A LIMIT THEOREM IN GRAPH THEORY

by
P. ERDOS and M. SIMONOVITS!

In this paper G (n: /) will denote a graph of » vertices and / edges, K, will denote
the complete graph of p vertices G[p:(’{;]] and K.(p,. ..., p,) will denote the r-

chromatic graph with p; vertices of the /-th colour, in which every two vertices
of different colour are adjacent. n(G) will denote the number of vertices of G and
v(G) denotes the number of edges of G. G(n:/) denotes the complementary graph

of G(n:l) i. e. G(n:;l) is the G [n: [:] —J’) which has the same vertices as G(i1: /)

and in which two vertices are joined with an edge if and only if they aren’t joined
in G(n: /). K(p,, .... p,) thus denotes the union of the disjoint graphs K, (i=1.2, ..., r).

In 1940 TurAN [8] posed and solved the following question. Determine the
smallest integer mi(n, p) so that every G(n: m(n, p)) contains a K,. TURAN

in fact showed that the only G (n: m(n, p)—1) which contains no K, is
r—1
K,_y(my, ....m,_) where ;: m;=n and the m; are all as nearly equal as possible.
A simple computation shows that

() lim min, ) :1_L (p=1).
n=»es H p—' l
2
Recently several more extremal problems in graph theory have been investigated
and in this paper we continue some of these investigations [4]. First of all we prove
the following general

Toeorem 1. Let Gy, ..., G, be [ given graphs and denote by f(n; G, ..., G))
the smallest integer so that every G(n:f(n: G,, ..., G))) contains one of the graphs
Gy ..., Gy as subgraphs. We have

him ¢ E_(_-‘ ___’) | ]

"=t co [ ] il
where r=1 is an integer which depends on the graphs G (1=i=1).
Theorem 1 easily follows from the following known result [3]:
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For every p=1,r=1,e=0 and n=n,(p. r, &)

n | _ . n 1
(2) [2] [l —ﬁ'FU{IJ] =f(n: K.(p, ----P))<[2 (l T —C]-
Denote by #(G) the chromatic number of G and put
(3) min x{(G;) = r+ 1.
1=i=1l

Without loss of generality assume that »(G,)=r+1.

5
Turdn’s graph K.(m,, ..., m,) where > m,=n and the m; are as nearly equal
T g
as possible is clearly r-chromatic thus by (3) can not contain any of the G,. 1 =i=1/
A simple computation shows

(4) v(K (my, ..om,) = [;] [] —?l—l-o(l)].

Put 7(G,)=rand let e =0 be arbitrary and let # =n, (¢, r+ 1.&). Then by (2) every

G[n; [g]{] — ,l_-+a]] contains a K, (f, ..., 1) which by n(G,)=1 clearly contains
G, . This together with (4) completes the proof of Theorem 1.

An unpublished result of P. Erdés states that

g 1
(5) B B B)) = [;] [[_m

where ¢ depends only on p and r. (5) casily implies that

+0(n*~°)

DA 10— GI)/[;] l | _j_]_]‘i‘o(ﬁz_‘"]

where -+ 1 =min 2(G;) and ¢ depends only on the graphs G|, ..., G;. Now we prove

Tueorem ', Let k be an integer and H,, ..., H, with v(H;)=k given graphs.
Denote by hin: H,, ..., H,; k) the smallest integer for which there is a graph
G(nshin: H,. ... H,: k)) every subgraph of which spanned by any k vertices of our
graph G(n:hin: Hy. ..., H,: k)) contains one of the graphs H,, ..., H,,. Then

m*

imh(n: Hy, ..., H,: k)

e

g

Theorem 1’ could also be deduced easily from (2), but we show, that it follows
from theorem /. In fact we shall show, that the two theorems are equivalent.

a) First we show that if there are given graphs L, ..., L, with ©{L;)=k. then
there exist graphs M, ..., M, so, that a graph G of k vertices contains at least one
of Ly. ..., L, if and only il G contains none of M,, ... M,.

where 1 =1 is an iinteger, or [ =
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From this of course follows thata graph G of k vertices containsnone of L, ... ,L,
if and only if G contains at least onc of M, ..., M, which shows the symmetricity
between L., .. cand M,, ... M,

To prove our slatemem we udms. the graphs M;: Let M; be those graphs. for
which 7(M )=k and M ; contains none of L, ..., L,. A very lmportdnt property of the
set of graphs M,. ..., M is that if HoM, .md n(H)=Fk then H occurs among
M, ..M, becauqc M — H, further M contams none of L, ..., L,, and so H does
not contam any ofl Ll_ I

Now, if GO L;, then G does not occur among M. .... M, so G does not contain
any of My, ..., M,. On the other hand, if G does not contain any of L, ..., L,,
then G occurs among M, ..., M, and this proves the second half of our statement.

If we have a graph F, which has f(n, Ly, ..., L,)—1 edges and does not contain
any of the graphs L,, ..., L, then each :.ubg,raph Qpanned by its k vertices contains
none of Ly, ..., L,, so each subgraph of F :,panned by its k vertices contain at least
one of those Ml, ..., M, which we have defined in a), moreover F has the minimal
number of edges among the graphs, each subgraph of which spanned by its k vertices
contain at least one of M,, ..., M,:

vF)=hn:M,,....M,)) = [;] —f(m:Ly.....,L)+1.

So we can investigate a problem of the second type instead of a problem of
the first type.

b) On the other hand, if there are given M,, ..., M,. with n(M)=k, we
know, that there exist L,. ..., L, so, that a graph G of & vertices contains at least
one of My, ..., M, if and only if G contains none of L, .. . L, or (what is cquwcﬂr:nt
with this) a graph G of k vertices contains none of M, ..., M, if and only if G contains
at least one of Ly, ..., L,. Now, if H is a graph, which has hin; My, .... M,) edges,
and each of'its subgraph, spanned by its k vertices contains at least one of My, ..., M,
then each subgraph of H spanned by its & vertices contains none of Ly, ....L,,
moreover has the maximal number of edges among the graphs each subgraph of
which spanned by its & vertices contain none of L, ..., L:

v(H) =f(n:Ly, .., L)—1= |f:}_h(n; M, ... M,).

This proves in particular Theorem 17,

New we return to the study of our function f(n: G, .... G;). The proof of
Theorem | shows that the order of magnitude of f(n; G,, ..., G,) depends only on
min #(G;). Nevertheless we show that the graphs G; of higher chromatic number
and in fact the structure of all the G, (1=i=/) also have an influence on
fn: Gy, ..., G)). To see this let G, be the graph consisting of a quadrilateral and
a fifth vertex which is joined to all four vertices of the quadrilateral. It is known
that [4] for n=n,

6 OTPCR T Ll I L I Ll
(6) f(n:G) [4]%4].[ y l+1
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But on the other hand it is easy to show that for n=#n,

%) f(n: Gy, Ky) = [ ] [”-H]

Both (6) and (7) are easy to prove by induction and can be left to the reader.
Observe that f(n: G,)=f(n; G,, Ky), G, is three-chromatic and K, is four-
chromatic.
In every case we know the structure of the ..extremal graphs™ i. e. those

(8) Grif(n; Gysoeins Gy —1)
which do not contdin any of the graphs G; (1 =i=/) these graphs are Turdn graphs
K,_\(my, ...,m,_,) for some p to which perhaps o(n’) further edges are added.

Perhapa thlb is lrue in the general case, or at least the extremal graphs (8) contain
a very large Turdn graph (with say ¢n vertices). At present we are unable to attack
this conjecture. The simplest case where we do not know anything about the structure
of the extreme graph is the case of K4(2, 2, 2). It is known [4] that

.,

T +eyn32<f(n; K3(2, 2, 2))<—+c n?2

but we don’t know whether the extreme graphs contain a .large” Turdn graph

Let [:]5-'1'«: “;l] ,u=2. We now prove ([4])

THEOREM 2. Ler n be sufficiently large. Then

©) f(n: G(k: 1)) ‘:_'-'_)"[n; G [zf: [;] ] = m(n. u).

Equality only if either G(k: ) contains a K, or if u=3 and G(k:1) is a pentagon.

First we prove the following

LemMma 1. Let /= [”—H]. Then either x#(G(k:;!)=u or G(k:[/) has an edge

esothat %(G(k: 1) - e} —<u. G—e is the graph from which the edge ¢ has been omitted.™

We use induction with respect to u. It is easy to see that the Lemma holds
for u=23. Assume that it holds for v —1 and we prove it for u. If G has a vertex
x of valency =u, let G* be the graph which we obtain from G by omitting x and

all edges incident to x. G* hasfewer than [;] edges. Hence by the induction hypothesis

there is an edge e so that x(G*—e)=u—2, or (G —e)=u—1.
We can therefore assume that all vertices of G have valency exactly w—1,
(since the vertices of valency =u—1 could simply be omitted.) Since G has at most

u+1 . ; ;
( ; ]-—I edges. we obtain that it has at most u + 2 vertices and for these graphs

our Lemma can be proved by simple inspection.

# Qur original proof was more complicated. This simple proof we owe to V. T. S6s.
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Now we can prove Theorem 2. 1) First assume u=3. It is known [5] that for every
r and n=nq,(r) every G(n: m(n, u)) contains a K,(r, .... r) and an extra edge joining
two vertices of the first r-tuple, and by our Lemma it is easy to see that for r =k
our G(k;/)is a subgraph of this graph.

D) Ifu=3 m(G) = G] = 6 and G contains no triangle then #(G) =3 and »(G) =3

if and only if G is a pentagon and it is known [4] that in this case

2
(10) S(n: G) = [Z] + 1 = m(n, 3).

3) Lastly, the case when u=3 and G contains a triangle was discussed in [4].

The equality in (9) if # = 3 holds if and only if G contains a K. This can be
obtained by a simple discussion, which we leave to the reader.

Finally we investigate /i(n; G: k) for some special graphs G. Let G be the graph
which consists of / disjoint edges and assume & =2/. We outline the proof of the
following

THeoREM 3. Let n=ng(k. ). Then

hn: G k) = [;] —mn, k—21+2)+1

and the only graph G(n; h(n; G; k) for which every subgraph spanned by k of its
k=21+1

vertices contains a G, is K _5;o, (M, ..o iiy_y4 ) where miy=n and the m;

i
i=1

are all as nearly equal, as possible.

First of all it is easy to see that the subgraph spanned by any k vertices of
Ki—a14y My, oo, Mg 5,4 ,) contains a G,. We leave the simple verification to the

reader. This shows
hin: G k) = (;]—m(n, k—214+2)4+1.

To complete the proof of Theorem 3 we now have to show the opposite inequality

in other words we have to show that if G [n; [;] —min, k — 2!'—1—2)] is any graph

;] —mn, k—21+ 2}]

spanned by these k vertices does not contain a G, and further that the only

H
G(n:(z]—m(n, R’—ZH—Z)-I—I] which  does not have this property is

then there are k vertices ., ..., x; so that the subgraph of G (H,‘ [

Ky—ape1(mysooosmy_ 5,4 ,). These statements will follow immediately from the following

LemmA 2. There is a constant ¢, =0, independent of n, so, that every
G(nym(n, r+1)), or a G(nsm(n, r+1)—1), which is not a K.(my, ..., m,) (where
Zm;=n and m; are all as nearly equal as possible) contains a K, and c,n other ver-
tices, each of which is joined to every vertex of an K,.
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RemARkS. TURAN's theorem implies that every G(n;m(n,r+1)) contains
a K,., and it is known [2], [4] that every such graph contains a K, ,, from which
one edge is perhaps missing i. e. it contains a K, and two vertices each of which is
joined to every vertex of our K,. Our Lemma is sharpening of this result.

We supress the proof of our Lemma since it is very similar to the case when
r=2 which is known [6].
Let now n be sufficiently large and G(n: e) be any graph, for which

e = (K sieaOmyy oy M=) = {;] —m(n, k—21+2)+1

and which is not a K, _,,4(my, ... my_ 5, ) (Where Zi;=n: and m; are all nearly
equal, as possible).

By our lemma, the complemcntary graph of our G(n, e) contains a !\,‘_”L,
and 2/—1 vertices, each of which is joined to every vertex of our K,_,.,, i.¢€.
there are k vertices, which span in our G(n; ) a subgraph, which consist of £ —27+1
isolated, vertices and a graph of 2/—1 vertices and hence it can not contain / inde-
pendent edges. This completes the proof of Theorem 3.

It is easy to see that if k& =2/ the extreme graphs are no longer TURAN’s graphs,
it is easy to see that in this case

(11) h(n; G, 21) = [;’] _{—Dn.

To see this observe that if one vertex of G, is not joined to 2/—1 vertices these
2/ vertices can not contain independent edges. This proves

h(n: Gy: 20) = [;]—(f— N

On the other hand, the following example shows, that

hn; G;; 20) = [ ] —({—1)n.
Let the vertices of Gf be the n-th roots of unity, two such vertices are joined if their
. ; 2
distance — on the circle |z|=1 — is greater, then (/—1) =

In this case, if the vertices of our graph are Py, ..., P, and A, ..., 4; are k
vertices of them enumerated, as they are on the circle, then 4; and 4;,,,(i=1,2, ..., [)
will be connected, so there will be / independent edges in the subgraph, spanned
by A4y, ..., 4;.

! \ife do nkot investigate the question of the unicity of the extremal graphs.

Denote by G{*' the graph consisting of / independent triangles. We outline
the proof of the following

Trororem 4. Let n=ny(l). Then

:z] [n-i— ll
2| |L 2
2 ]y 2

hin; G373 314-2) = lg]—m(n, N+1= [

= ] 141
and the only extreme graph is KZ[[—}%] ;[’——;n ]J

Situdia Scientiarum Mathematicarum Hungarica 1 (1966)



A LIMIT THEOREM TN GRAPH THEORY 57

On the other hand, if 1=1
(12) (;]—C,-n-‘ 2<hin: Gy 31+ I)ﬁ[;}—n‘“* (&=0).

The structure of the extreme graph (or graphs) is unknown. It is easy to see
that h(n; G}*; 4)= (”;]]and K,_, is the only extreme graph.

First of all it is easy to see that every subgraph spanned by 3/-+2 vertices of

K, [[:] [”-:I]] contains a G}*.

Let G be any graph for which
2
n(G)=n, v(G)= [i]

and if v(G)= l—j then G is not X, [[ ] [rr—f—l Ar rr:\-no{}) then it is known

[5] lhc}u G contains a subgraph of 3/--2 vertices Xy, X;, X3: ¥qs .. ¥3;—; Where all
the edges
(‘\‘l,.\-z}; (.\'[, ),_f) l§f§3 1 E_f'=§3f—l

are in G. Clearly these 3/+ 2 vertices span a subgraph of G which does not contain
G'¥. This completes the proof of the first half of Theorem 4.

To prove the second half we observe that it is known that every G(n;[¢ .'33"2])
contains a K, (2, 3/—1) hence the subgraph of G(n;[¢,n%'?]) spanned by the vertices
of our K, (2, 3/—1) clearly contains no G/ this proves the left side inequality of (12).

Now we outline the proof of the right hand side of (12). First of all it is known
[7] that there exists a graph G(n; n'*#) which contains no circuit having =3/+1
edges. Thus our proof will be complete if we can show that if /=1 and G(3/+1:p)
is any graph of 3/+ 1 vertices which contains no circuit then G(3/+1;p) contains
/ independent triangles. This can be shown easily by induction with respect to /
and can be left to the reader. Thus the proof of Theorem 4 is complete.

{ Received October 19, 1964.)
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