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4 
Some Recent Advances 
and Current Problems 
in Number Theory 

Paul Erd6s 

The subject of number theory is very ext,ensive and has intimate 
links with other branches of mat,hematics. -4naIysis has been 
applied with great success to various problems of number theory 
for 200 years and there is every reason to expect that such applica- 
tions will continue. Algebraic methods have also been applied to 
number theory and have in turn developed out of number theory. 
Recently algebraic geometry and probability theory have been 
applied with success to problems which previousIy seemed intracta- 
ble. In this chapter I clearly cannot hope even Do attempt to give a 
complete survey of recent developments in number theory, and in 
quite a few of its branches I am not particularly competent to do 
so-for example, in the branches involving algebraic geometry. 
My paper will be highly subjective; I shall write mainly about 
quest’ions which have interested me personally, and I certainly do 
not wish to suggest that any problems and resulti which I omit to 
mention are less important or interesting than the ones I shall write 
about a great deal. For instance, I overemphasise problems on 
primes and problems of a combinatorial type; also, of course, I over- 
emphasize my own work. I shall not write much about Waring’s 

196 
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problem since it has been dealt with in recent books [l]; I shall omit 
the geometry of numbers, and also Diophantine approximation 
since I recently wrote about this subject (see my forthcoming 
paper in Compositio MC&). The same fate will overtake many 
applications of probability to number theory, but several survey 
articles have appeared recently on this subject (some of them written 
by me) and there is also a recent book by Kubilius and a forthcom- 
ing book by RBnyi and myself [2]. Most of the questions with 
which I shall deal will have a combinatorial flavor or will relate to 
primes (or both); these are the subjects which have interested me 
most for t’he last thirt,y-three years. To quote from the introduc- 
tion to the well-known and excellent book of Hardy and Wright: 
“I cannot fail completely in making the paper interesting, since 
the subject is so attractive that this would need extravagant 
incompetence.” 

There will be some overlap between this paper and my recent 
paper “On unsolved problems” [aa]. 

I wish to thank my friends Davenport,, Schinzel, and Turan for 
their valuable assistance. 

1. First, I shall discuss problems and results on the dist’ribution 
of prime numbers (the IeOters p, p will denote primes t’hroughout). 

Denote by a(x) the number of primes not exceeding x and by c, 
Cl, . . . absolute constants, not always the same. The Prime 
Xumber Theorem states that 

lim ~(‘> 
- = 1. 

log 2 

(1) was first, proved in 1896 by Hadamard and de la Vallee Poussin. 
In 1948 Selberg and I obtained [3] an elementary proof of (1). Our 
starting point was the following remarkable formula of Selberg, 
which he proved in an elementary way: 

If S(z) = c log p then 
PlZ 

(2) 

We then proved by elementary arguments that if 1 < pr < pz < 



198 Lectures on Modem Mathematics 

. . . is any sequence of real numbers which satisfies (2) and further 
satisfies 

(3) S(x) > ax, 
c 

1% P __ = log x + O(l), 
P 

P<Z 

then 

(4) tqx) = x + o(x). 

This is we11 known to be equivalent to (1). 
Beurling [4] gave the following interesting generalization of the 

prime number theorem. Let 1 < pl < p2 < * 6 . be any sequence 
of real numbers, which will be called generalized primes. Denote 
by N(z) the number of solutions of 

n Pi”li 5 I ((Yi = 0, 1, . . ‘). 
Assume that 

Then it follows that 

C6> c 1 = (1 + o(l)) if-& 
Beurling also observed that (6) cannot be deduced from a weaker 
error term than that in (5). Selberg observed that one can make 
the deduction of (6) from (5) by our elementary method if in (5) a 
slightly better error term is assumed (unpublished). Nyman and 
Malliavin [4] sharpened Beurling’s results in various ways. I later 
proved [3] that (2) alone implies (4) and Shapiro [3] proved that 
(2) with an error term o(x log x) instead of O(x) also implies {4). 

My deduction of (4) from (2) was based on the following Tauber- 
ian theorem, which seems of independent interest: 

n 
Suppose ck: 1 0 and assume that 

( 
with s, = 

c > 
ah 

k=l 

(7) 

n 
c ak(s+k + k) = n2 + O(n). 

k-l 
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Then 

(8) Sn = n + O(1). 

Uy original proof was very complicated; Siegel simplified it (unpub- 
lished) and later Shapiro [3] simplified my proof considerably. 

Bombieri and Wirsing [5] succeeded independently in proving in 
an elementary way that for every k > 0 

This, as is well known, implies that 

This is a considerable advance on previous results of Van der 
Corput, Kuhn, Breusch, and others. 

In my opinion the simplest deduction of (4) from (2) and (3) 
is that due to V. Nevanlinna [6], who somewhat simplifies the proof 
of Wright [l]. 

Put $(z) = c h(n), n(n) = log n if n = p” and is 0 otherwise. 
9l<Z 

Tchebicheff observed that 
z 

(10) c 0 
l) Lf = x logx - x + o(x) n 

n=l 

The proof of (10) is elementary; in fact (10) easily follows from a 
weak form of Stirling’s formula. 

It would be very desirable to deduce the prime number theorem 
from (10) as far as possible in an elementary way. Sharpening a 
previous result of Landau, Ingham [7] proved by using Wiener’s 
theory that (10) implies #(x) = 12: + o(z) which is equivalent to 
the prime number theorem. Recently Ingham and I proved the 
following theorem (our paper will appear in AC&Z A?%?hmetica): 
Let 1 < u1 < u2 * . l be a sequence of real numbers with 2 l/a; < Q, . 

* 
Assume that f(x) is an increasing function for which 

(11) I(r)+~f(~)=z(l+~;)+4x~. 
i i 
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(11) implies!(z) = 2 + O(X) if and only if 
c 

l/(aJs = 1 has no root 
i 

of the forms 1 + it, t # 0. It is possible that if the a; are integers 
this condition is always satisfied. The simplest case for which we 
cannot decide this question is ai = 2, a2 = 3, a3 = 5. Several 
related problems are discussed in our paper, 

The sharpest estimation of 8(z) is at present 

S(z) = 22 + 0(x exp (- (log 2)+‘)), 

obtained by Korobov and Vinogradoff [S]. The Riemann Hypoth- 
esis would imply 

O(2) = 2 + O(z3” log Zr) 

Now I go on to state some problems and resuIts about the dis- 
tribution of primes. Let 2 = pl < p2 < * . . be the sequence of 
consecutive primes. A well-known theorem of Tchebicheff states 
that pn+l < 2pn for all n, and the prime number theorem implies 
that P,+I/P, + 1. The sharpest upper bound for pn+l - p, = d, 
is due to Haneke [9]; he proved, sharpening previous results of 
Hoheisel, Haneke, Heilbronn, Ingham, and Min, that 

d, < pnax*+,. 

The Riemann Hypothesis would imply 

d, < pns4+‘. 

It has been conjectured that between two consecutive squares 
there is always a prime. This conjecture can probably not be 
deduced from the Riemann Hypothesis and seems to be very deep. 
Piltz conjectured that for every E > 0 and n > no(e) 

d, < T-L=. 

Cramer [lo] conjectured that 

Cramer was lead to his conjecture by probabilistic reasoning; the 
proof or disproof of (12) seems hopeless by the methods which are 
at our disposal at present. It has been known for a very long time 
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that lim d, = co {the 12 - lintegersn!+2,n!+3, . . . ,n!+n 
are all composite). 

Sharpening previous results of Backlund, Brauer-Zeitz, and 
Westzynthius, I proved [ll] by using Brun’s method that for 
infinitely many n 

(13) d, > c log n log log n/clog log log n) 2. 

Chang [ll] succeeded by a simple further idea in dispensing with 
Brun’s method in the proof of (13), and Rankin using an improve- 
ment of our method proved that for infinitely many n and every 
e>O 

(14) & > (4 - E) log n log log ,n log log log log n/clog log log n) ‘. 

(14) seems to be the natural boundary of our method; the only 
improvement of (14) in the last 26 years is due to Schonhage and 
Rankin, who replaced the constant + by er [ll]. 

A well-known and probably very difficult conjecture on primes 
asserts that 

(15) 42 + Y> I r(x) + dy). 

Hardy and Littlewood [12] proved by Brun’s method that 

W *(x + y) - 7t(x) < cy* 1% Y 
As far as I know this is the only time Hardy and Littlewood used 
Brun’s method. Selberg [12] improved (16) to 

It would be very important if one would replace 2 in (17) by a 
smaller constant, but this seems to be difficult. A slightly weaker 
conjecture than (15) states that, for every E and y > u,,(e), 

4x + Y> - a(x) < (1 + &I, 
1% Y 

Selberg’s investigations [12] on the limits of the efficiency of the 
sieve methods indicate that (17) cannot be improved by Brun’s 
method except possibly if very essential changes are made in the 
estimation of the error terms. 
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It seems likely that d,/log n is everywhere dense in (0, 00 ). 
Ricci [13] and I proved independently that the limit points of 
d,/log n form a set of positive Lebesgue measure, but the only 
known limit point of this set is to. In particular I do not know 
if d,/log n has a rational limit point. It seems certain that d,/log n 
has a continuous distribution function $(t). In fact, Bombieri con- 
jectures that #(t) = 1 - emt, in other words, the density of integers 
n for which d, < t log n equals 1 - cut. There does not seem to be 
much hope of attacking this conjecture at present, but later in this 
paper I will state a modification which can probably be settled. 

Ricci [13] proved by Brun’s method that the lower density of 
the integers n for which d, < log n is positive, and in fact it is not 
hard to show that there is an E > 0 such that the lower density of 
the integers n for which d, < (1 - E) log n is also positive. Unfor- 
tunately I cannot prove that the upper density of the integers n 
for which 

d, > log n 

is positive. It is not hard to deduce from Brun’s method that 

2 d, > cx, 

where the dash indicates that the summation is extended over those 
pa < x for which d, > log n. But unfortunately nothing can be 
deduced from this because of possibIe very large values of d,. In 
fact I just observe to my annoyance that I cannot show that 
d,/log n has at least one finite limit point greater ‘than or equal 
to 1. One could give by Brun’s method a rough estimation for a 
constant c so that d,/log n certainly has a finite limit point 2 c, 
but as far as I know nobody has given an explicit value for c. 

I proved [14] that 

lim d,/log n < 1 - 

(the prime number theorem immediately implies that the lim is 
< 1). Rankin [14] proved that the limit in question is 5 g;Ricci 
[13] showed that it’is 5 ++, and finally Bombieri proved that it is 
5 g (unpublished). There seems to be no doubt that the lim in 
question is 0, but this seems very hard to prove; the well-known 
conjecture that there are infinitely many prime twins, that is, that 
d, = 2 has infinitely many solutions, would of course imply this. 

The sequence dn, n = 1, 2, . . . , behaves very irregularly. 
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TuriLn and I [15] proved that the inequalities &+I > d, and 
&+I < d, both have infinitely many solutions. We have not been 
able to prove that d, > dn+l > dn+a or d, < dnfl < dn+z have 
infinitely many solutions. In fact we cannot disprove the existence 
of an integer no so that for every k 2 O;d,, + 2k > d,, + 2k + 1 
and dn, + 2k C 1 < d,, + 21c + 2. It is not known that d, = &+I 
has infinitely many solutions; Renyi and I [15] proved that the 
number of solutions of d,, = d,+l, 1 I n I z is less than cz/(log z)~; 
very likely the true order is cx/log cz but this seems difficult. 

It is not difficult to show that for infinitely many indices n, d, > 
d nfl, d, > d,_l and for infinitely many indices m, d, < dm+l, 
d, < de+1. 

Sierpinski [16] observed that 

(18) lim min (dn, d,+l) = CQ. 
n 

It is perhaps surprising that though the proof of limd,, = a3 is 
trivial the proof of (18) is much more difficult. 

Walfisz and Prachar [16] proved that the upper density of the 
integers n for which 

min (A, &+I, . . - ,&+A < elogn 
tends to 0 for fixed k together with E (I slightly modified their result). 
Also I observed [16] that for every cl > 0 there exists a c2 > 0 so 
that there are at least c2 log n consecutive values dk, . . . , dk+,., 
(k < n), all of which are > cl, but I do not know if this holds for 
every cl and cp. Renyi and I 1151 also showed that 

n cln -< c 
c2n. log log n. 

log n logn ’ 
k=l 

probably the upper bound is nearly best possible. 
Prachar and I [li’] proved that 

cr(logs)2 < cl PlC+t Pk 
__ - - 
k+l k 

< c2(log 2) 2. 

Pk- 

We further showed that if ki is a subsequence of the integers for 
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which 

then the density of this sequence is 0. 
Put j&/k = t&. We further observed that the prime number 

theorem implies, for k > ko(e), 

(19) U[k(l+r)l > uk; 

on the other hand to every I there are infinitely many values of k 
for which 

(20) uk =- uk+l. 

There is a big gap between (19) and (20) which we cannot fill. 
In our paper we state the following further problems on the struc- 
tUre Of the Sequence Uk: 

There are only a finite number of values of k (possibly none) for 
which 

max t&--i < uk < min uk+i. 
lldlk l<i<w -- 

We easily show that the density of the integers Ic for which 
Uk > uk+i is positive. FvNe cannot show that the same hoIds for 
the k for which Uk < ?&+I. 

We do not know if uk < ?&+I < uk+2 Or ‘& > ‘&+.l > uk+Z has 
infinitely many solutions. 

Returning to the question of d,, I may mention that by using 
Brun’s method I proved [18] that 

g min Mu dn+d = co 

lag n 

but I cannot prove that 

lim max (dn, dn+d 
log n 

< 1 or i&r min &, dn+l, dncz) = o. 
- log n , 

also 1 cannot prove that 

lim 4, + - * * + &+k-1 < 1 
k log n 

-c - 

where c does not depend on k. 
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It seems certain that the density of the indices n for which 
dn > ha+1 is Q, -but this seems very hard to prove. I proved [19] 
though that for a sufficiently small E > 0 the lower density of the 
indices n for which d, > (1 + r)d,+i is positive, and the same result 
holds for (1 + E)C& < &+I. 

Define nl < n2 < * * * as follows: 

dn, > dn for all 72 < ni. 

Very little is known about the sequence ni, for example, I cannot 
prove that ni+l > ni + 1 for i > ID. It is easy though to see that 
the density of the ni is 0. 

Cramer [lo] proved, assuming the Riemann hypothesis, that 

Very probably 

c da2 < cs(log ZX)~. 
n<z 

c an2 < cz(log X)2, 

but this seems hopeless. It may even be true that 

(21) 
1 22 (logs)2 c dn2 = c, 

It is not hard to prove that the lower limit in (21) is positive. 
Similar questions can be asked for other sequences of numbers, 

For example, let sr < sz < * . . be the sequence of squarefree 
numbers; it is well known and easy to prove that their density is 
S/2. I proved [ZO] that 

c &+1 - sJ2 = c2n + o(n). 
.%<n 

It seems very probable that for every Q! > 0 

cm c hi+1 - Si)* = can + o(n). 
.%<?I 

(22) if true must be very diEcuR, since it wouId impIy ai+1 - si = 
o(sjO for every e > 0. My method breaks down for (Y > 2 but it 
proves (22) for cr < 2. The best upper bound for s;+~ - s; is 
due to Richert [20] who proved (sharpening a previous result of 
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K. F. Roth) 
8a+l - Si < CSi’” IOg 8. 2. 

It is easy to prove [20] that 

(23) 
2 

Sj+l - Si > (1 + O(l)) 6 log G/log log Si, 

but as far as I know nobody has succeeded in replacing 1 + o(1) by 
1 + c in (23). 

Denote by Q(X) the number of squarefree integers not exceeding 
x. It is easy to prove that 

(24) Q(x) = “x + 0(x5”) 
T2 , 

and the prime number theorem gives o(@) in (24). One would 
expect the Riemann Hypothesis to give o(#+‘), but it seems that 
one can only deduce ,(x%+~ ). The true order of magnitude of the 
error term in (24) is unknown. 

One could try to generalise (22) as follows. Let al < a2 < * * * 
be an infinite sequence of integers satisfying abjk2 3 00 and let 
bl < b2 < * * . be the sequence of integers no one of which is a 
multiple of any a, Is it then true that 

(25) 2 h+1 - b;)2 = Cn + o(n) ? 

b&n 

If ai = pi2 we obt,ain (22). If instead of ak/k2 -+ ob only ok < 
ck2 is assumed it is easy to see that (25) cannot hold; at present I 
cannot disprove that in this case 

(bi+1 - bJ2 < An 

remains true for a suitable A. 
In [14] I conjectured that if 1 = al < a2 < . * * < a,(,) = 

n - 1 are the integers relatively prime to n then 

This conjecture seems to be an elementary version of (21) andshould 
not be too difficult to prove. 
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Hooley [20] in fact proved that for every LY < 2 
dn) - 1 

c 

can” 
(a;+1 - uiy < ___ 

44n>=-l 
i=l 

and 
r(n) -1 c (ai+1 - Ui)Z < c?zz 

log log n 

P(n) * i=l 

Put nk = 2, 3, . . , pk. The P(nk) integers relatively prime to 
nk in the interval (1, nk) might be expected to show a somewhat 
similar behavior to the primes. Let 

1 = ulck) < upCk) < * * * < uccnrjCk) = nk - 1 

be the integers relatively prime to nk. Let us investigate to what 
extent this sequence satisfies the conjectures we stated about 
primes. First of all, it is not hard to deduce from Brun’s method 
that there are constants cl and c2 such that every interval of length 
ci(log n)‘* contains an integer relatively prime to nk. 

A theorem of Mertens implies that 

nk - = (1 + o(l>>e-’ = (1 + o(l)eAym 

cPbk) log log nk log k 

It is not hard to prove that (if a!:\ - CZ~(~) = c&@)) the sequence 

@W 

log k 

is everywhere dense in (0, KJ) ; in other words to every e and r] there 
is a k. such that for k > ko every interval of length v in (E, l/a) con- 
tains a number of the form diCk)/log k. I have not been able to 
prove that 

&(k) 

log k 

has a distribution function (the precise meaning of this statement 
is obvious and is left to the reader). 

It seems probable that the number of integers 1 < s < pa(&) for 
which d?i > diCk), is [+ -I- o(I)]$0(nk), but as far as I know this has 
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not been proved. I do not know the number of solutions of d$\ = 
dick), but it would be easy to obtain crude upper and lower bounds. 

It is easy to see that for every t and all r% > 7E0(t) 
da(k) > & > . . . > d!k-’ 

z+t-1 

is solvable. 
Sivasankaranarayana Pillai conjectured that 

(27) 

(27) seems very hard to prove; Brun’s method easily gives 

One can also conjecture that 

(28) c dick) = [$ + o(l)]nk, 
i-O(mod 2) 

but I have not been able to prove this. 
Jacob&ha1 defines g(n) to be the least integer such that among 

any g(n) consecutive integers there is at least one relatively prime 
ton. Put 

max g(n) = C(r) + 1, 

where the maximum is taken over all the integers n with p(n) _< 
T (where v(n) denotes the number of distinct prime factors of n). 
We have 

cir(log P) 2 log log log r 
(log log r) 2 

< C(r) < c2Pa. 

The left side of (29) follows from (13) and the right side can be 
easily obtained by Brun’s method. Jacobsthal conjectured that 

(30) C(r) < c4r2. 

The exponent in (29) can be reduced by Selberg’s improvement of 
Brun’s method, but (30) seems hopeless at present [21]. 

Now we discuss primes in arithmetic progressions. Dirichlet was 
the first to prove that every arithmetic progression {u + kd} with 
(a, d) = 1 represents infinitely many primes. Many mathema- 
ticians attempted without success to find an elementary proof, but 
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finally Selberg 1221 was successful. Denote by n(a, d, Z) the number 
of primes I x of the form a + kd. The prime number theorem for 
arithmetic progressions states that 

(31) da, 4 2) = [1 + o(l)1 pcdI;og 5 (d fixed, 2+ do). 

It is not difficult to prove (31) by the method of Selberg and myself 
[22]. The generalized Riemann Hypothesis for L-functions would 
imply that 

~(a, d, x) = -!- 
s 

* dy 
&Q 2 f& + 0(X’ log ‘1 

uniformly in d, and also that the least prime p(a, d) in a + kd is 
less than d2+*. 

Linnik [23] proved without using any hypothesis that 

p(u, d) < cld’2. 

Linnik’s proof has been simplified first by Rodosskij and still 
further recently by Turan and Knapowski [22]. 

Tursin [24J proved using the generalized Riemann Hypothesis that 
for all but o[cp(d)] arithmetic progressions a + kd 

(32) p(a, d) < cd(log d)2+‘. 

Perhaps the exponent 2 + E can be replaced by 1 + E but this is 
very deep if true. I proved [24] using Brun’s method that for 
every cl > 0 

pb, 4 < cd4 log d 

for at least cgcp(d) [where ca = c~(ci)] values of a. In the opposite 
direction, I could only show that there exists a constant c3 and an 
infinite sequence dl < d2 < * s * such that 

(33) &a, 4) > 0 + c,)ddi) log di 

for at least cq,o(dJ values of u. There seems no doubt that this 
holds for all sufficiently large d, but I could not prove it, The 
proof of (33) used Brun’s methods and thus strongly used special 
properties of primes. Perhaps the foIlowing general result holds: 
Let al < u2 < * . - be a sequence of integers for which 

A(x) = 
c 

1 = [l + 4>1 ex* 
a.sz 
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Denote by f(a, d, n) the smallest ai E d(mod n). Then there is an 
infinite sequence n1 < n2 < * . 1 so that, for at least clni values of 
d in 0 5 cl < ni, 

(34) f(a, d, n;) > (1 -l- c&z{ log n;. 

Perhaps (34) holds for all sufficiemly large n.. 
Using the results of [243 Turin proved that for every irrational 

(Y > 1 the sequence pol(mod 1) is uniformly distributed; later 
Vinogradov [24] proved this without any hypothesis, and by using 
his powerful methods of estimating trigonometric sums, he also 
obtains a fairly good estimation of the discrepancy of the sequence 
pol(mod 1). It follows easily from the uniformity of distribution 
that for every irrational CY > 1, [w] = p has infinitely many solu- 
tions. As far as I know it is not, known whether there are infinitely 
many primes p for which [pa] = q. 

Now I want to say something about the comparative theory of 
prime numbers; a subject recently developed by TursCn and Kna- 
powski [25]. The origin of this subject is to be found in the follow- 
ing conjecture of Tchebicheff: put 

f(x) = 1 (-l)p--l’%?--pa. 
P 

Then Tehebicheff stated that f(z) -+ - 00 as z tends to 0. This 
conjecture is still unproved and must be very deep since Hardy, 
Littlewood, and Landau 1251 showed that it is equivaIent to the 

Riemann Hypothesis for the L-function 1 - $ + $ + $ + * * * 

belonging to the modulus 4. 
Tchebicheff stated that his conjecture implies a preponderance 

of the primes = 3 (mod 4) over those E 1 (mod 4). Littlewood [25] 
proved on the other hand that 

4 4, x) - n(3,4, x> 

changes sign infinitely often. 
Tursin and Knapowski [25] recently took up this subject and 

obtained a whole series of interesting results which seemed unat- 
tainable previously. I just state here a few of them and must 
refer to their joint papers and to their forthcoming book on this 
subject. 
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A modulus d is called good if the L-functions L(s, x) belonging to 
this modulus d have no real root in the critical strip. The values 
3 < d < 12 are all good and possibly every modulus is good, but 
it is not even known that there are inlinitely many good moduli. 

1. If d is good and T is sufficiently large, then the interval’ 
(logs T, T) always contains an x1 and an z2 for which for any I with 
(I, d) = 1 and 2 f l(mod d), 

further ~(1, d, x) - ?r(Z, d, CC) has at least c log4 T changes of sign in 
(0, T>. 

2. For good d the interval (logs T, T) always contains an z1 and 
22 for which 

3. If d is good and T > To and I is a quadratic residue (mod d) 
then the interval (T jS T) contains va , lu x and 22 for which es 1 

~(1, d, xl) - ~(2, d, x1) > TM exp 
log T log, T 

.> ’ Iogz T 

41, 4 z2) - ~(2, d, x2) < - T” exp 
log T loga T 

- 
’ Iogs T > 

4. If d is good and T > To then for every two distinct values 
II and l2 

2 A(n) - 
n=Z$yd d) 

2 A(n) 
n = t;<mzod d) 

- - 

changes sign in (T, e2“T). 

1 We write log2 for log log, and so on. 
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5. Knapowski [26] proved that for sufficiently large T 

i 
z dY 7r(2) - - 

2 1% Y 

changes sign at least c log4 T times in (0, T). (Riemann conjec- 
tured that 

/ 
CT dY 7r(2) < ___ 

2 log Y 

for all z and Littlewood disproved this conjecture by showing that 

J * dY T(X) - ~ 
2 1% Y 

J&r) changes sign infinitely often [26].) 
Knapowski and Turan use the new and surprising inequalities of 

Tur&n which he developed in several of his papers and in his book 
[25]. A new English edition of the book will soon appear and will 
contain many interesting problems and new results, The inequali- 
ties are analytic in nature but can also be considered as part of the 
theory of Diophantine approximation, and in a certain sense they 
can be considered as generalizations of Dirichlet’s theorem. Here 
I want to state only two problems in this theory, on which I also 
worked. 

Let xl = 1 and lxal < 1 for 2 < i < n. Put Sk = 2 Zik. Turitn 
i=l 

conjectured that there exists an absolute constant c such that, for 
all n and all choices of the z’s, 

(35) 

Atkinson [27] recently proved this conjecture, and in an unpub- 
lished manuscript he showed that c can be chosen to be 4. Turiin 
further conjectured that to every e there is an no such that for n > no 

I observed [25] that there is a constant c > 0 and a sequence with 
,zl = 1, ]zi[ < 1 for 2 < i 5 n such that 

(36) 
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The contrast between (35) and (36) is striking. I was unable to 
decide the existence of a sequence with 1~~1 2 1 for 1 < i < n which 
satisfies (36). 

Very recently Tur&n toId me the foIIowing conjecture: Assume 
that the infinite sequence Sk, 1 5 k < co, contains infinitely many 
consecutive n - 1-tuples which are all 0. Then (essentially) 

(37) zj = c2Glfi, 1 _<j_<n. 

Perhaps (37) can be deduced if we know only that the sequence Sk 
contains two consecutive n - l-tuples which are 0. 

Before I leave the subject of prime numbers I would like to call 
attention to some related questions: E. Jabotinsky and I and 
independently and simultaneously V. Cardiner, R. Lazarus, N. 
Metropolis, and S. Ulam considered a modification of the sieve of 
Eratostenes and we were lead to several‘interesting questions, but 
for this I must refer to our papers on this subject [28]. 

Very interesting questions are raised in a paper by Hawkins on 
the so-called random sieve [29]; since this is perhaps not very well 
known I give the necessary definitions. We define a “random” 
sequence a;(t) as follows: Put al = 2, and cross out each integer 
3,4, . . . with probability +. Let a2 be the first integer which has 
not been crossed out. Then cross out each of the integers a2 + 1, 
u2 t 2, . . . with probability l/as and let a3 be the first integer 
not crossed out,, then cross out each of the integers aa + 1, . . . 
with probability l/as, and so on. Thus we obtain the “random” 
sequence ai = ai( and Hawkins conjectured that for almost all t 
aJ(ilog i) + 1, but as far as I know this has never been satis- 
factorily proved [29]. 

Finally, I would like to call attention to the following result: 
Let pi = 3, p2 = 5, and let pk be the smallest prime for which 

Pk + l(mod pi>, lIi<k. 

Then I prove that 

Pk 
,1!t k log k log log k = 

1. 

The proof of (38) uses Tauberian arguments which are simpler than 
those used in the elementary proof of the prime number theorem [30]. 

6. Now I discuss some results in the arithmetic theory of poly- 
nomials. Let f(z) = UOZ” + * * * + a, be an irreducible poly- 
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nomial with integral coefficients. Denote by v(p) the number of 
solutions of the congruence 

f(x) = O<mod p). 

The prime ideal theorem [22] states that 

(39) 

Shapiro [22] proved (39) by the method of Selberg and myself in 
an elementary way. The proof is elementary in the sense that it 
does not use function theory, but as in all the other proofs of (39) 
he has to use algebraic number theory, that is, the theory of ideals. 
It would of course be interesting to prove (39) without the use of 
ideal theory, but perhaps this is not possible. I often tried without 
success to prove without using ideal theory that 

li: l/p = 00. 
V(P)>0 

Knapowski and Turan (unpublished; see [25]) proved the follow- 
ing theorem: Suppose T > To(f). Then there are four numbers 
ul, u2, u3, u4 satisfying 

logs T 5 ug exp(--8(log ~2)~‘) I u1 I u2 I T, 

logs T 5 u4 exp( -S(log ~4)~) I ~3 < ~4 I T, 

for which 

This theorem is new even for the case f(z) = 2. 
Denote by v(m) the number of distinct prime factors of m. The 

prime ideal theorem immediately implies that 

z 
c v[f(n)] = [l + o(l)]z log log 2. 

n=l 
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Tur&n [31] proved the following surprising result: Let h(n) tend 
to infinity together with n as slowly as we please; then the density 
of the integers n for which the inequality 

log log n - h(n)(log log YA),$ < lJ[j{n)] < log log 72 
+ h(n) (1% log 4% 

does not hold is 0. The special casef(x) = r is a classical result of 
Hardy and Ramanujan [31]. 

Halberstam [31] proved that the density of integers n for which 

v[f(n)] < log log 7% + c(log log n)% 

equals (2~)~” I ‘, e--22’2 dx. The special case j(z) = x is contained 
in a theorem of Kac and myself. 

I proved [31] that the number of primes p < 2 for which 

(40) (1 - E)log log p < Y(p - 1) < (1 -I- iE)Iog log p 

is not satisfied is o(z/log 2). Halberstam [31] proved the follow- 
ing very much more general and more precise result. Suppose 
j(x) # cx. Then the number of primes p _< x for which 

4fb)l < 1% 1% P + 4% 1% PYy 
equals 

[I + 0(1)](27r)+’ (1’ e-ya’2 dy) & 
-m 

Denote by d(n) the number of divisors of n. Titchmarsh [31] 
proved that 

(locp2$ < c 
d(p - 1) < ClG 

P<2: 

I proved [31] using (40) that 

(41) c qp - 1) > z p-f)IWIW2, log 2 
and Hasclgrove [32] proved that 

c 

CX 
d(p - 1) > p* 

log log x 
PCS 
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Finally, Linnik [31], using his powerful new dispersion method, 
proved that 

c 
4P - 

315-i-(3) 
1) = (1 + o(l)) 7 x + o(5). 

B<Z 

Van der Corput 1321 proved that 
z 

Cl2 log x < c afb)l < cnx(log XY. 
n=l 

I proved [32] that 

(42) 

The proof is elementary but not simple. Very likely 
z 
c &f(n)] = cx log 2 + 0(x log 2). 

n=l 

If true (43) must be very hard to prove, since the prime factors 
greater than 2 make the sharp estimation of the sum (43) very 
difficult. The constant c in (43) will perhaps depend on the poly- 
nomial f(x). Bellmann and Shapiro [32] proved (43) if f(s) is of 
degree 2, and in this case c = 2. Recently HooIey [32] proved that 
if f(x) is of degree 2 then 

z 

2 
d[f(n)l = 2R: log 2 + O(zU), a < 1. 

?l=l 

Using Brun’s method and the one with which I proved (42), I can 
show that 

2 W(P)1 < c4x. 

D-3 

Perhaps if f(z) # cx one can show by Linnik’s method that 

L‘ MP)1 > c5x. 

Denote by P(n) the greatest prime factor of n. Tchebicheff 
[33] proved that 
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Xagell and Ricci [33] proved that if f(z) is of degree greater than 
1 then 

p [ Ii m-j > c2logq 
n=l 

and I [33] proved that 

p[ ii s(n)] > ClX (log z)lOgSz. 
?l=l 

By more complicated methods I can prove that 

(44) p[ ii r(n)] > cp exp (log 2)‘A. 
7Z=I 

I never published the proof of (44), which is fairly complicated. 
The proof could be simplified a great deal if I could prove the follow- 
ing purely combinatorial theorem [33]. To every cl there exists a c2 
so that if Al, . . . , AZ, where 1 = [c&, are sets each having at 
most k elements, then there are cl of them Ai,, . . . , Aicl which 
have pairwise the same intersection. Rado and I [33] proved this 
with k!(cl - 1)” instead of [czk]. (44) seems to be the natural 
boundary of my method. Very likely 

(45) p [ Ii f(n)] > x1+5 
?$=I 

but this seems very difficult. (44) would follow easily if we could 
prove that the number of integers n 2 x for which all prime factors 
of f(n) are 5 z is greater than cz, but this has not even proved for 
f(x) = 1 + x2. 

It seems probable in fact that 

p [ ii m] > CXk 
n=l 

when f(z) is a polynomial of degree k. 
A well-known result of Pblya [34] states that if the degree of 

f(z) is > 1 then 

(46) lim P/f(n)] = co. 
?&=CO 
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If f(z) = 1 + z2 Mahler and Chowla [34] (independently) proved 
that 

(47) P[f(n)] > c log log n. 

(47) is certainly very far from being best possible, but I do not know 
of any reasonable upper bound for P[f(n)] which is valid for infinitely 
many n. [Added in proof: Schinzel just informed me that he showed 
that for every t there are infinitely many n for which P(n2 + t) < 
exp (c log n/log log log n).] 

Another result of Pblya [34], related to (41), states that if pi, 
. . . , pk is any finite set of primes and al < u2 < * * * is the set 
of all integers composed of the p’s, then a;+1 - ai tends to infinity. 
This was improved by Siegel [34] to 

(48) a;+1 - ai > ail-’ 

for every E > 0 if i > G(E). It is easy to see that if k > 1 then 

q-1 
--+l 

ai 

as;--+ 03. There is a gap between (48) and (49) which as far as I 
know has not yet been filled. 

Here I would like to mention a problem of Wintner which he 
communicated to me orally. Does there exist an infinite sequence 
of primes pi < pz < * . * such that if al < a2 < . * . is the 
set of all the integers composed of the p’s then 

(50) lim (ai+i - cci) = 03 ? 
i=rn 

It seems certain that such a sequence exists, but I was unable to 
prove this. 

One final result about greatest prime factors. It is not difficult to 
prove that for every n 

P(2n - 1) > n. 

Schinzel [34] recently proved that for n > 12 

(51) P(2n - 1) > 2n. 

The proof of (51) is surprisingly complicated. Very likely 

lim P(2n - 1)/n = m. 
neti 

As far as I know P(n! + 1) has not yet been investigated. 
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The polynomial x2 + z + 2 is even for all integral values of z, 
thus it cannot represent any odd prime. A well known elementary 
theorem states that if f(r) is of degree Ic and f(z) = O(mod n) for 
all integral values of CC then n ( JC !. One could conjecture that f(n) 
represents infinitely many integers of the form a * p where a 1 k!. 
As already stated Dirichlet proved this for polynomials of degree 1 in 
1837. But the conjecture has never been proved even for a single 
polynomial of degree greater than 1, The only result for expres- 
sions of degree greater than 1 is due to I. I. Pjatezkij-Schapiro [35]. 
He proved that the number of primes of the form [n’] in 1 5 n 5 2 
is (1 + o(l))z/(l + c) logz if 1 5 c 5 ++. 

The resuIt very likely holds for all nonintegral c 2 1. 
Heilbronn [36] proved using Brun’s method that the number of 

integers n 5 z for which f(n) is a prime is less than cnllog n; also 
it follows from Brun’s method that there is an absolute constant cl, 
depending only on the degree of f(x), such that f(n) represents 
infinitely many integers having fewer than cl prime factors. 

Another conjecture states that f(z) represents infinitely many 
integers of the form a&, where a 1 lc! and & is squarefree. It is well 
known and easy to prove that f(z) represents infinitely many kth 
power-free integers, and in fact the density of the integers n for 
which f(n) is kth power-free is positive (12 being the degree of f(x)). 

I proved [37] that if k > 2 then f(z) represents infinitely many 
(k - l)-th power-free integers, the only exception being that if 
k = 2z then it may happen that f(n) = O(mod 2’-‘) for all n, but 
then f(z) represents infinitely many integers of the form 2’-% where 
& is odd and (k - I)-th power-free, The proof is fairly com- 
pIicated. We wouId expect that the density of the integers for 
whichf(n) is (k - 1)-th power-free is positive, but I could not prove 
this. I could prove nothing about the representation of (k - 2)-th 
power-free numbers, for example, I cannot show that n4 + 2 repre- 
sents infinitely many squarefree numbers. 

As far as I know the question whether 2” _+ 1 represents infinitely 
many kth power-free integers, is intractable at present, and the same 
is true for n! + 1. 

7. Now I want to discuss a set of problems which could be said 
to belong to combinatorial number theory, that is, the questions 
have both number-theoretic and combinatorial character. These 
problems perhaps do not all have great importance but they are very 
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close to my heart (or rather I should say to my brain) since two of 
my main interests are number theory and combinatorial analysis. 

I will start with Van der Waerden’s theorem 1381. This asserts 
that if one splits the integers into two classes in any way then at 
least one of them contains an arbitrary long arithmetic progression. 
We shall be more concerned here with the finite form of this theorem, 
also proved by Van der Waerden: For every k there exists a smallest 
integer f(k) such that if we split the integers 1 5 t 5 f(k) into two 
classes then at least one of them contains an arithmetic progression 
of k terms. The upper bound obtained for f(k) is enormously 
large; the reason for this is that all proofs use a double induction. 
Denote by f(k, 2) the smallest integer such that if we split the inte- 
gers 1 5 t < f(k, I) into 1 classes then at least one of them contains 
an arithmetic progression of k terms. The induction is carried out 
with respect ta k and I and so gives a very poor estimation for 
f(k, 2) and in particular for j(h-) = f(k, 2). At least I believe that 
the estimation is very bad, though no one succeeded in obtaining 
any better one. Rado and I [38] obtained the first nontrivial 
lower bound for f(k), by proving that j(k) > ((k - 1)2”)“. The 
proof is based on the following simple considerat,ion: The total 
number of ways of splitting n integers into two classes is clearly 2”, 
and the number of splittings such that one of the two sets contains 
a given arithmetic progression of k terms is easily seen to be 2n--k+1, 
and since there are fewer than n2 arithmetic progressions all of 
whose terms are < n we obtain that the total number of ways of 
splitting the integers 1 5 t 5 n so that one of the sets will contain an 
arithmetic progression of k terms is at most n22n-K+1. This is less 
than 2” if n < 2(k-1)5i, whence f(k) 2 2(k-1)H, and a more careful 
estimation of the number of arithmetic progressions gives f(k) > 
[(k - 1)27? 

W. Schmidt [38] obtained by a difficult and ingenious improve- 
ment of our method 

(52) f(k) > 2k---cWmk)~, 

and this is the best known lower bound for J(k) up to the present 
time. 

Using Van der Waerden’s theorem, A. Brauer [39] proved that 
to every k there is a pa(k) so that if p > PO(k) then p has i? consecu- 
tive quadratic residues and also k consecutive quadratic non- 
residues (in fact Brauer proved a somewhat more general theorem). 
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Probably the right order of magnitude of pa(k) is exp ck. It 
can be deduced from the results of A. Weil on congruences in two 
variables that pa(k) < exp ck. 

In the same way as for the well-known theorem of Ramsey, define 
g(k, Z) as the smallest integer for which if we split the integers 
1 < 1 < g(L, 2) into two classes then either the first class contains 
an arithmetic progression of k terms or the second an arithmetic 
progression of 1 terms. If k < I then clearly f(k) _< g(k, 1) _< f(l), 
but I do not know of any nontrivial estimation of g(k, 2) ; in par- 
ticular it would be interesting to have upper and lower estimations of 
d3, 0‘ 

Let h(n) be an arbitrary number-theoretic function which takes 
on the values +l and - 1. Van der Waerden’s theorem asserts 
that for every k there is an arithmetic progression for which k(a) = 
h(a + d) = * * - = h[a + (k - l)d]. For a long time I con- 
jectured that for every c there exist a d and an m such that 

m 
(53) 1 2 hG’4 / > c; 

more precisely, perhaps there exists a constant c such that for every 
function h(n) and every z there exist d and m with md < z such that 

(54) Ijl 1 h(kd) > CI log x. 

It is easy to see that (54) if true is best possible. (53) requires 
much less than Van der Waerden’s theorem but the arithmetic 
progressions are much more restricted. K. F. Roth recently proved 
(to appear in Atit& Arithmetica) that there exist a > 0, d < n’, 
a + md < n for which 

1 2 h(a + kd) 1 > CT?. 
k=O 

Roth in fact proves a more general theorem. In conversation Roth 
raised the question whether if we drop the condition d < nH, then 
cn% can perhaps be replaced by n’+. I showed by probabilistic 
reasoning that (54’) is false in general with cnH when c is sufficiently 
large. It is probably false with cn$$ for every c > 0 if n > no(c), 
but I have not been able to show this. 
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Assume now that h(n) = -t 1 is multiplicative, that is, h(a * b) = 
h(a) * h(b). Then (53) would imply that 

(55) 

is unbounded. (55) seems quite difficult [38]. If h(p*) = (-1)” 
we obtain Liouville’s function x(n) and (55) is well known in this 
case, in fact 

n 
c X(k) # o(7P~). 

k=l 

An interesting and beautiful conjecture on multiplicative func- 
tions h(n) = k 1 states that 

(56) 

2 

lim 1 
z=c4 2 c 

h(n) 
7%=l 

always exists and that the limit of (56) is 0 if and only if 

(57) c 1 -= 00 
h(p) = -1 

P . 

If (57) does not hold it is easy to see that the limit (56) exists and is 
different from 0. The conjecture (56) does not seem easy; it cer- 
tainly contains the prime number theorem, for if h(n) = h(n), (56) 
is well known to be equivalent to the prime number theorem. 

Wintner observed that if we only assume [h(n)1 = 1 then (56) 
doesnot have to hold. RBnyi recently observed that h(n) = 
ei log It provides a simple counterexample. [Added in proof: Wirsing 
just informs me that he proved (56).] 

If h(n)” = 1 for some k, (56) probably remains true. 
Another variant of yhn,der Waerden’s theorem is the following: 

Define f(k, c) (0 < c I 1) as the smallest integer such that for 
every h(n) = +. 1 there exists an arithmetic progression 

O<a<afd< ‘-* < a 4 (k - 1)d < f(?c, c) 

for which 
k-l 

1 1 h(a + Id) 1 2 ck. 

E=O 
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Clearly J(k, 1) = f(L). Using the same method as that which 
Rado and I used, I showed [38] that for every c > 0 

m, c> > (1 + dk, 
where cu,-+O as c+O and aC-+fi- 1 as c-+1 (perhaps the 
method of Schmidt would allow one to prove that CY~ + 1 as c 3 1, 
but this has not been done). I would expect that for every c < 1 

j(k, c) < (1 + a,y 

I am doubtful whether the same inequality holds for f(k) (that is, 
for c = 1). Possibly 

lim [f(li, c)]llk = a(c), O<c<l. 
k=a, 

The problem of obtaining a good upper bound for f(k) led Turan 
and myself [40] to the following question: Let 1 < al 5 * * * 
I a~ < n and assume that the sequence (a;} does not contain an 
arithmetic progression of 1~ terms. Put 

max l = dn). 

If we could show that, for a certain n, yk(n) < n/2, we would 
immediately obtain f(k) 5 n. Unfortunately this has been shown 
only for k = 3, n = 20. In our paper [40] we only obtain crude 
inequalities for 73(n), and Szekeres conjectured that yk(n) = o(n) 
and that yk(n) < nlsCL. Behrend [40] observed that f=n~ yk(n)/n = 

ck exists; he further showed that either all Ck = 0 or lim ck = 1. 
k=m 

Salem and Spencer [40] disproved yk(n) < %I-‘*, in fact they showed 
that yz(n) > nl+‘log log %, and Behrend showed [40] that 

(58) 43(n) > nl--c’d’ogn* 

This is still the best known lower bound for yn(n). Rankin [40] 
improved (58) for li > 3. 

Roth [30] proved yz(n) = o(n), in fact he showed that 

-Is(n) < cn log log n‘ 

Unfortunately Roth’s method does not seem to give y*(n) = o(n). 
It would be of great interest if one could prove that yk(n) < r(n) 
for every k if n > no(k) since this would imply that for every Fi: there 
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are k primes in an arithmetic progression. Sevedinskij observed 
that 23143 + 2 .30030 is a prime for 0 _< 2 _< 11. Chowla [40] 
proved that there are infinitely many triplets of primes in arith- 
metic progression. His proof does not use yk(n), but runs as 
follows. As is we11 known Vinogradoff proved that every suf- 
ficiently large odd number is the sum of three primes, and Van der 
Corput, Esterman, and Tchudakoff proved using Vinogradoff’s 
method that the number of even numbers not exceeding x which are 
not of the form p + 4 (p # 4) is o(z/(log z)~) for every i%. Thus for 
infinitely many primes r, p + Q = 2r is solvable, hence there are 
infinitely many triplets of primes in arithmetic progression. This 
proof no longer works for quadruplets, and I do not see hont a proof 
could be obtained except through an estimation of yh(lz). If 
yk(n) < n(n) could be proved, then the fact that the primes con- 
tain arbitrarily long arithmetic progressions would be deduced 
just from the fact that the primes are numerous and would not use 
any special properties of the primes. This method is sometimes 
successful, for example, I proved 1411 in t,his way that to every k 
there is an nk such that np = p2 - p2 has more than k solutions. 

Denote by fk(n) the number of solutions of 
k 

c 
Pik = n. 

i=l 

I proved in [41] that lim supfz(n) = m ; the proof used special 
properties of primes, but it could be modified so as to use only 
r(n) > n/(logn)“. I can also prove that lim sup fa(n) = Q) (un- 

n=x. 
published), and the proof of this seems to need some special prop- 
erties of the primes. I can prove nothing for k > 3. 

Now I have to break my word given in the int,roduction, since 
I have to mention a conjecture of Hardy and Littlewood which is 
of importance in Waring’s problem: Denote by J/k(n) the number 
of solutions in positive integers of 

k 

c 
xik = n. 

i=l 

The famous K-hypothesis of Hardy and Littlewood asserts that 
#k(n) = o(n’) for every E > 0. 

It is well known that this would imply G(k) < ck, in other words 
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every sufficiently large integer is the sum of at most ck positive 
integral Lth powers (more precisely the K-hypothesis would imply 
G(lz) < 41c for all k, and G(k) 5 2k + 1 if k is not a power of 2). 

For k = 2 the K-hypothesis is well known to hold. For k = 3 
Mahler 1421 disproved the K-hypothesis; he showed by an identity 
that 

(59) &(n12) > cn. 

As far as I know lim #a(n)/log n has not been determined. The n=m 
K-hypothesis is probably wrong for k > 3 too but this has never 
been proved. 

For the applications to Waring’s problem it would suffice to 
show that for every E > 0: 

033 

2 

2 $k(n)2 = o(d+fe). 
k=i 

(60) is probably true but this has never been proved. 
Chowla, Pillai, and I [42] proved that for every k and infinitely 

many n 

03) #k(n) > exp (Ck log n/log log n) . 

(61) is of course not enough to disprove the K-hypothesis. 
Let A be a sequence of integers of positive density. Denote 

by &(A ; n) the number of solutions of 
k 

c 
a..k = 12. % 

j=i 

I can prove (unpublished) that 

(62) lim sup &(A ; n) = 00. 

More generally if cl and cq are given and n > no(ci, CZ), then if 
U]<U2< -- * < al, where I > cln, there always exists an m 
such that the number of solutions of 

k 

Ul.= 
c 

a+’ 
J=l 

is greater than ~2. The proof is similar to the proof of (61) but is 
considerably more tricky. 
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Turan and 1 conjectured that if al < a2 < * . * , ak < ck2, 
is an infinite sequence of integers, then the number of solutions of 
n = a; + uj cannot be bounded. I could only prove that the sums 
a; + aj cannot all be different [43]. One would expect that al < cZk 
implies that the sums of the a’s taken k at a time cannot all be 
different. Unfortunately the proof works only for even k, and 
though the result is undoubtedly true for odd k, I cannot prove it. 
The reason for this difficulty is very simple. For k = 2, if the 
sums ai $ CQ are all distinct, then the differences ai - aj are also 
all distinct. It is easy to see that ak < ck2 implies that the number 

of solutions S(z) of ai - aj < x satisfies CG 8(x)/s = ~0, and there- 
fore the differences di - aj cannot all be distinct. This argument 
breaks down for ?C = 3. For further problems and results on this 
subject I have to refer to my paper on unsolved problems [2a] and 
to the interesting review article by Stohr [43]. 

Varnavides [40] proved using Roth’s theorem that if 1 5 al < 
. . . < al 5 n, where 1 > cun, cy > 0 fixed, n sufficiently large, 
then the u’s contain more than can2 arithmetic progressions of three 
terms. Except for the value of ca this result is best possible since 
the total number of arithmetic progressions 0 < a < u + d < a + 
2d I 12 is: 

It would be interesting to det.ermine the best value of ca: and to find 
the structure of the extremal sequence. 

Many problems of combinatorial and numbertheoretical nature 
are discussed in my paper on unsolved problems [2a], and here I 
only wish to mention a few of them in which some progress has 
been made since I wrote the paper. 

Denote by al < * * * < uk < x a sequence of integers for which 
k 

all the sums 2 ~dui, pi = 0 or 1, are distinct, and put 
i=l 

max X- = A (x). 

Many years ago I asked whether 

A(x) = 
log 2 
__ + O(l) 
log 2 

holds. (64) seems surprisingly resistant, to any attack. 
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I also asked whether A (2”) > k + 2 is possible. This was 
answered affirmatively a few years ago by Guy and Co,lway 
(independently). Their example is unpublished. Xoser and I 
proved (see [2], Colloque . . . Bruzelles, 136-134) that 

A(x) < - 
log 2 + (1 + c)log log 2 

’ log 2 2 log2 

and recently Moser showed (to appear in the report of the A.M.S. 
Pasadena Conference, 1963) that 

k 

c 

4” - 1 
c&i2 2 -> 

3 
i=l 

with equality only for a; = 2”l. Maser easily deduces from (65) 
that 

log 2 
A(x) <-+ 

log log x 

log 2 2 log 2 
+ O(1). 

This is the best upper bound for A(x) known up to the present. 
It is quite easy to see that if ai < a2 < . * * is an infinite sequence 

of integers for which all the sums c eiai, e; = 0 or 1, are distinct 

then for infinitely many i, ai < 2i-1. Another somewhat related 
result states that if A(x) denotes the number of solutions of 

c 
Eiai < x and if A(x) = x + O(1) then ai = 2’-lfor i 2 io. (This 

ii proved in a paper, which will soon appear in Acta Arithmetica, by 
P. Erdas, B. Gordon, L. A. Rubel, and E. Straus.) 

Lorenz [44] proved the following conjecture of Straus and myself: 
Let al < a2 < * * * be an infinite sequence of integers; then there 
always exists a sequence bi < by c * . * of density 0 such that 
every integer n can be written in the form aa + bj. In particular 
he proved that if the a’s are the primes then the b’s can be chosen 

so that B(x) < c(log x)~ (B(x) = c 1). By using probabilistic 

arguments [44] I improved this to B(x) < c(log s)~. The prime 
number theorem trivially imphes B(x) 2 (1 + o(l))log x and I 
cannot disprove that B(x) = (1 + o(l))log x. In 1956 Hanani 
stated the following conjecture: If ~11 < * * * ; bi < * * * are two 
infinite sequences such that every integer can be written in the form 
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ai + bj then 

@f3) lim sup A(z)B(z)/z > 1 

Special cases of (66) were proved by Narkiewicz [44]. Recently 
Danzer disproved (66) (Danzer’s paper has just appeared in J. 
jiir reine und angew. Muth). It easily follows from the result of 
Narkiewicz that to every E > 0 there is an infinite sequence xi--, ~0 
such that 

(67) A(Q)B(Xi) - 2< > Xi’--I. 

The example of Danzer implies the existence of two sequences 
satisfying 

(68) x I A(z)B(z) _< 2 f o(z). 

There is a gap between (67) and (68) which as far as I know has 
not yet been filled. Danzer and I conjectured that (68), for two 
sequences such that every integer can be expressed as ai + bj, 
would imply that 

A(z)&) - x-2, 00, 

but as far as I know this has not yet been proved. 
Lorenz’s result implies that there exists a sequence al < uz + * * 

satisfying A (x) < cz log log s/log x such that every integer is of 
the form 2& + ai. One would expect that this can be improved to 
cx/log .r, but this seems to present unexpected difficulties. 

Davenport and I [45] proved that if al < . . * is an infinite 
sequence of positive lower density then there exists an infinite 
subsequence ai,, oia * m 6 satisfying as ( ai,,,. I conjectured that 
there are infinitely many triples a;, nj, al of distinct integers of the 
sequence satisfying [ai, aj] = al. This would follow from the 
following purely combinatorial theorem: Let A i, , . . A, be sub- 
sets of a set S of n elements and assume that there are no three 
distinct sets Ai, Ai, AZ for which 

AiL’Aj= At, 

Put max r = f(n). Then 

639) j(n) = o(2n). 

Recently Sarkijzy and Szemerddi proved (69) (unpublished) ; 
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in fact they showed that f(n) < cY/log log n. Perhaps 

f(n) < c2n/dn, 

in fact perhaps f(n) = (1 + o(1)) . Thus the above con- 

jecture about triples is now proved.. A-we&known combinatorial 
theorem of Sperner [46] should be mentioned here: If the A{s are 
such that no one of them contains any other, then their number is 

n 
at most 2 

(i 1) 
. This theorem has many applications in number 

2 
theory and analysis. 

Turan and I conjectured that if al < . * * is an infinite sequence 
of integers, and if F(n) denotes the number of solutions of ai + 
aj 2 n, then 

F(n) = cn + O(1) 

is impossible. Fuchs and I [47] proved that for c > 0 

(70) 
&” 

F(n) = cn + 0 (log nj45 ( > 
is impossible. In the case ah = Ic2 Hardy and Landau [47] proved 
that 

(71) F(n) = an + o(n log n),’ 

is impossible. This is the classical problem of the number of lattice 
points in a large circle. It has been conjectured that in (71) the 
error term is o(nt/4’a), but this seems very deep. It is surprising 
that in our much more general case we obtain a lower bound for the 
error term which is nearly as good as (71) and our proof is very 
much simpler. Recently Jurkat proved that the error term in (70) 
cannot be o(n$‘) (unpublished). Fuchs and I suspected a long time 
ago that a sequence al < * * . can be constructed for which 

(72) F(n) = en + O(nU) ; 

this would show that Jurkat’s result is best possible, but we have not 
succeeded in constructing a sequence satisfying (72). Bateman, 
Kohlbecker, and Tull[47] generalized (70) by replacing c by a slowly 
oscillating function, but as far as I know the following simple 
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conjecture has not yet been proved: There does not exist a sequence 
al < a2 - * . for which the number of solutions of ai + uj + a, i z 
is of the form cx + O(1). My proof with Fuchs breaks down. 

Heilbronn and I (our paper will appear in Acta Arithmeticd 
[added in proof: 9 (1964), 149-1591) proved that if al, . . . , ak are 
distinct residues (mod p), and k > 3.@y/n, then every residue 
class (mod p) can be written in the form . c Wi, ej = 0 or 1. 

i=l 

This result probably holds for IC > 2z/n. To show this it would be 
sufficient to show that if al, . . . , dk are k distinct residues (mod p) 
then the number of distinct residues which can be written as the 
sum of at most r distinct a’s is at least 

(73) min (p, rk - r2 + 1). 

k-l 
Taking the u’s to be the residues - 2 , , . . , + f we L 1 [I 
see that (73) if true is best possible. (73) is not even known for 
r = 2. A special case of a well-known theorem of Cauchy-Daven- 
port [48] states that the number of distinct residues which can be 
written as the sum of r a’s (not necessarily distinct) is at least 

min (p, rk - r + 1). 

Heilbronn and I further proved that if k/p” t 03 then the num- 
ber of solutions of 

k 

c 
eic~i = u(mod p), ti = 0 or 1 

i=i 

is (1 + o(l))ak/p. The condition k/p” + ob is best possible, and 
k > cps’ does not s&ice. 

We further conjectured that if al, . . . , ak are distinct residues 
(mod n) and k > cn%, then 

(74) 

k 

c 
egzi = O(mod n), ej = 0 or 1 

i=l 

is always solvable. Perhaps (74) is solvable for every c > 1/2 
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if n > no(c). Flohr and I could only prove that (74) is solvable if 

k > nr”, 1 , 
’ = 1 +log2/log3’ 

our proof is unpublished. 
A famous unsolved problem in number theory asks for the 

estimation of the least quadratic nonresidue of p. This problem 
goes back to Gauss who proved that the least quadratic nonresidue 
is < 2~~” + 1 if p E 1 (mod 8) ; he used this estimation in his first 
proof of the law of quadratic reciprocity [49]. The first result 
which used the modern methods of analytic number theory is due to 
Vinogradov [49], who proved that the least quadratic nonresidue 
nz(p) satisfies 

(75) nz(p> < cp”““/“(lOg p> 2* 

Davenport and I [49] improved the exponent of log p to l/-\/e. The 
first significant improvement on (75) was found by Burgess [49] 
who proved 

(76) nz(p> <: cp1/6de(l% P)“. 

The ingenious proof of Burgess uses the following deep result of 
A. Weil [50]. Let S(X) be an irreducible polynomial of degree n; 

then f(z> 
cc > 

is the Legendre symbol 
> 

Andre Weil used the methods of algebraic geometry in the proof of 
(74). For polynomials of degree 3 and 4, (77) was proved by 
Hasse [50] and weaker inequalities that (77) were proved by Daven- 
port, Mordell, and others [50]. 

It seems certain that nz(p) < p’ and in fact perhaps nz(p) < 
c log p. Turan observed that n2(p) > c’ log p. 

Linnik [49] proved that there is a c, so that there are at most c, 
primes in 2 < p < x2 which do not satisfy nz(p) < p’. Linnik 
developed his famous large sieve for the purpose of proving this 
result. 

Davenport and I [49] observed the trivial result that there 
exists a constant c > 0 so that every interval of length cp" contains 
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both a residue and a nonresidue (mod p). We were not able to 
prove that this holds for every c > 0, but Burgess [49] proved the 
stronger result that every interval of length pg4+’ contains both a 
residue and a nonresidue. It seems probable that p”+” can be 
replaced by p’ or even by c Iog p. 

I proved [51] that 
00 

(78) 
P-- k=l 

Very likely, if nk(p) denotes the least kth power nonresidue of p. 
one has 

(79) 
c 
P<Z 

but my knowledge of algebraic number theory was not sufficient 
to enable me to prove (79). The proof of (78) is surprisingly com- 
plicated; I needed to use the prime number theorem for airthmetic 
progressions, Brun’s method, and the large sieve of Linnik and 
Renyi. 

Denote by f(~, p) the smallest integer such that, for every E 2 
f(% P> 1 

n co - < EL 
n=l P 

I expect that 

w c 
PCZ 
f(E, P) = 0 + o(l)>c. g-X 

but I do not see how to attack (80). 
Denote by r(p) the least primitive root of p. Vinogradov 

proved r(p) < p *+‘; Hua, Shapiro, and I [52] improved this to 

b(P - WPS5. 

The first significant improvement on Vinogradoff’s result is due to 
Burgess [52] who proved 

r(p) < p*+t 

Very likely r(p) < c log p. Ankeny [5Z] deduced from the general- 
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iaed Riemann Hypothesis that nz(p) < c(log p)‘, and obtained a 
weaker result for r(p). 

It seems very hard to prove that 

c P<Z 
r(P) = (1 f 00)) 2 

in fact I cannot even show that lim r(p) < 03% Artin conjectured 
that there are infinitely many primes p for which 2 is a primitive 
root, in fact he made a plausible conjecture about their density. 
As far as I know it is not even known whether to every p there is 
a prime q < p which is a primitive root of p. 

In the last 35 years significant new results were obtained in the 
additive theory of prime numbers, also in Waring’s problem, but I 
do not wish to speak much of these since several excellent books 
discussed them recently in great detail. I only wish to state the 
closest approaches known to the famous Goldbach conjecture: 
Selberg and Wang [53] proved, using Selberg’s improvement of 
Brun’s method, that every sufficiently large integer can be written 
in the form a f b where a has at most 2 prime factors and b at most 
3. Renyi proved [53] that there is an absolute constant c such that 
every integer is the sum of a prime and an integer which has at 
most c prime factors. RBnyi used the large sieve of Linnik and 
R6nyi and new results about the distribution of the roots of L-func- 
tions. I have been informed that recently Barban proved that 
every large integer can be written in the form p + u where ~(a) 5 4. 
One of the main new ideas of Barban’s proof is a remarkable 
improvement of the Linnik-Renyi large sieve. 

Another remarkable recent result is due to Linnik [31]. He 
proved by his dispersion method the following conjecture of Hardy 
and Littlewood: The number of solutions of n = p + u2 + v2 is 
of the form 

(1 + ~(l>>Cn $1 c cn > log log n 

where cn is a complicated constant which depends only on n. He 

also obtains asymptotic formuls for sums of the form ( d&> = 

c 1) ZL.“?x=Vl 

c h,(m) &Cm + a> 
m<n 
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and 

for ki = 2 and Irz arbitrary. For the details and the history of this 
problem I have to refer to Linnik’s book. 

Many of the results mentioned in this chapter can be proved by 
Brun’s method, which is perhaps our most powerful elementary 
tool in number theory. Recently Selberg 1121 obtained a sig- 
nificant improvement of Brun’s method and in a certain sense 
showed that further improvement is impossible beyond a certain 
limit. As far as I know the following question has not yet been 
investigated. Determine or estimate the smallest fi(x) with the 
following property: there exists a set of residue classes ai(mod pi), 
for pi < pi, such that every 1 5 u I z satisfies at least one of 
the congruences u = ai(mod pi). Similarly for ft(~), defined as 
follows: there is a set of residue classes ai(mod pi>, pi < fi(z) so 
that the number of integers u 5 2 which do not satisfy any of the 
congruences u = ai(mod pi) is o(x/log 2). 

Here I would like to call attention to another problem on sieve 
methods which as far as I know has not yet been investigated. The 
essential result proved by Viggo Brun was the following. Let 
p < nf, E = E(~c) and consider k, I k congruences: 

(81) x = q(P) (mod p), l<jIk,<k. 

Then the number of integers x 5 n which do not satisfy any of the 
congruences (81) is between 

032) cln n (1 - $) 
p<n” 

and cpn n (1 - b). 
p<n” 

(82) was improved by Selberg [12] in two ways; he permitted a 
larger choice of E = e(k), and he brought cl and cz closer together. 

Linnik and RBnyi investigated the other extreme; in their case 
the number of congruences (81) is very large, and roughly speaking 
they prove that if “many” integers are given up to x then, with 
the exception of a few primes, each residue class mod p contains 
“nearly” the same number of integers if we neglect a ‘(few” excep- 
tional residue classes. For a precise statement I have to refer to the 
papers of RBnyi and Linnik [53]. 

As far as I know nobody investigated what happens if in (81) the 
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number of congruences increases with p but not very quickly, say 
like log p or like log log p. I have not been able to find a reasonable 
application for the estimat.ion which would correspond to (82) and 
this may be the reason why this question was neglected. 

Now I would like to call attention to another group of problems 
on congruences. A set of congruences: 

(83) ai(mod ni), nl < n2 < * - * < nk 

is called a covering set if every integer satisfies at least one of the 
congruences (83). The simplest covering set is O(mod 2), O(mod 3), 
l(mod 4), 5(mod S), 7(mod 12). I asked if for every choice of ni 
there is a covering set (83). This problem seems very difficult 
and has been solved only for n1 _< 8 (by Selfridge and others). 
Many similar questions can be asked, for example, it is not known 
if there exists a covering set with all the ni odd. A simplebut not 
quite trivial result about covering sets of congruences states that 

k 

c 

;, > 1 [Ml. 
a 

i=l 

Two congruences are called disjoint if no integer satisfies both of 
them. Stein and I asked: let (83) be a system of pairwise disjoint 
congruences for which nk 5 x. Put max k = f(z). We conjec- 
tured that f(a) = O(X). We proved that for every E > 0 and 
2 > ZO(4 

f(x) > x exp ( - (log s)$‘-‘). 

It is surprising that the proof of f(z) = o(z) presents difficulties 
and this perhaps due to our overlooking an obvious idea [54]. 

Stein conjectured that if (83) is a disjoint system then there 
always exists a 0 < u 5 2” for which u $ aa(mod n;), (i = 1, 
2 , * . ’ 9 ?c). This conjecture was recently proved by Selfridge 
(unpublished). The system 

2i-‘(mod 2{), l<ilr; 

shows that this conjecture is best possible. 
I conjectured that if aa(mod nJ, 1 5 i 5 X; is any system of con- 

gruences such that there is a u for which u f ai(mod no (i = 1, 
k;), then there is such a u for which 0 < u 5 2k. I could 

&I, prove that there is such a u for which 0 < u < f(k) where f(k) 
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depends only on k, but I did no give an explicit estimation for 
f(k) [541. 

Recently Elliott (in publication in Quart. J. of &!a&) proved 
that if al < R2 < . - s < ak < n and Ic > cn/(log n), where 
c > 2, then there exists a prime 4 such that every residue class 
(mod p) is represented among the a;. He uses Selberg’s sieve. 

8. I now refer briefly to a body of recent work on Diophantine 
equations and Diophantine inequalities in many variables. We 
consider equations tist. 

The treatment of equations of additive type, such as 

f(c) + - * - f&d = N 
where f(z) is an integer-valued polynomial, is possible by the 
Hardy-Littlewood method, and presents no essentially new dif- 
ficulty. In particular a homogeneous additive equation: 

RIXlk + * ' . $ RnXak = 0 

always has an infinity of solutions, provided n is greater than a 
suitable function of k, and provided al, . . . , a, are not all of the 
same sign if k is even. 

The general homogeneous equation 

f(z1, . . . , 4 = 0 

of degree k, offers much more difficulty. The first method of 
reducing such an equation to additive equations (in a smaller num- 
ber of variables) was given by Richard Brauer in 1945. This 
method was not directly applicable in the rational number field, 
because it required the solubility of all additive equations of every 
degree I?’ < k, and this cannot be ensured for even values of k’. 
But Lewis (1957) modified Brauer’s method to obtain a proof that 
when k = 3 the equation is always soluble if n is sufficiently large. 
Birch (1957) generalized Brauer’s method to prove the following 
remarkable theorem: every system of simultaneous equations, of 
odd degrees k1, . . . , k,, is soluble in integers (not all 0) provided 
n is greater than a certain function of kl, . . . , k,. 

Davenport (1959 and 1963) attacked the problem of a single 
homogeneous cubic equation directly by the Hardy-Littlewood 
method, and proved that the condition n 1 16 is sufficient to ensure 
solubilit,y. It is conjectured that n 2 10 suffices and it is known 
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that this would be best possible. A treatment on similar general 
lines of homogeneous equations of higher degree, and simultaneous 
systems of such equations, was given by Birch (1962), but here it 
becomes necessary (and it is indeed essential) to impose further 
conditions. 

A connected account of much of this work, with references, is 
available in Davenport’s notes: Analytic Methods jar Diophantine 
Equations and Diophantina Inequalities (Ann Arbor Publishers, 
1963). 

There is a close connection between these problems and the 
problem of the solubility of homogeneous equations in p-adic num- 
bers. In several recent papers, Birch and Lewis have established, 
for particular values of k, the conjecture of Artin that for such 
equations the condition n > k2 is sufficient to ensure solubility. 

As regard Diophantine inequalities, the principal result of a 
general character proved so far is the following: if &(x1, . . . , z,) 
is any indefinite quadratic form with real coefficients, then the 
inequality 

is soluble for every in > 0 provided n 2 21. (For references see 
Davenport’s notes, mentioned above.) The proof is complicated. 
It is conjectured that n 2 5 suffices, and it may even be true that 
n 2 3 would suffice if one excluded forms which are proportional 
to forms with integral coefficients. A similar result (but with a 
very large lower bound for n) can probably be proved for cubic 
forms, but further extension seems to present great difficulties. 
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