subse.
g’ = g such that t(x. g’. 4)=w for every x<g’".* The same idea gives the foliowing

THEOREM 7. 2. Assume fi=w and Col (9)=f. Then there exists a non-empry
subset g = g such that t(x, g', %) = [§ for every x €2, and as a corollary of this |g'| = f.

We omit the proof, but we mentien that this result is the best possible, namely
we have

THEOREM 7. 3. For every f=w there exists a graph % such that (%)=,
Chr(%)=p, and every non-empry subset ¢’ g contains an element x such that
i 2, 9)<h.

This is shown. e. g., by the following graph. Let g = f. Let g;, ¢ = f§ be a sequence
of disjoint subsets of ﬁ cach with fi elements and such that Ug.zg,

E=p

Let G = {{n.{}:in={<p)} and yecg,.{€ge for =

It is easy to sce that % satisfies the requirements of 7. 3.

Now we are going to discuss a problem of different type. As a generalization
of some results of [4], [7] and [14] the authors proved in [6] that for every f=w
and for every integer j there exist graphs % of chromatic number =f such that
% does not contain circuits of length 2i+1 for 1 =i=j. As a slight improvement
of this we can prove

THEOREM 7. 4. Assumie f = w. There exists a graph & with 2.(%) = Chr (%) = [ which
does not contain circuits of length 2i+1 for 1 =i=].

PrOOF (in outline). Let g =2"*1f. We define the usual lexicographical ordering
< of g by the stipulation that if @. b<g. a<b iff a,<h, for the least /=2j*+1 for
which a, = hf.

Put {a, b}€G il a=b and a;<by<a;4<by<...<dypp=<byp_y.

This (,omlruulon is a ncnerahzdtmn of the construction given 1n [71.

It is obvious that «(%)=f. Using the same idea as in [7] it is easy to see that
Chr (%)=p§. To prove that % does not contain circuits of odd length =2j+1 is
a matter of easy calculation. We omit the details,

% The idea of this generalization of 7.1 was suggested to us by J. SABADUSSI.
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Corollary 5. 6 implies that a graph of colouring number = contains circuits
of length 2i for every 7, and trivial examples show that there are graphs of arbitrarily
high colouring number which do not contain odd circuits at all. 7.4 shows that
there are graphs of chromatic number w, which do not contain *“*short™ odd circuits.
We have

THEOREM 7. 5. Every graph % with Chr (%) =w contains circuits of length 2i+ 1
for infinitely many 1i.

7.5 will be a corollary of 7. 7.
The following problem remains open.

ProeLEM 7. 6. 1s it true that for every graph % of Chr (%) =w there exists an
integer j such that % contains odd circuits of length 2i+1 for every i=;?

We mention that the answer is affirmative under the stronger assumption
Chr (%) =, . Since this is obviously not a final result we omit the proof. A positive
answer to 7.6 would follow e. g. from the following assertion:

Every graph % with 2(%)=Chr (%) =w, contains a subgraph %" with %(%)=
=Chr (%)=wm, such that ¥" is w-fold connected.?

We do not know whether this assertion is true or false. Many similar questions
can be asked even if we replace w, by » and w-fold connected by f§-fold connected.
Interesting problems of new character arise even if we assume that 2, f both are
finite but we have very little information on them.

A theorem of [2] already mentioned states that if f is finite and everyv finite
subgraph of a graph % has chromatic number at most f then % has chromatic
number at most . Using this theorem 7.5 is a corollary of the following

THEOREM 7. 7. Let 4 be a graph, (%) = and assume that % does nor contain
circuits of length 2i+1 for i=j for some j<=w. Then Chr(%)=2].

7.7 is best possible as is shown by the example of the complete [[2/]] graph.

ProOF (in outline). By a theorem of T. GaALLAl [9]° we can assume that the
following assertion holds
1) If x#ycg, there exist #(x,, ..., x)), Z’(x]...., ¥s) such that x,=x}=ux,
vy=x,=y [ is even, s is odd.

We proceed by induction on «(%). Assume now that Chr(%)=2j. By the
induction hypothesis this implies that
(2) t(x,%)=2j for every xcg.

Using (2) we first prove that
(3) There exists a circuit ¥ =% of length =4;.°

Namely, let Z(x,, ..., x,) be a path of maximal length contained in %. Then
v(x; . %) {x,, ..., x,). Let N = {i:2=i=r and x;€v(x,,%)}. Using the assump-
tion that % does not contain odd circuits of length =2; we have
(4) Either i—i"is even or |[i—i’| =2j. for i’"<=i<N. Let i, be the greatest element
of N,

* Agraphg=(g. G is said to be f-fold connected if forevery g' =g, g~g =p. Glg) is
connected.

" See [9], 6. 3, p. 16.

% By a theorem of G. Dirac [3] (2) implies (3). But we give a direct proof of (3).
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Considering that 2€N it follows from (4) that
(5 2i+1¢N for i=j and iy —(2i —1)¢ N for i=j.

If iy =4j then iy —(2j—1) = 2j+ 1 and then by (5) N contains at most 1—20 =2

elements, in contradiction to (2). Hence iy =4/ and (3) is true.

Now let €(x,,....x;)=% be a circuit of length =4;. We may assume i, is
even. It follows easily from (1) that there exists a path 2(y,,....,»)S% and
1 =i, =i, =i, such that

=X =X, X en X b0y, u i b =0

and i; —i, and /—1 are of different parity. But then either € (x;,, x; +y, ..., X,,,
Victs oo V2) OF CAYpycors Vis Xisprs ooes Xigs Xy s oeey Xj,— 1) is @ circuit of ¥ of odd
length =2j.

Finally in this section we are going to mention a problem concerning
graphs with Chr (%)=w. 7. 5 implies that % contains odd circuits of length / for
infinitely many /, and easy examples show that there are graphs ¥ with Che (¥)=w
such that they do not contain circuits of length 2i and 27+ 1 for infinitely many i
and /. One can generally ask that what can be said of the set of those integers for
which ¥ contains a circuit. We can not solve the following simple problem:

ProeLem 7. 8. Let % be a graph, Chr (¥)=w. Let N={i: there is a circuit %
of length i such that <% }. Is it true that then

icwn 1

§ 8. The problem of Rado

Derinimion 8. 1. The graph % is said to possess property D(f, y) if every sub-
graph of % induced by a subset g'S g of power -=y has colouring number =f.

DerniTion 8. 2. The relation R(o, ff, 9, d) is said to hold if every graph %
of #(%)=o« which possesses property D(f, y) has colouring number =4.
The problem suggested by R. Rapo mentioned in the introduction was whether

R(x, f, w, f#) helds for every 2 and for fi-=w.

We prove that the answer is negative but we also prove some positive results. First
we state some preliminary results.

Treorem 8. 3. (1) a=2d implies R(o. f3, 7. 9).
(i) If v=p* then K(z, 8, 7,0) holds iff x=4.
(iity If p=0, y=1 then R(x, 1, 7,0) is true.
(iv) If =1 and y=2 then Rz, fi, v, &) is true for every 6 =1,
(v) ff o=y then R(z, f, 7.0) iff =0 or a=0.

(i) and (ii) follow [rom the fact that Col (¥)=a«(%) for every graph %. (iii) is
true because Col (¥) =0 for every non-empty 4. (iv) 1s true because if ¥ has pro-
perty & (1, 3) then it has no edges. (v) follows immediately from 8.1 and 8. 2,
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In view of 8. 3 we will usually assume 2=y, x=4, y=p+ B=2 and it is obvious
that under these conditions positive results can be expected only if f=4.

In what follows we will consider the case of infinite graphs, i.e.. x=w.

We mention that if we assume that o=@ then interesting problems of finite
graph theoretical type arise but we do not investigate them in this paper.” The
cases we are going to investigate in greater detail are f is finite and 7y is infinite.

We need some further definitions concerning graphs and colouring numbers.

DEFINITION 8. 4. Let % =(g, G) be a graph and let #(x) be a function on g such
that 7(x) is a cardinal number =1 for every x€g. Then ¢ is said to be a colouring
function of %.

Let < be a simple ordering of g. We say that < satisfies the colouring function
tof 4 il t(x, gl <x, %)<=t(x) for every x€g.

By 2.9 and 8.4 we have

Turorem 8. 5. % has colouring number =0 iff there is a colouring function
of G and a well-ordering ~< of g such that < satisfies 1 and t. =0 for every x<€g.

THEOREM 8. 6. Let % be a graph (x(%9)=ua) and let t be a colouring function of
G satisfving t,.=0, for some o where § = and d <o if o is singular. Assume g has a
well-ordering < satisfving t. Then g has a well-ordering <" satisfying t such that

typ g(<’) = o

Proor. 8. 6 follows from 3.3 if d =«. If 6 =2 and « is regular it follows from
the remark made after the proof of 3.7,

DeriNiTION 8. 7. Let g be a set and a<%%(g). We call ¢ a disjoint partition of
type & of g if Z(a) is disjointed and |2 (a)=g.

Let % ={g. G’ be a graph and « a disjoint pariition of g. Let 7(x) be a colouring
function of G, and let < be a simple ordering of g. We say that < satisfies ¢ with
respect to a if < satisfies 7 and a,~<a; for every #<({<=¢.

Lemma 8.8, Let %, a and t have the same meaning as in 8.7. Let 9, denote the
graph induced by a, and let b= |J a, for {<=¢.
n<i
Then there is a simple ordering < (well-ordering <) of g satisfyving t with
respect to a iff the following conditions (i) and (ii) hold.

(1) There exist ordering functions t. of 4. and simple ordering relations <.
(well-ordering relations < ;) of a; such that < satisfies t. on G, for every { <¢, res-
pectively.

(i) T(x, b, 9)+& = t(x) for every e =t/(x) for every x€a, and for every { =¢.

(i) is equivalent to the condition

(iii) (x, by, G)=t(x), and tx) = 1(x)—t(x, by, @) if t(x) is finite t(x)=1(x)
i t{x) infinite.

As a corollary of this the following condition is sufficient for the existence of a
simple ordering < (well-ordering = ) of @ satisfving 1(x) with respect to a.

“In 11,3 we define the property Pla, fi, 3, 6) strongly related to Rz, f, 3, d). In [15] there
are several results concerning Pla, f, v, &) for finite z. Results of similar type might be expected
for R(x. f, 3, 6) too.
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(iv) For every { << there exists a colouring function t. of G(a;wb,) satisfying
t(x)=1(x) for xca;, and a well-ordering < of a, v b_ satisfying 1., and b.~< .a,.

Proor. By 8.4 and 8. 7.
8.8 is an immediate generalization of 4. 7.

§ 9. The relation R(x, . 7.0) in case ff=w, 7=

THEOREM 9. 1. R{x, fi, w, 2 —2) for every 2=[f <w, and for every x.
THEOREM 9. 2. R(w, f. w. 28 —3) is false if 2= = w.

9. 1 and 9. 2 show that the answer to R. RApO’s problem is affirmative iff ff=2.
We postpone the proof of the thecrems to pp. 82, 85, respectively. First we
need some lemmas.

LEMMA 9. 3. Let 9={g. G) be a graph and t a colouring function of it, t %,
Assume that every g’ % (g) has a simple ordering which satisfies the colouring
function t1g" of G(g’). Then g has a simple ordering < satisfying t.

0.3 is a generalization of 6. 5. The proof is an easy application of Tychonofi’s
compactness theorem. We omit it.

Note that the compactness theorem obviously does not imply that the simple
ordering < is a well-ordering. This leads to the phenomenon shown by 9. 1 and 9. 2.

LEMMA 9. 4. Let ¥ ={g, G) be a graph, a(¥)=w, and t a colouring funciion
of it, t€%wm. Assume that every a€% (g) has an ordering <, which satisfies tta on
G(a). Put s(x) = max (2t(x)—2, 1(x)). Then there exists a well-ordering < of g
satisfying s(x).

Proor. We will prove
(1) For every ac.% (g) there exists a set a’ satisfying the following conditions:

(i) €& ,(2)

(i) for every be.¥ (g ~a’), the graph a"ub has a simple ordering < which
satisfies st(a”wb) on the graph %(a”wb) with respect to the partition whose first
member is ¢ and the second member is b.

To prove (1) we need the following
(2) Assume ¢¢.%,(g). Then either a’=a satisfies the requirements of (1), or there
exists a set he ¥, (g) satisfying the following conditions

(1) t(x,aub, G)=s(x) for every xebh

(i) there is an x¢h such that t(x,a. %) <0.

To prove (2) assume that ¢’=¢ does not satisfy the requirements of (1). Then
a'=a does not satisfy (i) of (1). Let b be a set with minimal number of elements
such that @ wb has no ordering which satisfies staw b with respect to the partition
with first member a, second member A. We show that this b satisfies the requirements
of (2).

Assume x €58, t(x, @b, g)=s(x). Then by the minimality of b, b~ {x} satis-
fies (1) (i1) with @ =a” and so e u b ~ {x} has an ordering satisfying s(x) with respect
to the partition @U (b~ {x}) and then this ordering can be extended to an ordering
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of auw b by the stipulation that x is the last element of it and the new ordering so
obtained satisfies stau b on %(awb) with respect to the partition aub. This is a
contradiction, hence (2) (i) is satisfied.

Assume now (2) (ii) is false. Then by the assumption both @ and b have orderings
<, and <, satisfving fta and 1th of % (a) and %(bh), respectively. Extending these
simple orderings to an ordering < of aub, by the stipulation a <b, the ordering
< would satisly 7tfaw b with respect to the partition ¢ u b. Considering that 7, =g,
for every x €g this contradicts the definition of b, hence (2) (ii) is true and (2) is
proved.

Now we prove
(3) Assume ac%,(g). Let e(a) denote the number of edges of %(a). Then

e(a) = X (t(x)—1).

By the assumption there exists an ordering <, of « satisfying nta of %(a). We
have
e(a) = > t(x,a

L
€

<x,%) = D t(x)—1.

X xca

We prove (1). Let a€%,(g) and assume that there is no a” satisfying the
requirements of (1). We define the sequences a;, b; by induction on i simultaneously.

Put ¢, =a, assume that a;, i=0 and b;_,, i=1 are already defined in such a
way that a S a,;. If af = a, satisfies the requirements of (1) for a; then a; =a" satisfies
(1) as well. Thus, by (2), there exists a set b; satisfying the requirements of (2) with
a;=a,b;=b, Put a;y, = a;wb;. Then aSa;,, and a; and b; are defined for every
i=m.

We need an estimation of e(a;,,). We prove that e(a;,,) = e(a;)+
+ 2 (t(x)—1)+1. In fact it follows from (2) (i) and (ii) that

xebg

(i) = ela)+1+ (Zse)-1)

Xeb;

and considering that e(a,,,) is an integer this gives the result.
It follows by induction on i that

Put
io = 2 (t(x)—1).
Then =
e(a; ) = ’Z (tx)—=1)+i—iy,
hence for i = i, T
e(aiy) = 2 (1(x)—1).
XEMj 4

This contradicts (3), hence (1) is true.

Let y €“g a well-ordering of g. For every a €% ,(g) a’ denotes a set satisfying
the requirements of (1). We define the sequences a;, b;, ¢; by induction on i, simul-
taneously. Assume a; is defined for every j<i, and a;€.%,(g). Put b; = |J a;,

J<i
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¢; = b;u{y(k;)} where k; is the least integer k for which x(k)¢b;, and let a; =
= ¢;~b;. Then by (1) a;€%,(g) and g;, b;, ¢; are defined for every i.
We have
4) {a:};-., is a disjoint partition of type @ of g, and a,=b;,, ~b; for every i.
Considering that =0, and b;,,=c;, b/ =b; for every i. It follows from (1)
(ii) that the set b, , has an ordering <, satisfying s} b;, , with respect to the partition
b;ua;. As a consequence of 8. 8 (iv) it follows that g has a well-ordering satisfying
s(x). This proves 9.4,

THEOREM 9. 5. Let 9={g, G) be a graph and t a colouring function of it such
that 1<%, Assume that for every a€.%,(g) a has an ordering —<, satisfying tta of
%(a). Put s(x) = max (2t(x)—2, 1(x)), for x€g.

Then there exists a well-ordering < of g satisfying s(x).

REMARK. Theorem 9.1 follows from 9.5, applying 9.5 for the colouring
function 7(x)=p, and considering that s(x) = 21(x)—2 if 7(x)=2.

Proor. By 9.4 the theorem is true if «(%)=w. We proceed by induction on
#(%). Put «(%) = x> and assume that the theorem is true for every graph %’
with (%’)<«. By the assumptions and by 9. 3 there exists a simple ordering —<*
of g satisfying 1 on %.

First we prove
(1) For every AZ g there is a set BC g satisfying the conditions

(i) ASB (i) |B|=|4le (i) v(x, g|<*x, ¥)EB
for every x€B.

To prove (1) we define a sequence A; i=w by induction on i as follows:
AOZA, A[+1 = U I?(.\”,g: -<*,\", g)'\_JA‘-
xe A

Considering that <* satisfies ¢, it follows that [4,,,|=[4,|-®, and that B= ] 4;
i<
satisfies the requirements of (1).
Now let # € 7@0.% (g) such that % (A) = B satisfies the requirements of (1) for 4.
Let x€”g be a well-ordering of g.
We define C. D25 (g) by transfinite induction on &=o simultaneously.
(2) Assume C, is defined for every {<¢ for some ¢=o. Put | C; = D;. If

(<€

g~D; = 0,put C,=0. If g~ D, # 0, let y: =x, for the least  for which x, € g~ D,
and let C; = #(D;v {y:})~D;.

We have
(3) C is a disjoint partition of type o of g.
4 If xeD; then v(x, g|<*x, ¥)E D; for {<a.

(3) follows immediately from (2). If x € D, then x € C; for some { <&. D, U C, =
= B(D,;u{y.}) by (2), hence v(x, g|<*, ¥)SD,uC,E D, by (i) and (iii).

We prove by induction on ¢
) 1Ci=1¢l-.

Assume (5) is true for every {=¢.

Then |D] = 3 (-0 = &-w. |Du{y:}| = é-w and then by (i), (i) and (2)

s

¢
we have |C;| =¢-o.
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(6) v(x, Dy, 9)So(x, g| <*x,¥) for every xeC;.

Assume y€uv(x, Dg, ). Then {x,y}€G, and y<*x. For if not then x<*y
and x€uv(y, g|<*y, %) and x€D, by (4). Hence ycu(x, g|<*, 9).

Considering that <* satisfies ¢ it follows from (6) that
(7) 1dx) = t(x) —1(x, Dy, 9)=0 for every x€C;, E<a hence 7, is a colouring
function of %4(C;) for & =a.

We prove
() If ac#,(C:) then <* satisfies 7;ta on %(a). If yeuv(x, al <*x, g(a)) then
yeuo(x, gl <*x,%) and ydo(x, D, %). Considering (6) it follows that

(x, a| <*x, ¥) =1(x, gl <*x, 9)—1(x, D;, G) =1:x).

Put s:(x) = max (215(,\'}—2, 1x)) for x€C; and for &<a. By (5) we have
a(fé’(Cz)) <o for E=ua. By (7), (8), and by the induction hypothesis it follows that
(9) There exist well-orderings < of the sets C, satisfying s; on %(C), for {<o.

By 8. 8, (3) and (9) there exists a well-ordering < of g satisfying s.(x) + 1(x, D.. %)
on % for every x € C; and for every & =o.

On the other hand sy(x)+ t(x, D;, %) =s(x) for every x because

max (2(t~1)—2, t—1)+t=max 2t —2,1)

whenever —1=0, 1=0.

Hence the well-ordering —< satisfies s on @ and 9. 5 is proved.

For the constuction of a graph satisfying the conditions of 9. 2 as well as for
some more complicated counter-examples we need the following

LEMMA 9. 6. Let % =(g, G) be agraph, B€“(S,(g) ~ {0}). A< g where {4} R(B)
is disjointed. Let tc%wn be a colouring function of 4. Put C;=Av |JB;. Assume

J=<i

that there is an iy such that
X, Civy, %) =Ux) for every xeB; for i=i,.
Then no well-ordering < of g satisfies 1(x) and the condition
A< UB;.

i<wm
As a corollary of this. if A is finite, there is no well-ordering < of ¢ satisfying t, on 4.

Proor. Let t(x) briefly denote z(x, A, %) for every x€|J B;. Assume that the

=<ap
theorem is false, and there is a well-ordering < of g satisfyington &. Put b= |J B,.
1<
Then |b|=w by the assumption. It follows from 8.8 that -< satisfies 1(x)—1(x)
on %(b). Then by 8. 6 there is a well-ordering <" of b satisfying #(x) — 1(x) on %(b)
such that typ b( <")=w.

Let b; =max .(B)), ¢, =max_.(C; ~ A).

We prove by induction on i that »,=<’¢,. Assume that this is true for every
j=i. Then max. (C;~A) is either b; or ¢,. If b;=max_. (C;~A4) then
(b;, C;~A, G)=1(b;, b| <'b;, ) =1(b;) —1(b;) in contradiction to the assumption.
Hence b;=<"c, for every i. This contradicts typ b(<")=w and proves the first part
of the theorem.
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Assume that the corollary is not true. Then, by 3.1, Aub has a well-ordering
~< of type o satisfying #(x).
Put ¢’=max_(4), A'=Aub|=<d, B/ =B;~A, C= |J BjuA. Then for

j=i
some i=i,, B;=B/, C;=C, and a contradiction follows from the first part of
the theorem which has already been proved.

DEerFINITION 9. 7. We define the graphs %(k, [)=(g(k, I). G(k, I)) for =3 if k=2
and for /=2 if k=3.
(i) gk, H=w.

We define B(k, /) as a disjoint partition of type o of m.

; k
(i) jEB(k. 1) if,f—-—-![i ]i-l—s. 0:_5-{;;[2]_
We define the set of edges G(2,/) for /=3 as follows
(i) {7, j+1}eG@2, D, i, li+1—-1}eG2,1).
We define the set of edges G(k,/) for k=3, I=2. First we define a partition
of type /—1 of each Bk, /).

\'. k
(iv) Assume je Bk, 1), j= J’[i ]!—.5'. 01;55<-:}'[2 ] 5

JEB; 1ok, ) if (!—2}[;]:--'_ r ,’[{;]

N i Ch G 1\ =y k
jEB; (k) for O=r<[-2 if 1[,?]_--,s-=(:+-l){2].

v) {ji’yeGk, ) if j,j €B; Lk, 1) for someiandr<I/—1andj<j’,j —j=k—1.
k 4 ‘rl‘- . k P k = o [ — k
{![2].'4-‘9,:"[2]:-l—[z]-+,€}EG{!\,!} for {1—2)[2]-“9‘..(! I][zl.

Il p=li—1 for some i, p=0, then for every 0=w-=k—1
' k), k : P wl o [wl
=(;?—l)[2]~r-u,p[z]—l—u}GG{:"\,I}forn(k—l)—[z].-.:v-:(u—i-l)(k 1) { ’ ]

In the next lemma we are going to collect all the consequences of the above
construction which we are going to use later.

Lemva 9.8. (i) «%(k, 1) =w.
i) U Bk, h=o, and B(kD= U By kD) for k=3,

i<m r<l-1

Bk, l)y<=Bu(k, 1) for i=i".
BI. r(k'- ” 7 Bir'(k's () _fﬂ." E=<r'.

k| . .
Assume j:i[;)i—l—s.{)i}sc![zl i.e. jEBk, 1)
(iii) For 1=3 we have

0 if j=0
W(j.j, 9Q.D)=11 if j=0, s=#I—1
2 if s=I1—1
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(iv) For I=3 we have

(j, o ~j, 92, 1)) = {
(v) For 1=3,i=0

T(J"! Bf—l{.kn IF)UB,(k, ‘()! g(za [)) = {

I if s=0
2 if s=0.

2 if s=0
3 if s=0

o(j, B, 92, ) =2.
(vi) For k=3,1=2, i=0

k—1 if 0-::-5{{1—1)(’;]

k if {f—l)(;]fj'{f[g].

voif (_*]sz(ﬁ-l—r+])[§]—u Jfor some i, 0=r=1[—1,

(/. ), Gk, 1)) =

(vii) For k=3, =2

(. 0 —j, %k, 1)) = rel—2, 1=v=k—1

k in the other cases.
(vii) For k=3,1=2,i=0

k-+v—1 if condition (%) of (vii) holds

s Byl Dy Bk, 1), Bk D)) = {2!\' —1 in the other cases.

(ix) If jeB/(2,1) for 1=3 then
v(j, g(2,1), 42, !'_)) B2, )uB(2 HuB;, (2]).
If jeB; (k. 1) for k=3,1=2 then
”(J”e g{j\‘, "’)1 fg){’“s ‘J)) E Bi. P ]_[‘."(! }} J Bi, r(k‘ '-") v BL r+ I(‘k'l !)
where
Bi -1k, )=B—y -2k, ) i r=0
B ik, )=B; ok, ) if r=1-2

ProoF or THEOREM 9. 2. The theorem is trivial if f=2. We assume f=3. Put
p=k+1. We define a graph ¥=(g, G).
(1) Let A={ay, ...,a,_,} be a set of k—1 elements disjoint to w. Put g= AU w.
(2) %(A) has no edges.
(3) Y (w)=9%(2,3) for k=2, 9(w)=%(k,2) for k=3.

We complete the definition of % by defining v(j. A, %) for every jEw.
(4) For k=2, let j=3i+s, 0=5=3

v(j, A, %)=0 if s=0,
o(j, A, %) ={a,} if s=1 or s=2.
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(5) For k=3 let j=2[§]i+s, o.z:s-:z[‘;].

v(j, 4,%9)=0 if Of—’:s<2[§]—(k—l}

(j, 4, 9 ={ag, ..., @h—p—y} if .v——-2[§]—v; D=l s do=—1

By (1) we have a(%)=w. Put briefly B,=B,2,3) if k=2, B;,=Bk,2) if k=3,
and let C;= |JB;uA. By 9.8 (ii) B;, C; satisfy the requirements of 9. 6. It follows

from 9.8 (v) and (viii) and from (4) and (5) that
(j, Cisy, 9)=2k—1 for every jeB,, i=0.

[t follows from 9.6 that Col (¥)=2k—1 = 2f—3. Define the simple ordering
- of g by the following stipulations ay< ... <a,_,, A<w; If i<j<=w then j<i.

By 9.6 (iv) and (vii) and by (4) and (5) < satisfies the colouring function ff = k + 1,
and as a corollary of this every finite subgraph of % has colouring number =f.
This proves 9. 2.

§ 10. The relation R(x, f3,7,9d) in case f=w,7=w

Comparing 9. 1 and 9.2 we see that 9.1 is best possible for fixed o, ff, 2= <w
if y=0, but the problem whether it remains best possible for o <=7y =0a remains
open in most cases. We can prove the following results.

Tueorem 10. 1. R(w,, B, w,, 28 —3) is not true for every finite n and for2 = i = w.
THeOREM 10.2. R(z, f, 2, ) for f=o. if cf(2)=w, a=w.
The simplest unsolved problem is

ProsLEM 10.3.1s R(w,: ¢, f, @, ., 0)trueforsome f =6 =20 —2 for3=f=w?
We mention that if R(x, 5, o, f) is false for some f<=u, a=w then 2€C,.
(For the definition of the class C, see e.g. [10].) We omit the proof. We postpone
the proof of 10. 1 and 10.2 to pp. 90 and 91 respectively. We need some lemmas.

LEMMA 10.4. Let m, n, B be integers,m=1, f =3. We say that the graph % =(g, G
has property q(m, n, B) if the following conditions (1)—(v) hold.

(i) There exist sets A, B, A, t=m such that g=AUB, A=Azu...UA,_,,
where the summands are disjoint.

(ii) |4,|=w, for t=m, |B|=w,.

(i) (x, g, %) =1 for every xcA and G(A) has no edges.

(iv) If DEA,, |D|=w, for some t<m then % has a [-colouring < satisfying
the condition

A~(A ~D)y<B<A ~D,

(v) No well-ordering < of g satisfying the colouring function 2 —3 has the
property A< B.
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Assume that there is a graph % which has property g(m,n, ). 1If m=1 then
there exists a graph * which has property g¢(m—1,n+1, ). If m=1 there exists
a graph %* such that ((%*)=w,,, Col (¥*)=2f— 2 and Col (%(g V)= p for every
8'E8 8 1<Wnsy-

ProoF. Let C be a set of power @,. By a well-known result of A. TArsk1 [13],
there exists a sequence Cy, £ <, 4, of subsets of C satisfying the following conditions
(1) U C.=C, |Cl=w, and |[C;nC:|<=w, for every pair {,{=w,.

E<um+

For e\tfery E=w,yq let D.=(g., G:) be a graph satisfying the conditions (i)—(v)
and the following additional requirements with the sets Ay, B;, 4, - t<=m
(2} Am 1, §_C for é'{wu*-f
(3) The set containing C, B;, 4, ¢ for t=m—1, { <, is disjointed.

We define a graph ’f’*“(g* G*) by
@ gt= U &g 6= U G

E<mn+ E<am+1
(5) Af= U A, forevery t<=m—1,
At= |J Af, B*=Cu | B:; % (g)=%9: for {<w,.,.

t<m—1 E<m+1

It follows immediately from (1)—(5) that

(6) If m=1 then %* satisfies the requirements (i), (ii) and (i) of the property
qm—1,n, ) and if m=1 then a(¥)=w,. .

We prove
(7) No well-ordering < of g* satisfying 2ff — 3 has the property A* < B*,

Assume that (7) is not true and let < be a well-ordering of g* satisfying 2/ —3
and such that A* <B*. Then by 3.1 and 8. 8§ we can assume that

typ BH(<) =44

Considering that by (1), |C| =, then there exists a { <=w,; such that C<B,.
But then by (1)—(5) < is a well-ordering of g such that 4, <B; and < satisfies
2f—3 on %, This contradicts (1) and thus (7) is true.

(7) means that %* satisfies requirement (v) as well and that Col (9*)=2f—3
if m=1.

To prove that @%* satisfies (iv) we need some preliminaries.
(8) Put h.= Us,r, H.= UiG;, He=hs, Hy).

L=

We pmvc that
(9) For every {=w,,, h; has a well-ordering < satisfying f on #; such that
A* hy<hg~ A*.

We can assume that w, =¢&. Let iy € ¢ be a well-ordering of type o, of . For
every {=w, put D,=Cynn U Cyy- By (1) and by the regularity of w, we have
o

=<5
D¢l =w,. By (1) %, satisfies the requirement (iv), hence there exists a well-
ordering <, of g, satisfying f on %, and such that
(10) Ay ~(Cyeey~ D) < Byry < Cypp ~
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We choose a well-ordering < of A, satisfying the following conditions

(11) A* "hy<A* ~h,

< is an arbitrary well-ordering on A* nh;. (Note that ¥(A* nh;) has no edges.)
Put E;= U (BM,,)uC.;,(,,)} Fi= By Y Cyey-

Then by (1) and (3) E.nF,=D, for{=w,.

Put E, < F,~D,, and for every {=w, let < coincide with < .ontheset F,— D..

By 8. 8 and (10) every well-ordering < of A, satisfying (11) satisfies the requi-
rements of (9).

(6), (7) and (9) prove the theorem in case m=1.

Assume m =1 and DS A¥, |D|=w, for some t =m — 1. Let £, =®,,,; such that
Dn A, .=0 for every £= én By 9) there exists a well-ordering <, of /i;, such that
(12) A* by < e he, ~ A*.

For every {=¢,, by (1), there exists a well-ordering < of g, satisfying f# and
such that
(13) A.~A, :<:B:<"A, ;.

We choose a well-ordering < of g* satisfying the following conditions
(14) A* ~ (A7 ~ D)< B*,
< is an arbitrary well-ordering on A* ~ (4]~ D).

On B* we choose < so that

heg, < C~hg, < | B

£=fo

Let < coincide with <, on /., and with <; on B, for ¢ =¢&,.

B* < A7~ D and < is 'lrbltmry on Af ~D. Us.mg ]), (12) and (13) it is easy
to verify that every well-ordering < of g* satlsfying the requirements of (14) satisfies
f and is such that A% ~ (A ~ D)< B* < Af ~ D. Hence %* satisfies the requirement
(iv) of p(m—1, n. ff) for m=1. In view of (6) and (7) this concludes the proof ol 10. 4.

LemmA 10. 5. For every m=1,3=f<=w there exists a graph %(g. G) which
has property ¢(m, 0, ) of 10. 4.
ProoOF. Put f=k-+1.

(1) Let A be a set Anw=0, |4d|=w. Put B=w. It is obvious that there exists
a graph ¥ ={(g, G) satisfying the following stipulations
(2) %(A) has no edges.
(3) %w)=%(k, m+2).

(Note that %(k, m + 1) would be good as well except in case k =2, m =1, where
%(2,2) is not defined.)

Assume jEB(k,m+2)i.e. j=(m+2) [;] i+s where 0=s=(m+2) [f;] :

We conclude the definition of % by defining t(j, 4, %) for j€ w, and by
4) t(x,B, %=1 for x€cA.
(5) Assume k=2. Put

. 1 if 5=0
T("‘A‘{g"_'!o if s=0.
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(6) Assume k£ =3. Put

—v whenever v satisfies condition (%) of Lemma 9. 8 (vii)

1 k
Wiy )= {0 in the other cases.

We define the sets Ag, ..., A,,_;.
First we define the subsets B, ..., B™ of B as follows.
() If k=2, j=(m+2i+s, 0=s=m+2

JEB® if s=t for 0=t=m—1

JEBM if s=m or s=m+1.
(8) If k=3 put
BY = |J By(k,m+2) for 0=t=m—1

1<

Bi'ﬂ'!—n = U (Bl',m—- ].(k! m _]- 2) v Bf,m(k' m + 2.))9 B(m) = 0-

(9) Put
A, = {xeAd:xcv(j, A, %) for some j€BC+D}

for 0=t=m if k=2 and
= {xcd:xcv(j, A, %) for some jcBO}

for 0=t=m if k=3.

It is an immediate consequence of the definitions that 4, 4, B, 4,, 0=t =m
satisfy the requirements (1), (ii), (iii) of g(m, 0, f) stated in 10.4.

Put briefly B; = B,(k, m+2) for every i and C; = U B;UA.

It follows from 9.8 (v) and (viii) and from (5) and (6) that for every i=0 for
every j€ B; we have

T(Ji" Ci+1! g) =2k—1 = 25—‘_

It follows from 9. 6 that no well-ordering < of g satisfying 28 — 3 has the property
A—<B. Hence % satisfies requirement (v) of 10. 4 as well.

Assume DE A, |D| = for some 1 = m. Choose a well-ordering < of g satisfying
the following conditions:
(10) A~(A,~D)<B~<A,~D,
— is an arbitrary well-ordering on the sets 4 ~(4,~ D) and A,~ D.

It remains to choose < on B=. There exists an i, suchthatv(j, D.%) =0
for every j€B(k, m+2) for i=i,.

Let {J Bj= o~ U B and let < coincide with = on the set U B;. To

i=in

choose < on the set w~ U B; we distinguish the cases (I) k=2 {]I) kf

J=io
(I) Choose < so that
B;<By forevery iz=i=i'=w

and choose < as an ordering of the circuit %(B;) satisfying the condition
v(Jj, B;,%(B)) =1 for every j¢Bt+D
v(j, B, 9(B;)) =2 for every jeBt+D,

I
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(IT) Put briefly B; , = B; (k,m+2) for 0=r=m
DO = U Biu-i-i.r? Eo = Bin-!-l.r

O=r<t
Divi = U Bige1+:V U Bigszeir
t<r=m O=r<t

for every i=w.
Choose < so that
Dy<Dy<Ey<Dy, <E; <D3<...

~< coincides with = on D;, < coincides with = on E;.

To see that ¢ satisfies the requirement (iv) of ¢ (m, 0, ) of 10. 4 it is obviously
sufficient to see that t(x, g|<x, %) = k for every xcg whenever < satisfies the
requirements of (10). If x ¢ w this is trivial from (2) and (4). If x€ |J B, this follows

=ip

J
from (5) and (6) using 9. 8 (iv) and (vii). In case (I) for x€w— U B; the statement

J=io
follows from (7), (9) and 9. 8 (v) and (ix). In case (II) using (8), (9) and 9. 8 (vii)
and (ix) the statement follows easily for every x € D;. For x € E; we have to use (8),
(9), 9. 8 (vi) and (ix) and the following fact which easily follows from the definition
9.7 of the graph %(k, m+2):
If jeB; , for some 0=r<=m then z(j, o ~(juB, ), %k, m+2)) = 1. This
proves that ¢ satisfies the requirements of 10. 5.

Lemma 10. 6. For every myn, §, m=1,3=f=w there is a graph % which has
the property ¢(m,n, B) of 10. 4.

Proor. By induction on n. If n=0 10. 6 is true for every f, m satisfying the
requirements, by 10. 5. Assume that 10.6 is true for some n for every m=1,
3=f=w. Then by 10. 4 it is true for n+1, for every m=1 and 3=f=w.

Proor or THeorem 10. 1. 10. 1 is trivial if f=2. Assume 3=f=w. If n=0
10. 1 is true by 9. 2. Assume n=0. By 10. 6 there exists a graph % which has property
p(l,n—1, f) of 10.4. By 10. 4 then there exists a graph %* such that «(%*)=w,,
Col (9*) = 2f—2 and Col (9*(g")) = for every g’ S g*, |g’| = w. This proves 10. 1.
We need a further lemma for the proof of Theorem 10. 2.

Lemma 10. 7. Let % ={(g, G) be a graph which possesses property D(B, 7). Let
AS g, |A|=¢ such that f=e¢, o = e*=v. Then there exists a subset B satisfving
the following conditions:

(i) AS B, |B|=e.

(i1) For every CSg~ B, C|=y there exists a fi-colouring < of ¥(BuC)

such that B-<C.

Proor. First we prove that there exists a set B satisfying the condition (i) and
the following condition

(iii) For every C S g~ B, |C| =g, there exists a fi-colouring < of ¥(BuwC)
such that B<C.

Assume that there is no B satisfying (i) and (iii). That means that for every
AS B, |B|=¢ there exists a ¢ (B) satisfying the following conditions
(1) ¢(B) S g~B; |p(B)|=¢, and ¥(Bu@(B)) has no p-colouring < satisfying
B~<qp(B).
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We define a sequence A,, £ <&t of subsets of g by transfinite induction ¢ as
follows.
(2) Ay,=A. Assume that A, is defined for every { =¢ for some 0 <& <e™ in such
a way that |4,/ =e Then || 4, = e Put 4, = ¢( U 4,). Then |4, =e and A,
L<é L=<

is defined for every «§<s+.§
Put further D = |J A;. Then |D|=¢*. By the assumption and by 3.2 % (D)
4

<g+
has a f-colouring < such that
(3) typ D(<) = &t
Using (2), (3) and the regularity of &* it is easy to see that
(4) There is a &,<=¢* and an x,€D such that

’U AC = D|_<'\‘U‘
(<o

It follows from (4) that [J A4, <=A,,. Considering that < is a fi-colouring of
L<&o

% (D) this contradicts (1) and (2).

Hence there is a set B satisfying the conditions (i) and (iii). We prove that the
same set B satisfies (ii).

Let C € g~ B, |C|=7y. By the assumptions there exists a fi-colouring <" of
%(BuUC).

We define a sequence B; of subsets of Bu C by induction on i as follows.
(5) By=B; B,y = U v(x, BUCI<'x,9(BuC)).

xE By
Put D= |J B,.

L<
Considering that [B{=¢ and 7(x, BuC|<'x, ¥(BU C}) = [} because of <’
is a fi-colouring it follows that
(6) BEDET BuC; |D|=¢, forevery xeD

v(x, BUC|<'x,%(BuC)) S D.

Considering that B satisfies (iii) we can choose a f-colouring < of %(D) such
that B<D~ B. We define the well-ordering <* of BuC as follows.

(7) <* and < coincide on D —<* coincides with <" on (BuC)~D = C~D
D<*C~D.

~<* obviously satisfies B<*C. To prove that it is a f-colouring by (7) it is
sufficient to see that t(x, BUC|<*x, ¥(BuC))<f for every x€C~D.

Assume yev(x, BuC|<*x, %(BuC) for some x€C~ D.

We prove that then J-'Ev(x, BuC|<'x,49(BuC)). If yeC~D this follows
from (7). If y € D and {yx} € G then y <’x forif not then x €v(y, BUC| <"y, 4(Bu C))
and x € D, by (6).

Considering that <" is a ff-colouring of @ (Buw C) this implies the statement
and B satisfies (ii).

Proor oF THEOREM 10. 2. Let % =( g, G) be a graph, (%) =«, which has property
D(p, =). By the assumptions there exists a ¢ ¢“a such that
M U gi=9% ¢i<q@p g, is a cardinal, ¢, =puw for every i<i'<w.

Let hc“g be a disjoint partition of g satisfying
(2) |h;)| =, for i=m.
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If AC g, |4| =&, fuw=¢=u then by the assumption and by 10. 7 there exists
a set B satisfying the conditions (i), (ii) of 10. 7.
(3) Let #(A) denote such a set for every 4 satisfying the above conditions.
We define a disjoint partition a of type @ of g as follows. Assume that a; is
defined for every j<i/ in such a way that |a;|<o.

Put a; = #(Ua,uh)~ Ua; for i=w.
F<i Jj=i
Then by (2) and (3) we have |a;| =2 and by (2) @ is a disjoint partition of g.
By the assumption and by (3) the set |J a; has a fi-colouring —<; such that
isi
Ua;=a;. Lemma 8.8 implies that then Col (¥)=f.

i=i
§ 11. The relation R(x, f, 7. ) in cases fi=w. Problems

In case f=w, our results are rather incomplete. Using the results of §5 we
obtain some positive results but in most cases we cannot prove that they are the
best possible. We are going to state some typical unsolved problems.

As an immediate consequence of Definition 2. 12 we have

LemMA 11. 1. Assume O0=f=pf". Then [[f5, f’ 1] has colouring number =f.

Lemva 11, 2. Assume that for some Q0<=f<f"=7, Col(x,d, ", ). Then
R(x, fi, 7, 9).

ProOOF. Let % be a graph «(%)=a which has property D(f, y). Then % does
not contain a [[#, 1), by 11.1. Hence by 5.1, Col (¥)=4.

TueoreM 11. 3. Assume that G. C. H. holds and f=w. Then
(1) R(x, B, ™7, BT) holds for every a=uo(f)
(i1) Rz, B, fT7, 1) holds for every o.

Proor. By 5.5 (i) and (ii) Col(a, f+, 7%, 1)) and Col (o, fH*, 7T, )
hold in cases (i) and (ii), respectively. Hence 11. 3 follows from 11. 2 in both cases.

Comparing this result with 8.3 we see that the following problems remain
open. Assume fi =wm.

Is R(x, f, 7, f) true for some (or every) a=f?

Is R(z, p, 77, f7) true for some (or every) o=u(fi)?

Are R(x, fi, v, f) or R(x f, 9, f7) true for some f+r=yp=u?

9.2 gives a positive answer to the last problem in case cf (x)=w, a=w.

We state the simplest unsolved problems.

ProsrLEm 11.4. (i) Is R(w,, o, @,, w) true?
(i) Is R(w,:y, 0, ®,;, ) true?

DerNITION 11. 5. The relation P(x, i, 7, 6) is said to hold if every graph with
®(%)=o has chromatic number =6 provided every subgraph of power =y of it
has chromatic number = f.

The problem involved in the relation P is well known and is stated, e. g., in
[5]. The pE BrRUNN—ERDGS theorem [2] mentioned in the introduction states
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P(a. p. @, ) tor every finite f# and for every . No non-trivial result is known in
cases fl=w. The simplest unsolved problem (assuming the G.C.H.) is
P(w,, @, @,, w). This should be compared with 11. 4 (i). We mention that while
as a corollary of 11.3 we have R(w,,w,w,,w,) the problem whether
P(w;. ®, w,, @) holds is unsolved.

We mention the following

THEOREM 11.5. Assume ff=w. If the 7-product space of an o-termed sequence
of two-point discrete topological spaces is y-compact then both

P(o, i, 9, ) and R(2, B, 7, B) hold.

For the concepts appearing in 11.5 see, e. g., [10]. The condition f=w can
be omitted in case of P but not in case of R as is shown by 9.2.%
We omit the proof which is well known in case of P and is easy in case of R.

§ 12. Some remarks and problems on general set systems

As a generalization of the problems investigated in 5. 1 one can consider pro-
blems of the following type. What kind of special set-systems are necessarily
contained in a set-system # =(h, H) with a(#)=a, Col (#)=f or Chr (#)=p,
respectively. It is obvious that it is possible to obtain immediate generalizations
of Theorem 5. 5 for uniform set-systems (see Definition 2. 4) with 3 = »(#) = ® but
we do not know whether these results are best possible and so we do not investigate
this problem in this paper. However in case »(#') =3 some simpler problems arise
which are of a different type from the ones considered in case x(#)=2. We just
formulate a result and a problem concerning one of them.

THEOREM 12. 1. Let A ={h, H) be a uniform set-system with o(A) =o. 2(H) =k,
2=k =w and let f} be an infinite cardinal number. Then one of the following conditions
(i), (ii) holds

(i) There are disjoint subsets hy, hy ©h such that hy| = k—1, [h,| = 1 and
how{x}c H for every xch,.

(ii) Col () =p.

In case k=2, 12. 1 is a trivial special case of 5. 3, in case k =2 it can be proved
easily using the idea of 5. 5. We omit the proof.

From 12. 1 we have

CoroLLARY 12. 2. Under the assumptions of 12. 1 one of the following conditions
(i) and (ii) is true

# In [10] it is proved that the z-product space of an « termed sequence of two point discrete
topological spaces is not & compact for a wide class of cardinals «.. As a generalization of this result
using G. C. M. in [16] it is proved the m:-product space of an e-termed sequence of two point dis-
crete topological spaces is not e compact for many cardinals ¢. [t is not known whether these results
hold for every «. 11.5 is stated here merely to show that there are some connections between the
problems treated in the relations P, R and in [10] respectively. Since these problems are not the
topic of this paper we omit references to further relevant results. As to the definition of the concepts
used in 11. 5 and in this remark we refer to [10].
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(i) Forevery /=k, there exists a subset /'S h such that |i’'|=/and [{A€ H:AC
CShY)=l—k+1.

(ii) Col (#)=w.

We do not know whether /—k -+ 1 is best possible in 12. 1. We mention a very
special problem we cannot solve.

ProBLEM 12.3. Let # be a uniform set-system o(#)=w,, »(#)=3. Is it
true that one of the following conditions (i) or (ii) holds?

(i) There is WS h, |h'|=5 such that [{A€¢ H:ACh'}| =4.

(ii) Col (#)=w (or at least Chr (#)=w).

Note that using the method of [17] theorem 28 we know that if C. H. holds
and 4 is replaced by 5, then the answer is negative and as a corollary of 12. 2 we
know that 12.3 is true if 4 is replaced by 3.

§ 13. On chromatic number of finite set-systems

First we prove a very simple and special theorem

THEOREM 13. 1. Let # ={h, H) be a finite uniform set-system, such that «(#)=n,
w(A)=23. Assume that # has property C(2,2) i. e., for X#YeH, | XnY|=1.

Then h contains an independent subset W’ such that || =[)2n).?

ProOF. Let A" be a maximal independent subset of A. Put |A’| =r. By the maxi-
mality of & for every x€h -~/ there is an element 4, of H such that A .~ {x}Ch".
It follows from the assumption that (4, nA4,|=1 for x> ych~h". We obtain

lheah| = n—r = [;] or r=[)2n]

We do not investigate here some possible generalizations of this theorem for
uniform set-systems with »(.#") =3, but we are going to discuss one possible improve-
ment of this theorem which will turn out to be false. Namely one would guess that
the result r=[}2#n] trivially obtained above is very far from being the best possible,
and that it can be replaced by r=cn with some real number c.

As a consequence of the main result of this section it will turn out that it is
not true, and even r=n'"* is not true for some fixed £=0.

Before stating the main theorem we mention that a graph ¥ =(g, G) contains
a circuit of length =y iff there is a subset G’ of G such that 0=|G'|=7=s and
|G| =t.

Let # =(h, H) be a uniform set-system, »(H) =k, 2=k =w. The above remark
makes it possible that without defining the concept of a circuit for k=3, we define
the concept of s-circuitless uniform set-systems for s—= .

DEFINITION 13. 2. Let =(h, H) be a uniform set-system, x(H)=k, 2=k =,
A is said to be s-circuitless if for every 1 =r=s, and for every H'S H, |H'|=t
|[OH | =1+ (k—1).

.

? In this section [x] denotes the integer part of the real number x. In what follows we use many
other usual notations of number theory not introduced in § 2. 4, &, # denote real numbers.
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Using this concept our main theorem is an immediate generalization of a
theorem of P. ErRDOs [4] already mentioned in the introduction.

THEOREM 13. 3. For every k=3, and for every s there is a real number g (=0
and an integer ny ; such that for every n=n, , there exist a uniform set-system H =
=(h, H) such that a(#)=n, (H)=k, H is s-circuitless and h contains no inde-
pendent subset of more than n'~®%s elements.

From 13.3 we get

CoroLLARY 13.4. For every k=2, r, 5 there exist uniform set-systems .
with »(#)=k such that # is s-circuitless and Chr (#)=r or as an equivalent
formulation to this, for every k=2 and for every s there exists a uniform set-system
H, with o(#) =w, »(#) =k, which is s-circuitless, and has chromatic number .

We mention that at present we find hopeless the exact determination of g
appearing in 13. 3.

We postpone the proof of 13. 3. First we state and prove a simpler theorem
which shows that 13.3 is in some respect best possible.

TueOREM 13.5. Let A =(h, H)be a uniform set-system such that :(#) =k, 2=k.
Assume that for some t=1, and for every H' c H, |H'|=t, |UH'| =2+ (k— 1)1

Then the colouring number of # is at most t.

As a corollary of this if a(#)=n then # contains an independent subset of =n|t
elements.

Proor. By the assumption |V(x, h, #)| =t for every xch, and by 3.1.
The estimation Col (#) =t is obviously not best possible, but we do not inves-
tigate this.

Proor oF THEOREM 13.3. We will use the probabilistic method described
¢. g. in [4]. First we briefly outline the proof.

We will consider a set i of n elements. Then we will choose an HZ S,[h] of
[n 7] elements at random (where # will be determined later). The idea of our proof
is that for the most choices of H, the condition that # is s-circuitless is rarely
violated, and on the other hand every subset of at least n! % elements of /& will
contain many elements of H. So we will find an H such that omitting few elements
of it we obtain an H’ so that the resulting set-system (h, H’) is s-circuitless and
does not contain an independent set of n'~#s elements.

Put N=[n'*"].

Let Ay={H:HZ.%,[h] and |H|=N}.

Clearly
i)
lk

(1) Ayl = N

Let /, m be integers. Denote by Ay(/, m) the set
(2) {HeAy: there exist an A’ Sh, |i'|=m such that |Hn S [h]|=1}.

We want an upper estimation for the cardinality of Ay(/, m).
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For every fixed #/ Sh, ' =m the number of H€ Ay satisfying (2) is exactly

o 1[G

i=0
Hence by (2) and (3) we have
i [m] "n]_[m]
' ke J'r\' l’l\’
4) [Ax(l, m)| = [”] ‘>_‘ : N
m)\ 2 4 i N—i
=0
We prove the following lemma

B h

% Then

I
(5) Assume O0=pn= o [=n, m=[n'"%s] where 0 =g -

[n]
Ay(l,m)| = o I:, [

To prove (5) observe that
N

A 3 O O
e

)

provided »n is big enough and f<5. Hence under the conditions of (5) by (4)

(6)

and (6) we have

N
[n ] -t [m] 2 [m]
, z -l 1 +_”_
|A.’\-‘U.- H?)| ;I\\.' - [:_r] __.!L_ i k — Dnykng=n 2 _ {J(l)

(n] - i
o =
This proves (5).
For an arbitrary H¢€ A, we denote by z(H) the number of elements of the set:

ZH)y = (WEh | =(k—=Dt,t =s and |L[N]nH| =t}.
We denote by = the expected number of z(H) if H€ Ay is chosen at random.

(k i?l)r]’

Considering that the number of those #* which have (k — 1)t elements is [

H

Nt H’s satisfy-

and that for every ", (|A’| = (k — 1)t ) there are at most [U\’ ; l)r]
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ing the condition % [A']n H|=t we have

@ z= [E] _1 Z[(kfl}:] [(k_rl)r] Lk_],

t=2

An easy computation shows that then there exists a real number ¢ such that
N 5
8 =z=c (—] .
n
k
N

It follows from (8) that for all but o

B [N]s
=|—] logn.
n

If i€ 2(H) then |W A H|=%K]= (k_m].

systems He Ay we have z(H) =

f\'

By (5) and (8) if n is sufficiently large then there exists an H ¢ Ay such that

it satisfies (9) and (10).

(9) For every WCh, |[W|=[n'"%] we have [HnZ[h] =n.

(10) Theset {x:xcH and xS /' for some h’ ¢ Z(h)} has at most [(A X l).'r] {g
elements.

Considering that this number is smaller than n, for sufficiently large n, omitting
the elements of the set defined in (10) from H we obtain a set H’, such that the set-
system # ={h, H")has no independent set of [n'~%s] elements, by (9), and is
s-circuitless by (10). This proves 13.3.

The question arises how large can s be as a function of # so that our set-system
is s-circuitless, and the chromatic number is still unbounded. Our proof gives that
if s=o0(logn) then the chromatic number can be unbounded; we omit the details.

To show that this best possible we outline the proof of the following

] log n

THEOREM 13. 6. Let # =(h, H) be a uniform set system o(H)=n, #(#)=k
Assume that there is a real number ¢ =0 such that # is s-circuitless for some s =c¢ log n.
Then there exists an integer my(c) such that Chr (#') = my(c) for every n. As a corollary

of this # conrains a free set of = " elements.
my(c).
To prove 13. 6 it is convenient to make the following
DeriNiTioN 13. 7. Let 5 =(h, H) an arbitrary set-system. We say that # has
quasi-colouring number 8 if f# is the least cardinal for which there exists a well-
ordering < of h satisfying the following condition.

Whenever V< V(x, h| <x, #) and 4 n B={x} for every 4+ B¢ V then |V| <.
The quasi-colouring number of # will be denoted by Col*(#).

Acta Matbematica Academiae Scientiarum Hungaricae 17, 1966



98 P. ERDGS AND A, HAINAL

As an immediate consequence of the definitions we have
Col* (#)= Col (#)
and as an easy generalization of 3.1 one can prove

THEOREM 13. 8. Under the conditions of 3. 1
Chr (#) = Col* (#).

13. 8 is to be seen quite similarly to 3. 1. We omit the details.

Il # is a graph then obviously Col (#)= Col*(#). For general set-systems
in some sense. the quasi-colouring number seems to be a more appropriate gene-
ralization of the colouring numbers of graphs than the ordinary colouring number
defined in 2. 9. Throughout this paper we prefered the ordinary colouring number
because the quasi colouring number [ails to possess some simple and important
properties of the former one. For example theorems 3.2 and 3.3 are no longer
true for quasi colouring numbers. We omit the simple but not entirely trivial example
we have for this fact. Though a detailed examination of the quasi colouring number
might be useful, in this paper we are going to use it only in the proof of 13. 6.

Proor ofF 13. 6 (in outline). Considering that by 13. 8, Chr (') = Col* ()
it 1s suflicient to see that Col*(#') is bounded.

Assume Col* (#) =m. It is easy to see by induction on =(%#’) that then for every
x¢€hthereexistsa V.S V(x, #) such that |V, =mand 4 = B¢ V, implies A n B={x}.

Let x, be an arbitrary element of /.

Define V(i) by induction on 7 as follows

(0)= {xo} Ul Voo

Vi+h=Vu U UV

Considering that # is [¢ log n] circuitless it is easy to see that then
n = |V([clogn]) = ((m—1)(k —1))iclogn-1,

Hence m=m(c).

In connection with the problems considered so far the following problem arises:

Let n be large, and let # =(h, H) be a uniform set-system with x(#)=k,
o(#y=n and such that if x=#y€H then |xny|=1 1 e., H has property C(2,2).
How large does & have to be in order that the system should have property B (i. e.,
chromatic number 2)7%

The same question can be asked if we only assume that H has property C(2, r)
for 2=r<k.

The following theorem shows that the right order of magnitude for & is ¢ log n.

1 As far as we know T. GaLLAT raised the problem if there exist k. and » such that # satis-
fies the requirement of this problem. An affirmative answer is given in [18]. 13.9 seems to be a stronger
result in this respect.
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THEOREM 13. 9. For sufficiently large n there exists auniform set-system # = (h, H)
such that a(#)=2'" x(H)y=n |H|=2"Y" H has property C(2,2) and for every

210n

2
As a corollary of this H does not possess property B.

independent subset W' S h, |I'| =

The proof can be carried out using the probabilistic method described above.
We omit the details.
( Received 14 April 1965)
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