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In this paper G(n ; I) will denote a graph of n vertices and l edges, K„ will denote

the complete graph of p vertices G (p ; (PA and K,(p i , . . ., p,) will denote the r-

chromatic graph with p i vertices of the i-th colour, in which every two vertices
of different colour are adjacent . 7r(G) will denote the number of vertices of G and
v(G) denotes the number of edges of G . G(n :1) denotes the complementary graph

of G(n : l) i . e. G(n ; 1) is the G (ii : (211)
-/) which has the samevertices as G(n ; 1)

and in which two vertices are joined with an edge if and only if they aren't joined
in G(n ; 1) . K(p,	p,) thus denotes the union of the disjoint graphs Kp , (i=1,2, . . ., r) .

In 1940 TURÁN [8] posed and solved the following question . Determine the
smallest integer ni(n, p) so that every G(n ; ni(n, p)) contains a K,, . TURÁN
in fact showed that the only G (n : In (n, p)-1) which contains no K,, is

p-t
Kp-, (nr,, . . . . in;_,) where 5' m, =n and the m, are all as nearly equal as possible .

i=1
A simple computation shows that

lim in (n, p)
= 1 -

1(1)

	

- 	(p > l) .
(n'

	

p -1
2

Recently several more extremal problems in graph theory have been investigated
and in this paper we continue some of these investigations [4] . First of all we prove
the following general

THEOREM 1 . Let G,, . . ., G, be I given graphs and denote by f(n ; G1 , . . ., G,)
the smallest integer so that every G(n : f (n ; G,, . . ., G,)) contains one of the graphs
G,, . . ., G, as snbgraphs. We have

1'(n ;_ G, , . . ., G r )

	

1lim =	= 1 -- -

(~)

	

r .

,,'here r-- I is an integer i rhieh depends en the , raplrs G i (1- i-1).

Theorem I easily follows from the following known result [3] :
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For every pal, r>i, s>0 and rr>np ( p, r, 0

(2)

	

(21
~I	1 +o(1)I -.f(n ; Kr (p, . . ., p))-l l

	

r-1

Denote by x(G) the chromatic number of G and put

(3)

	

minx (G) = r+ 1 .
t-r=l

Without loss of generality assume that x(G,)=r-} 1 .
r

Turán's graph K,.(n?	na,.) where

	

na,=n and the na ; are as nearly equal

as possible is clearly r-chromatic thus by (3) can not contain any of the G ; , 1 i -! .
A simple computation shows

(4)

	

v(Kr(nat, . . ., rn r)) _
(nl

(l - j +0(1)~ .

Put r (G,) = t and let a > 0 be arbitrary and

J

let n >rro (t, r l , P.) . Then by (2) every
nl

	

1
G (17

; (
` I(i - -+ V contains a K,.,._, (t, . . ., t) which by ar(G,)=t clearly contains
7

	

i'

G, . This together with (4) completes the proof of Theorem 1 .
An unpublished result of P . Erdős states that

(5)

	

f(n ; K,. (p, . . ., p)) _ ( 2 ) ( 1- r 1 1 + 0(nz -~)

where e depends only on p and r . (5) easily implies that

f(n ; G a , . . ., C,

	

[211
11

	

1
1 -

r j
+O n'-- 1- )

where r 1 =min x(G,) and c depends only on the graphs G,, . . ., G, . Now we prove

THr.o,zFM 1' . Let k be an integer and H,, . . ., H„, with v(H;)=1k given graphs .
Denote by h(n, 14,, . . ., H,„ ; k) the smailest haefger for ri'hrch there ;S U grapa
G(n ;h(n ; H,, . . ., k)) every subgraph of irhich spanned by arzr k vertices oj'orn •
graph G(n ; h(rr ; 11,, . . ., H,,, ; k)) contains one of the graphs H 1 ,-, H,,, . Then

Jim h(n ; H, , . . ., H,,, ; k)

	

1

1 211 1

	

a'~ 1 - ~~

where t- 1 is an integer', or t-- .

Theorem 1' could also be deduced easily from (2), but the show, that it follows
from theorem / . In fact we shall show, that the two theorems are equivalent .

a) First we show that if there are given graphs L,, . . ., L,, with r(L,) -k, flion
there exist graphs Ni,, . . , A, so, that a graph G of k vertices contains at least one
of L,, . . , L I, if algid only if G contains none of M,	If-
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From this of course follows that a graph G of k vertices contains none of L,, . . . Ly
if and only if G contains at least one of Nf,, . . ., My which shows the symmetricity
between L,, . . ., L„ and M,, . . ., M, .

To prove our statement we define the graphs Mj : Let M ; be those graphs, for
which zz (M,)= k and M ; contains none of L,, . . ., Lt, . A very important property of the
set of graphs M„ . . ., My is that if H7DM i and r(H)=k then H occurs among
M,, . . ., My because M, .--H, further M; contains none of L,, . . ., L,„ and so H does
not contain any of L,, . . ., Lµ .

Now, if GDL,, then G does not occur among M,, . . ., My so G does not contain
any of M,, . . ., Mµ . On the other hand, if G does not contain any of L,, . . ., Lit ,
then G occurs among M I , . . ., M,,, and this proves the second half of our statement .

If we have a graph F, which has f(n, L,, . . ., Lµ) - 1 edges and does not contain
any of the graphs L,, . . ., L„ then each subgraph spanned by its k vertices contains
none of L 1 , . . ., Lit , so each subgraph of F spanned by its k vertices contain at least
one of those M,, . . ., My which we have defined in a), moreover F has the minimal
number of edges among the graphs, each subgraph of which spanned by its k vertices
contain at least one of M,, . . ., M,. :

I , ( F) = h (n ; M, , . . . , M l,) -
2,-f(n : L, , . . ., L,,) + 1 .

So we can investigate a problem of the second type instead of a problem of
the first type .

b) On the other hand, if there are given M,, . . ., M,,, with n(M) --k, we
know, that there exist L,	Lµ so, that a graph G of k vertices contains at least
one of M,, . . ., M, if and only if G contains none of L„ . . ., L,,, or (what is equivalent
with this) a graph G of k vertices contains none of M,, . . ., My if and only if G contains
at least one of L,, . . ., Lµ . Now, if H is a graph, which has h(n ; M,, . . . . M,,) edges,
and each of its subgraph, spanned by its k vertices contains at least one of M,, . . .,
then each subgraph of H spanned by its k vertices contains none of L,, . . ., LP ,
moreover has the maximal number of edges among the graphs each subgraph of
which spanned by its k vertices contain none of L,, . . ., L,, :

I' (H) =f n . L,, . . .,

	

=
I
n~-h(n ; M

	

M )

This proves in particular Theorem 1 .
Now we return to the study of our function f(n ; G,, . . . . G,) . The proof of

Theorem i shows that the order of magnitude of f(n : G,, . . ., G,) depends only on
min x(G i ) . Nevertheless we show that the graphs G i of higher chromatic number
and in fact the structure of all the Gi , (1 =i~1) also have an influence on
f(l? ; G,, . . ., G,) . To see this let G, be the graph consisting of a quadrilateral and
a fifth vertex which is joined to all four vertices of the quadrilateral . It is ki.own
that [4] for 17>n,

2

(6)

	

Í(~>G,)== 4-.

	

4j+ n 4+-11+1 .

5 3
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But on the other hand it is easy to show that for it >n,

Í(n ;

	

= [ rz- + 1n

	

+, .
(7)

	

G, K4)

	

4

	

41

Both (6) and (7) are easy to prove by induction and can be left to the reader .
Observe that f(n ; G,)>f(n ; G,, K4), G, is three-chromatic and K4 is four-

chromatic .
In every case we know the structure of the .,extremal graphs" i . e . those

(8)

	

G(n ; f(n ; G,, . . ., G,) - 1)

which do not contain any of the graphs G i (I =i mil) these graphs are Turin graphs
Kn_ t (m,, . . ., m p_,) for some p to which perhaps o(n') further edges are added .
Perhaps this is true in the general case, or at least the extremal graphs (8) contain
a very large Turán graph (with say cn vertices) . At present we are unable to attack
this conjecture . The simplest case where we do not know anything about the structure
of the extreme graph is the case of K3 (2, 2, 2) . It is known [4] that

z
_»1;K,(2,2,2»+czn 3 ' z<< 4 +c,n3 z

but we don't know whether the extreme graphs contain a , .large" Turin graph

Let (
2
u) l < ( 11 2 I)

, u' 2 . We now prove

THEOREM 2 . Let n be sufficiently large . Then

(9)

	

f(n, G(k ; I))

	

f /n ; G l u ;
2

	

in (n, it) .

Equality only if either G(k ; l) contains a K„ or if u= 3 and G(k ; l) is a pentagon .

First we prove the following

1
LEMMA I . Let /-z zr +2

	

Then either x(G(k ; l)) < u or G(k ; l) has an edge

e so that x(G(k ; l) -e) < u . G-e is the graph from which the edge e has been omitted .*
We use induction with respect to u . It is easy to see that the Lemma holds

for u=3 . Assume that it holds for u-1 and we prove it for u . If G has a vertex
x of valency u, let G* be the graph which we obtain from G by omitting .,X- and

all edges incident to x . G* has fewer than (2) edges. Hence by the induction hypothesis

there is an edge e so that x(G*-e)-it -
J
2, or x(G-e)-u- l .

We can therefore assume that all vertices of G have valency exactly a-1,
(since the vertices of valency < u- I could simply be omitted .) Since G has at most

(u+ Il_ I edges, we obtain that it has at most a+2 vertices and for these graphsl

	

J2
our Lemma can be proved by simple inspection .

* Our original proof was more complicated . This simple proof we owe to V . T . Sós .

Studio Scientiarun2 Mathemaficaruin Httngarir_a 1 (71n

([4l)



A LIMil THEOREN1 L~ GRAP11 "1HEORY 5 5

Now we can prove Theorem 2 . 1) First assume u > 3 . It is known [5] that for every
r and n~no (r) every G(n ; in(n, u)) contains a K„(r•, . . ., r) and an extra edge joining
two vertices of the first r-tuple, and by our Lemma it is easy to see that for r-1c
our G(k; 1) is a subgraph of this graph .

2) If u=3, in (G) <
(4)
2

= 6 and Gcontains no triangle then x(G)-3 and x(G)=3

if and only if G is a pentagon and it is known [4] that in this case

2
(10)

	

f(n ; G) =
2

	

1 = m(n, 3) .

3) Lastly, the case when a=3 and G contains a triangle was discussed in [4] .
The equality in (9) if u > 3 holds if and only if G contains a K,, . This can be

obtained by a simple discussion, which we leave to the reader .
Finally we investigate h(n ; G ; k) for some special graphs G . Let G be the graph

which consists of 1 disjoint edges and assume k .21. We outline the proof of the
following

Tm:oarM 3 . Let n > n o (k, /) . Then

h(n ; G, ; k) -
r
n)--rn(n, k-21+2)-1- 1

and the only graph G(n ; h(n ; G, ; k)

l

for which every subgraph spanned by k of its
k-21+ L

vertices contains a G, is Kk-21+1 (m1, . . .,'"k-21+1) where

	

1n i= n and the m,
i= 1

are all as nearly equal, as possible .

First of all it is easy to see that the subgraph spanned by any k vertices of
Kk-21+1 (Mil • • • > Ink-21+0 contains a G, . We leave the simple verification to the
reader. This shows

h(n ; G, ; k) -
r
n)-nr(n, k-21+2)+ 1 .

To complete the proof of Theorem 3 we now have to show the opposite inequality
in other words we have to show that if G (n ;

(
2

n)
-m(n, k -21 +2)) is any graph

then there are k vertices x,, . . ., xk so that the subgraph of G (n ; (2)-m(n, k -21+2))

spanned by these k vertices does not contain a G, and further that the only
G(n ;(2)-m(n, k-21+2)+1) which does not have this property is

Kk-21+1(n 1 1 • • 1iik-21+,) •These statements will follow immediately from the following
LEMMA 2 . There is a constant c, ::-O, independent of n, so, that every

G(n ;m(n, r+1)), or a G(n ;m(n, r+1)-1), which is not a K,.(mi , . . ., nr r) (where
Dm i =n and mi are all as nearly equal as possible) contains a K,, and c,.n other vew
bees, each of which is, joined to every vertex of an K, . .
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REMARKS . TURÁN'S theorem implies that every G(r ; In (n,r+1)) contains
a K,. +i and it is known [21, [4) that every such graph contains a K,.+z from which
one edge is perhaps missing i . e . it contains a K, and two vertices each of which is
joined to every vertex of our K,. . Our Lemma is sharpening of this result .

We supress the proof of our Lemma since it is very similar to the case when.
r=2 which is known [6] .

Let now n be sufficiently large and G(n ; e) be any graph, for which

11e -- v(Kk-2r+1(mr, . . ., 117A-21+ 0) _ (2 -m(n, k-21+2)+1

and which is not a K ,,-zr+I (17 711 • • • = i71k-zr+I) (where Dn i =n ; and m, are all nearly
equal, as possible) .

By our lemma, the complementary graph of our G(n, e) contains a K,	
and 21-1 vertices, each of which is joined to every vertex of our Kk_ 2 ,+i , i . e_
there are k vertices, which span in our G(n ; e) a subgraph, which consist of k-21+ 1
isolated, vertices and a graph of 21-1 vertices and hence it can not contain 1 inde-
pendent edges . This completes the proof of Theorem 3 .

It is easy to see that if kc 21 the extreme graphs are no longer TURÁN's graphs,
it is easy to see that in this case

(11)

	

h(n, G I ; 21) =
hl

-(1-I)n .

To see this observe that if one vertex of G r is not joined to 2l- 1 vertices these
21 vertices can not contain independent edges. This proves

h(n ; G, ; 2l)

	

lnl
-(l- I)n .

On the other hand, the following example shows, that

h(n ; G, ; 21) !
(
2
n
j-(1-1) n .

Let the vertices of Gi be the n-th roots of unity, two such vertices are joined if their

distance - on the circle Jz =1 - is greater, then (1-1)
27c
rr

In this case, if the vertices of our graph are P1 , . . ., P„ and A 1i . . ., Ak are k
vertices of them enumerated, as they are on the circle, then A, and A,+r , (i= l, 2, . . ., l)
will be connected, so there will be l independent edges in the subgraph, spanned
by A,, . . ., Ak .

We do not investigate the question of the unicity of the extremal graphs .
Denote by G; 3) the graph consisting of l independent triangles . We outline

the proof of the following
THEOREM 4 . Let n>no (l). Then

rr11

	

n+l
(rrl

	

2

	

2
h(n ; Gl( 3) ; 31+2) -_ 121-in(n, 3)+ 1 =

	

2

	

2

anti the only extreme graph is K z ([
2n]

;
n i-1

2 -
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On the other hand, if I >-I

(12)

	

121-Ctn3
2 <h(n ; Gj -' ; 31+1)-(2)-nr+E,

	

(s t >0) .

The structure of the extreme graph (or graphs) is unknown . It is easy to see

.

	

(-
that h(n ; G t(3) , 4)=

11

2
1 )

and K,,-, is the only extreme graph .

First of all it is easy to see that every subgraph spanned by 31+2 vertices of

KZ
([

2 J ,
[n+ 1 ]) contains a G(, 3) .

Let G be any graph for which

Ir(G) = n, v (G) ' [
tI2

4]

and if v(G) _ [ 4, then G is not K2 ([2
'[n+ 1]) .

If n >n o (l) then it is known

[5] that G contains a subgraph of 31+2 vertices x l , s2> >3 ; YI, -- Y31-1 where al[
the edges

(a'1 Y2) ; (X i , y j ) l-i 3 1--j--31-1

are in G. Clearly these 31+2 vertices span a subgraph of G which does not contain
G; 3) . This completes the proof of the first half of Theorem 4 .

To prove the second half we observe that it is known that every G(n ; [c l t1 3 i 2 ])
contains a K2 (2, 31-1) hence the subgraph of GO ; [cin3u2]) spanned by the vertices
of our K2 (2, 31- 1) clearly contains no G, 3) this proves the left side inequality of (12) .

Now we outline the proof of the right hand side of (12) . First of all it is known
[7] that there exists a graph G(n ; n'+E1) which contains no circuit having --31+1
edges. Thus our proof will be complete if we can show that if / ::- 1 and G(31 + 1 ; p)
is any graph of 31+ 1 vertices which contains no circuit then G(31+ 1 ;p) contains
1 independent triangles . This can be shown easily by induction with respect to I
and can be left to the reader . Thus the proof of Theorem 4 is complete .

(Received October 19, 1964 .)
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