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4

Some Recent Advances
and Current Problems

in Number Theory
Pavl Erdés

The subject of number theory is very extensive and has intimate
links with other branches of mathematics. Analysis has been
applied with great success to various problems of number theory
for 200 years and there is every reason to expect that such applica-
tions will continue. Algebraic methods have also been applied to
number theory and have in turn developed out of number theory.
Recently algebraic geometry and probability theory have been
applied with success to problems which previously seemed intracta-
ble. In thischapter I clearly cannot hope even to attempt to give a
complete survey of recent developments in number theory, and in
quite a few of its branches I am not particularly competent to do
so—for example, in the branches involving algebraic geometry.
My paper will be highly subjective; I shall write mainly about
questions which have interested me personally, and I certainly do
not wish to suggest that any problems and results which I omit to
mention are less important or interesting than the ones I shall write
about a great deal. For instance, I overemphasize problems on
primes and problems of a combinatorial type; also, of course, I over-
emphasize my own work. I shall not write much about Waring’s
196
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problem since it has been dealt with in recent books [1]; I shall omit
the geometry of numbers, and also Diophantine approximation
since I recently wrote about this subject (see my forthcoming
paper in Compositio Math.). The same fate will overtake many
applications of probability to number theory, but several survey
articles have appeared recently on this subject (some of them written
by me) and there is also a recent book by Kubilius and a forthcom-
ing book by Rényi and myself [2]. Most of the questions with
which I shall deal will have a combinatorial flavor or will relate to
primes (or both); these are the subjects which have interested me
most for the last thirty-three years. To quote from the introduc-
tion to the well-known and excellent book of Hardy and Wright:
“I cannot fail completely in making the paper interesting, since
the subject is so attractive that this would need extravagant
incompetence.”

There will be some overlap between this paper and my recent
paper “‘On unsolved problems’” [2a].

I wish to thank my friends Davenport, Schinzel, and Turan for
their valuable assistance.

1. First, I shall discuss problems and results on the distribution
of prime numbers (the letters p, ¢ will denote primes throughout).

Denote by x(z) the number of primes not exceeding z and by ¢,
c1, . . . absolute constants, not always the same. The Prime
Number Theorem states that

1.

) lim @ _

zmw X

log z

(1) was first proved in 1896 by Hadamard and de la Vallée Poussin.
In 1948 Selberg and I obtained [3] an elementary proof of (1). Our
starting point was the following remarkable formula of Selberg,
which he proved in an elementary way:

If 8(z) = ) logp then

p=z

@) 9(x) log = + z log p & (%) = 2zlog z + O(z).
p<z

We then proved by elementary arguments that if 1 < p; < py <
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. is any sequence of real numbers which satisfies (2) and further
satisfies

3) #(z) > az, 2 log p = logz + 0(1),
p<z P

then

(4) 3(x) = x + o(z).

This is well known to be equivalent to (1).

Beurling [4] gave the following interesting generalization of the
prime number theorem. Letl < p; < ps < - - - be any sequence
of real numbers, which will be called generalized primes. Denote
by N(z) the number of solutions of

[Mp=<z (ai=0,1,...).
i

Assume that

o x
) W) = =+ o (o)
Then it follows that
(6) 2 L=+ o(1)
ogzx
msx

Beurling also observed that (6) cannot be deduced from a weaker
error term than that in (5). Selberg observed that one can make
the deduction of (6) from (5) by our elementary method if in (5) a
slightly better error term is assumed (unpublished). Nyman and
Malliavin [4] sharpened Beurling’s results in various ways. I later
proved [3] that (2) alone implies (4) and Shapiro [3] proved that
(2) with an error term o(z log 2) instead of O(x) also implies (4).

My deduction of (4) from (2) was based on the following Tauber-
ian theorem, which seems of independent interest:

Suppose a; = 0 and assume that (with 8, = Z a;,)
k=1

n

@ Y ax(sn_t + k) = n* + O(n).

k=1
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Then
) 8n = n 4+ O(1).

My original proof was very complicated ; Siegel simplified it (unpub-
lished) and later Shapiro [3] simplified my proof considerably.

Bombieri and Wirsing [5] succeeded independently in proving in
an elementary way that for every & > 0

©) 8z) =2+ o0 ((—lo—;x—)k)

This, as is well known, implies that

eyt ()
"@ = ], ogy T \log 0*
This is a considerable advance on previous results of Van der
Corput, Kuhn, Breusch, and others.

In my opinion the simplest deduction of (4) from (2) and (3)
is that due to V. Nevanlinna [6], who somewhat simplifies the proof
of Wright [1].

Put ¢(x) = Z A(n), A(n) = logn if n = p~ and is 0 otherwise.

n<zr

Tchebicheff observed that

(10) 21&(%) =zlogzx — z + o(x)

The proof of (10) is elementary; in fact (10) easily follows from a
weak form of Stirling’s formula.

It would be very desirable to deduce the prime number theorem
from (10) as far as possible in an elementary way. Sharpening a
previous result of Landau, Ingham [7] proved by using Wiener’s
theory that (10) implies ¥(z) = z + o(z) which is equivalent to
the prime number theorem. Recently Ingham and I proved the
following theorem (our paper will appear in Acta Arithmetica):

Letl < a; < ag * - - beasequence of real numbers withz 1/a; < .

Assume that f(z) is an inereasing function for which

(11) i) 4 Zf(ai) — (1 e Z ai) 4 ol

i
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(11) implies f(z) = = + o(z) if and only if Z 1/(a:)* = 1hasno root

of the forms 1 + ¢, ¢t # 0. It is possible that if the a; are integers
this condition is always satisfied. The simplest case for which we
cannot decide this question is a; = 2, as = 3, a3 = 5. Several
related problems are discussed in our paper.

The sharpest estimation of #(z) is at present

#(z) = = + Oz exp (— (log 2)*79),
obtained by Korobov and Vinogradoff (8]. The Riemann Hypoth-
esis would imply
8(z) = z + 0@z log x)

Now I go on to state some problems and results about the dis-
tribution of primes. Let 2 = p; < p2 < - - - be the sequence of
consecutive primes. A well-known theorem of Tchebicheff states
that pny1 < 2pn for all n, and the prime number theorem implies
that poy1/pn— 1. The sharpest upper bound for p, 1 — pn = d,

is due to Haneke [9]; he proved, sharpening previous results of
Hoheisel, Haneke, Heilbronn, Ingham, and Min, that

dn < pn”’ﬁs-}-e.
The Riemann Hypothesis would imply
dﬂ < 'Pn”h-

It has been conjectured that between two consecutive squares
there is always a prime. This conjecture can probably not be
deduced from the Riemann Hypothesis and seems to be very deep.
Piltz conjectured that for every e > 0 and n > ng(e)

d, < n'
Cramer [10] conjectured that

1 lim —2 =

Q) ﬂl.n:, (log n)*

Cramer was lead to his conjecture by probabilistic reasoning; the
proof or disproof of (12) seems hopeless by the methods which are
at our disposal at present. It has been known for a very long time
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thatli_rund,. = o (then — lintegersn! 4+ 2,n!+3, ... ,nl4+n
are all composite).

Sharpening previous results of Backlund, Brauer-Zeitz, and
Westzynthius, I proved [11] by using Brun’s method that for
infinitely many n

(13) dn > ¢ log n log log n/(log log log )2

Chang [11] succeeded by a simple further idea in dispensing with
Brun’s method in the proof of (13), and Rankin using an improve-
ment of our method proved that for infinitely many n and every
e>0

(14) d, > (& — ¢ log n log log n log log log log n/(log log log n)*.

(14) seems to be the natural boundary of our method; the only
improvement of (14) in the last 26 years is due to Schénhage and
Rankin, who replaced the constant § by e [11].

A well-known and probably very difficult conjecture on primes
asserts that

(15) m(z + y) < x(=@) + =y).
Hardy and Littlewood [12] proved by Brun’s method that

(16) (@ + ) — (z) < %-
As far as I know this is the only time Hardy and Littlewood used

Brun’s method. Selberg [12] improved (16) to

y log log y)_
(log y)®
It would be very important if one would replace 2 in (17) by a

smaller constant, but this seems to be difficult. A slightly weaker
conjecture than (15) states that, for every e and y > y,(e),

1+ e)y.
log ¥

2
(17) w@+y) — @) < lo:y +0 (

m(x + y) — 7(2) <

Selberg’s investigations [12] on the limits of the efficiency of the
sieve methods indicate that (17) cannot be improved by Brun’s
method except possibly if very essential changes are made in the
estimation of the error terms.
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It seems likely that d,/log n is everywhere dense in (0, ).
Ricei [13] and I proved independently that the limit points of
d./logn form a set of positive Lebesgue measure, but the only
known limit point of this set is . In particular I do not know
if d,/log n has a rational limit point. It seems certain that d,/log »n
has a continuous distribution function y(f). In fact, Bombieri con-
jectures that ¢(f) = 1 — ¢, in other words, the density of integers
n for which d,, < tlogn equals 1 — e¢™*. There does not seem to be
much hope of attacking this conjecture at present, but later in this
paper I will state a modification which can probably be settled.

Ricei [13] proved by Brun’s method that the lower density of
the integers n for which d, < log » is positive, and in fact it is not
hard to show that there is an ¢ > 0 such that the lower density of
the integers n for which d, < (1 — ¢) log » is also positive. Unfor-
tunately I cannot prove that the upper density of the integers n
for which

d, > logn

is positive. It is not hard to deduce from Brun’s method that
Z'd, > ez,

where the dash indicates that the summation is extended over those
pn < z for which d, > logn. But unfortunately nothing can be
deduced from this because of possible very large values of d,. In
fact I just observe to my annoyance that I cannot show that
dn/log n has at least one finite limit point greater than or equal
to 1. One could give by Brun’s method a rough estimation for a
constant ¢ so that d,/log n certainly has a finite limit point > ¢,
but as far as I know nobody has given an explicit value for e.
I proved [14] that

limd,/logn <1

(the prime number theorem immediately implies that the lim is
< 1). Rankin [14] proved that the limit in question is < £%; Ricei
[13] showed that it'is < }§, and finally Bombieri proved that it is
< 3% (unpublished). There seems to be no doubt that the lim in
question is 0, but this seems very hard to prove; the well-known
conjecture that there are infinitely many prime twins, that is, that
d, = 2 has infinitely many solutions, would of course imply this.
The sequence d,, n =1, 2, . .., behaves very irregularly.
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Turdn and I [15] proved that the inequalities d,.q1 > d, and
dys1 < dy both have infinitely many solutions. We have not been
able to prove that d, > dny1 > duqe or d, < dpyy < dnys have
infinitely many solutions. In fact we eannot disprove the existence
of an integer ng so that for every &k > 0,d,, + 2k > d,,, + 2k 4+ 1
and d,, + 2k + 1 < d,, + 2k + 2. Itisnot known thatd, = d, 1,
has infinitely many solutions; Rényi and I [15] proved that the
number of solutions of d,, = dp1,1 < n < zisless than ex/(log z)t;
very likely the true order is ex/log = but this seems difficult.

It is not difficult to show that for infinitely many indices n, d, >
dny1, dn > dp—y and for infinitely many indices m, dn < dmy1,
dn < Ap_1.

Sierpinski [16] observed that

(18) Tim min (dy, duy1) = .

It is perhaps surprising that though the proof of limd, = « is
trivial the proof of (18) is much more difficult.

Walfisz and Prachar [16] proved that the upper density of the
integers n for which

min (d,, d‘ﬂ-l—l) EC rdn—l—k) <€ lOgn

tends to 0 for fixed k together with e (I slightly modified their result).
Also T observed [16] that for every ¢; > 0 there exists a ¢z > 0 so
that there are at least cs log n consecutive values dy, . . . , diyr,
(k < n), all of which are > ¢;, but I do not know if this holds for
every ¢; and co. Rényi and I [15] also showed that

cmn 1 conloglogn,

log n : dy. logn

=1

probably the upper bound is nearly best possible.
Prachar and I [17] proved that

ci(log 7)% < Z ’kpj—i—ll k

<z

< eo(log z) 2.

We further showed that if k; is a subsequence of the integers for
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which

Pr: ‘Pkm’
ky kiva

then the density of this sequence is 0.
Put pi/k = uz. We further observed that the prime number
theorem implies, for k > kqle),

(19) Uk(14+0] > Uk;

on the other hand to every [ there are infinitely many values of &
for which

(20) U > U4l

There is a big gap between (19) and (20) which we cannot fill.
In our paper we state the following further problems on the strue-
ture of the sequence uy:

There are only a finite number of values of & (possibly none) for

which

max ug_¢ < ux < Min Uy
1<i<k 1gig=
We easily show that the density of the integers % for which
ug > Upy1 s positive. We cannot show that the same holds for
the % for which wg < wugyg.
We do not know if uy < upspr < Ugps OF U > Ugy > Urypp has
infinitely many solutions.
Returning to the question of d,, I may mention that by using
Brun’s method I proved [18] that

log n

but I cannot prove that

et Ty n y dn
——-—*(dm dnt1) < 1 or lim min (—————d dnt1, dni2) =
log n log n

Jim max 3

also I cannot prove that

T e + dantr—1

il
i klogn ¢

where ¢ does not depend on k.
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It seems certain that the density of the indices n for which
d, > dy41 is 3, but this seems very hard to prove. I proved [19]
though that for a sufficiently small ¢ > 0 the lower density of the
indices n for which d, > (1 + €)d,, 41 is positive, and the same result
holds for (1 4+ €)d, < dpq1.

Define ny < mz < + - - as follows:

dn" > dﬂ fOI‘ all n < ni.

Very little is known about the sequence n;, for example, I cannot
prove that n, ; > n; 4+ 1 for 7 > (. It is easy though to see that
the density of the n;is 0.

Cramér [10] proved, assuming the Riemann hypothesis, that

E dn? < cx(log z)*.

n<z
Very probably
Z d,? < cx(log x)?,

n<z

but this seems hopeless. It may even be true that

. 1 2 _
,l.nfi (log z)* Edﬂ =&

(21) i

It is not hard to prove that the Iower limit in (21) is positive.

Similar questions can be asked for other sequences of numbers.
For example, let s; < s3 < -+ + be the sequence of squarefree
numbers; it is well known and easy to prove that their density is
6/x% T proved [20] that

Z (8ip1 — $0)% = ean + ao(n).

si<n

It seems very probable that for every @ > 0
(22) Z (8i41 — 8))% = can + o(n).

ai<n
(22) if true must be very difficult, since it would imply s;;1 — s; =
o(s;®) for every e > 0. My method breaks down for « > 2 but it
proves (22) for « < 2. The best upper bound for siy; — s; is
due to Richert [20] who proved (sharpening a previous result of
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K. F. Roth)
Sipr — & < s log s;.

It is easy to prove [20] that

2
(23) sip1 — 8 > (1 + o(1)) %mg si/log log s,

but as far as I know nobody has succeeded in replacing 1 + o(1) by
1+ ¢in (23).

Denote by @Q(z) the number of squarefree integers not exceeding
z. It is easy to prove that

24) Q@) = Sz + 0@,

and the prime number theorem gives o(z’*) in (24). One would
expect the Riemann Hypothesis to give o(x"**), but it seems that
one can only deduce o(z**¢). The true order of magnitude of the
error term in (24) is unknown.

One could try to generalize (22) as follows, Leta; <as < - - *

be an infinite sequence of integers satisfying az/k*— = and let

by < by < - - be the sequence of integers no one of which is a
multiple of any a. Is it then true that
(25) Y (bizr ~ b)? = Cn + o(n)?

bi<n

If a; = p;® we obtain (22). If instead of a;/k*— o« only a; <
ck? is assumed it is easy to see that (25) cannot hold; at present I
cannot disprove that in this case

Y (biga — )2 < An
bi<n
remains true for a suitable A.
In [14] I conjectured that if 1 =a1<@a:< ' <a,ym =
n — 1 are the integers relatively prime to n then
e(n) =1
2 —a)? < ——
(26) ' (oo = 0 < 2

1=1

This conjecture seems to be an elementary version of (21) and should
not be too difficult to prove.
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Hooley [20] in fact proved that for every o < 2

eln) —1

can”
iy — 8:)* <
Y (o — e < =S
i=1
and
e(n)—1
log log n
2 2
Qiy1 — @) < en'————
( i1 1) ‘p(n)
i=1
Put ny = 2,3, . . . pr. The o(n;) integers relatively prime to

ny in the interval (1, ngx) might be expected to show a somewhat
similar behavior to the primes. Let

1= al(k) £t R v v aw(m)(k) =m— 1

be the integers relatively prime to np. Let us investigate to what
extent this sequence satisfies the conjectures we stated about
primes, First of all, it is not hard to deduce from Brun’s method
that there are constants ¢; and ¢, such that every interval of length
¢i(log n)** contains an integer relatively prime to ng.

A theorem of Mertens implies that

e (14+0Q))e™ _ (L4 o(1)e™™

el(ng) B log log ng log &
It is not hard to prove that (if af¥; — a;® = d;®) the sequence
d;®
log k

is everywhere dense in (0, «); in other words to every eand 5 there
is a kg such that for k > kg, every interval of length » in (¢, 1/¢) con-
tains a number of the form d;'®/log k. I have not been able to
prove that

d,-”"
log &

has a distribution function (the precise meaning of this statement
is obvious and is left to the reader).

It seems probable that the number of integers 1 < s < ¢(ng) for
which dﬂ”_)l > d;®, is [ + o(1)]e(ng), but as far as I know this has
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not been proved. I do not know the number of solutions of d{¥, =

d;® but it would be easy to obtain crude upper and lower bounds.
It is easy to see that for every fand all & > k()
&® > dhy > - - >df
is solvable.
Sivasankaranarayana Pillai conjectured that

@7) Y d=[+ o

nEGp{?:n{of:l 2)
(27) seems very hard to prove; Brun’s method easily gives

d, > ex.
nzg‘('nf:d 2)
One can also conjecture that
(28) T a® =+ oUm,
im0({meod 2)

but I have not been able to prove this.

Jacobsthal defines g(n) to be the least integer such that among
any g¢(n) consecutive integers there is at least one relatively prime
ton. Put

max g(n) = C(r) + 1,

where the maximum is taken over all the integers n with »(n) <
r (where »(n) denotes the number of distinet prime factors of n).

We have
¢1r(log )% log log log r
(log log 7)*®

(29) < C@r) < eor®a.
The left side of (29) follows from (13) and the right side can be
easily obtained by Brun’s method. Jacobsthal conjectured that

(30) C(r) < cqr.

The exponent in (29) can be reduced by Selberg’s improvement of
Brun’s method, but (30) seems hopeless at present [21].

Now we discuss primes in arithmetic progressions. Dirichlet was
the first to prove that every arithmetic progression {a + kd} with
(a,d) = 1 represents infinitely many primes. Many mathema-
ticians attempted without success to find an elementary proof, but
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finally Selberg [22] was suecessful. Denote by n(a, d, ) the number
of primes < x of the form ¢ + kd. The prime number theorem for
arithmetic progressions states that

(81) wa,d,x) =[1 + o(1)] —~— (d) (d fixed, 2 — ).

It is not difficult to prove (31) by the method of Selberg and myself
[22]. The generalized Riemann Hypothesis for L-functions would
imply that

w(a,d, z) = + O(z" log x)

o(d) f log y
uniformly in d, and also that the least prime p(a, d) in a + kd is
less than >

Linnik [23] proved without using any hypothesis that

pla, d) < ¢1d%.

Linnik’s proof has been simplified first by Rodosskij and still
further recently by Turdn and Knapowski [22].

Turdn [24] proved using the generalized Riemann Hypothesis that
for all but o[¢(d)] arithmetic progressions a + kd

(32) pla, d) < cd(log d)*t=.
Perhaps the exponent 2 + e can be replaced by 1 + € but this is
very deep if true. I proved [24] using Brun’s method that for
every ¢; > 0

pla, d) < c1e(d) logd
for at least coo(d) [where co = ¢a(c1)] values of @. In the opposite

direction, I could only show that there exists a constant c3 and an
infinite sequence dy < ds < - - - such that

(33) pla, di) > (1 + c1)e(ds) log d;

for at least cie(d;) values of a. There seems no doubt that this
holds for all sufficiently large d, but I could not prove it. The
proof of (33) used Brun’s methods and thus strongly used special
properties of primes. Perhaps the following general result holds:
Let a; < a2 < + - be a sequence of integers for which

A = 2 L= [1+ o) o

ai<z
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Denote by f(a, d, n) the smallest a; = d(mod n). Then there is an
Infinite sequence 7; < ne < -+ - - so that, for at least ¢yn, values of
din0 <d < ny

(34) fla, d, ny) > (1 + e2)n;logn,.

Perhaps (34) holds for all sufficiently large »n.

Using the results of [24] Turdn proved that for every irrational
a > 1 the sequence pa(mod 1) is uniformly distributed; later
Vinogradov [24] proved this without any hypothesis, and by using
his powerful methods of estimating trigonometric sums, he also
obtaing a fairly good estimation of the discrepancy of the sequence
pa(mod 1). It follows easily from the uniformity of distribution
that for every irrational a > 1, [na] = p has infinitely many solu-
tions. As far as I know it is not known whether there are infinitely
many primes p for which [pa] = q.

Now I want to say something about the comparative theory of
prime numbers; a subject recently developed by Turdn and Kna-
powski [25]. The origin of this subject is to be found in the follow-
ing conjecture of Tchebicheff: put

f@) = Y (—1riinTe

Then Tchebicheff stated that f(zr) —» — « as z tends to 0. This
conjecture is still unproved and must be very deep since Hardy,
Littlewood, and Landau [25] showed that it is equivalent to the

1 1 1
Riemann Hypothesis for the L-function 1 — 30 = 5 + w = & P

belonging to the modulus 4.

Tchebicheff stated that his conjecture implies a preponderance
of the primes = 3(mod 4) over those = 1(mod 4). Littlewood [25]
proved on the other hand that

w(1,4,z) —=(3,4,2)

changes sign infinitely often.

Turén and Knapowski [25] recently took up this subject and
obtained a whole series of interesting results which seemed unat-
tainable previously. I just state here a few of them and must
refer to their joint papers and to their forthcoming book on this

subject.
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A modulus d is called good if the L-functions L(s, x) belonging to
this modulus 4 have no real root in the eritical strip. The values
3 <d <12 are all good and possibly every modulus is good, but
it is not even known that there are infinitely many good moduli.

1. If d is good and T is sufficiently large, then the intervall
(logs T, T') always contains an z; and an x, for which for any ! with
(I,d) = 1and [ # I{mod d),

(1,d, 1) ~ 7(l,d, z1) > —— logs z3,
log x4
Ty

7’-(1: d: 3;2) = T(I: d: $2) < Iog5 Lo,
log x4

further = (1, d, ) — =(l, d, x) has at least ¢ logy T changes of sign in
0, T).

2. For good d the interval (log; 7', T') always contains an z; and
xy for which

F(I]_) ‘\/-%_1
1 _
'ﬂ'( ;d) xl) (,G(d) Iog.’n 10g5$1,
() Viz,
(1, d, x3) o@ = log; x».

3. If d is good and T > T, and [ is a quadratic residue (mod d)
then the interval (7%, T') contains values z, and z, for which
log T logs T)

w(1,d, zy) — =, d, z1) > " exp( loga T
2

_log T'logs 'T)_
IOgg T

4, If d is good and T > T, then for every two distinet values
11 and 32

x(l, d, 25) — x(l, d, z3) < — T" exp(

Ay — ) AW
n=li{mod d} n=l:{mod d}
Rz n<z

changes sign in (7, V7).

1 We write logs for log log, and so on.



212 Lectures on Modern M athematics

5. Knapowski [26] proved that for sufficiently large T
T dy
2 logy

changes sign at least ¢ log, 7' times in (0, 7). (Riemann conjec-
tured that

w(z) —

mr) < e
@) 2 logy
for all  and Littlewood disproved this conjecture by showing that
z d_?,’
w(z) — ——
: 2 logy

L;(z) changes sign infinitely often [26].)

Knapowski and Turdn use the new and surprising inequalities of
Turdn which he developed in several of his papers and in his book
[25]. A new English edition of the book will soon appear and will
contain many interesting problems and new results. The inequali-
ties are analytic in nature but ean also be considered as part of the
theory of Diophantine approximation, and in a certain sense they
can be considered as generalizations of Dirichlet’s theorem. Here
I want to state only two problems in this theory, on which I also

worked,
fl

Letz; = land|zd < 1for2 <i<mn. Puts = E z*. Turén
i=1
conjectured that there exists an absolute constant ¢ such that, for
all n and all choices of the #'s,
(35) max ]s;,;[ > ¢
1<k<n

Atkinson [27] recently proved this conjecture, and in an unpub-
lished manuseript he showed that ¢ can be chosen to be §. Turédn
further conjectured that to every e there is an ng such that forn > ng

max [sz > 1 — e

1<k<n
I observed [25] that there is a constant ¢ > 0 and a sequence with
21 =1, s <1 for 2 < i < n such that

(36) 251;?3“ |si] < T c)n.
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The contrast between (35) and (36) is striking. I was unable to
decide the existence of a sequence with |z¢| > 1forl < i < n which
satisfies (36).

Very recently Turdn told me the following conjecture: Assume
that the infinite sequence s, 1 < & < o, contains infinitely many
consecutive n — l-tuples which are all 0. Then (essentially)

(37) gy =g R, 1<j<n.

Perhaps (37) can be deduced if we know only that the sequence s;
contains two consecutive n — 1-tuples which are 0.

Before I leave the subjeet of prime numbers I would like to call
attention to some related questions: E. Jabotinsky and I and
independently and simultaneously V. Gardiner, R. Lazarus, N.
Metropolis, and 8. Ulam considered a modification of the sieve of
Eratostenes and we were lead to several interesting questions, but
for this I must refer to our papers on this subject [28].

Very interesting questions are raised in a paper by Hawkins on
the so-called random sieve [29]; since this is perhaps not very well
known I give the necessary definitions. We define a “random”
sequence a;(t) as follows: Put a, = 2, and cross out each integer

3,4, . . . with probability . Let a, be the first integer which has
not been crossed out. Then cross out each of the integers a; + 1,
a; + 2, . . . with probability 1/a. and let a3 be the first integer

not crossed out, then cross out each of the integers az + 1, . . .
with probability 1/a;, and so on. Thus we obtain the “random”
sequence a; = a;(t), and Hawkins conjectured that for almost all ¢
a;/(ilog?) — 1, but as far as I know this has never been satis-
factorily proved [29].

Finally, I would like to call attention to the following result:
Let py, = 3, p2 = 5, and let px be the smallest prime for which

pr # l(mod pi), 1<i<k
Then I prove that

: PE
lim ——————— =
(38) ;,Ln: klog k log log k& !

The proof of (38) uses Tauberian arguments which are simpler than
those used in the elementary proof of the prime number theorem [30].

6. Now I discuss some results in the arithmetic theory of poly-
nomials. Let f(z) = apz” 4+ - * * + a, be an irreducible poly-
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nomial with integral coefficients. Denote by »(p) the number of
solutious of the congruence

f(z) = 0/mod p).
The prime ideal theorem [22] states that

(39) E v(p) = (1 + o(1)) 10%3

p<r

Shapiro [22] proved (39) by the method of Selberg and myself in
an elementary way. The proof is elementary in the sense that it
does not use function theory, but as in all the other proofs of (39)
he has to use algebraic number theory, that is, the theory of ideals.
It would of course be interesting to prove (39) without the use of
ideal theory, but perhaps this is not possible. I often tried without
success to prove without using ideal theory that

L/p = .
¥(p)}>0

Knapowski and Turdn (unpublished; see [25]) proved the follow-
ing theorem: Suppose T > T4(f). Then there are four numbers
Uy, Usg, Ug, Uy satisfying

logs T < us exp(—8(log ug)™) < uy < us < 7T,
logs T < uyexp(—8(log u4)§ﬁ) Sus <y <7,

for which
L du ‘H,gl"é
E »(p) L, log u < log uz’

w=pSus

ek du ufﬁ
E »(p) L, log = log w4

U p<uy

This theorem is new even for the case f(z) = 2.
Denote by »(m) the number of distinet prime factors of m, The
prime ideal theorem immediately implies that

x

Y ) = [ + o(1)]z log log z.

n=1
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Turén [31] proved the following surprising result: Let A(n) tend
to infinity together with n as slowly as we please; then the density
of the integers n for which the inequality

log log n — h{n)(log log n)** < »[f(n)] < log log n
+ h(n)(log log n)"

does not hold is 0. The special case f(x) = z is a classical result of
Hardy and Ramanujan [31].
Halberstam [31] proved that the density of integers n for which

W[f(n)] < loglog n + c(log log n)*

equals (2r)™% f _: e®"?dz. The special case f(z) = z is contained
m a theorem of Kac and myself.

I proved [31] that the number of primes p < z for which
(40) (1 — gloglogp < »(p — 1) < (1 + ¢)loglogp

is not satisfied is o(x/log 2). Halberstam [31] proved the follow-
ing very much more general and more precise result. Suppose
f(z) # cx. Then the number of primes p < z for which

Jf(p)] < loglog p + c(log log p)** '}
equals

.

[1 + o(1)](2m)~* ( f " dy)

Denote by d(n) the number of divisors of n. Titchmarsh [31]
proved that

log =

Ccal
LT
I proved [31] using (40) that
| o _x_ (l—e} loglng z
) V=1 > ,

p<=z

and Haselgrove [32] proved that

cx
dip — 4
2 g 1) log log x

p<z
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Finally, Linnik [31], using his powerful new dispersion method,
proved that

E dp — 1) = (1 + (1))

p<xz

Van der Corput [32] proved that

315¢(3)
2t

z + olz).

cazlogr < z d[f(n)] < esx(log z)°.
n=1

I proved [32] that

(42) Y dlfm)] < eszlog @

[n=1

The proof is elementary but not simple. Very likely

(43) Y dlf)] = czlog z + o(z log z).
n=1

If true (43) must be very hard to prove, since the prime factors
greater than = make the sharp estimation of the sum (43) very
difficult. The constant ¢ in (43) will perhaps depend on the poly-
nomial f(x). Bellmann and Shapiro [32] proved (43) if f(z) is of
degree 2, and in this case ¢ = 2. Recently Hooley [32] proved that
if f(z) is of degree 2 then

T

Y difm)] = 2zlogz + 0@, a<1.

n=1

Using Brun’s method and the one with which I proved (42), I can
show that
Y dif®)] < e

p<z

Perhaps if f(z) # cx one ean show by Linnik’s method that

Z d[f(p)] > csz.

Denote by P(n) the greatest prime factor of n. Tchebicheff
[33] proved that

1 P ]] (1+n%)]/z = «.

o=

n=1
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Nagell and Ricei [33] proved that if f(z) is of degree greater than
1 then

P[ ﬁ f(n)] > cxlog z,
n=1

and I [33] proved that

P [ ﬁ f(-n)] > ¢z (log z)le=,

n=1

By more complicated methods I can prove that

(44) P [ 1 f(n):l > caz exp (log z)°
n=1

I never published the proof of (44), which is fairly complicated.
The proof could be simplified a great deal if I could prove the follow-
ing purely combinatorial theorem [33]. To every ¢, there exists a co
so that if 44, . . ., A; where I = [¢,*], are sets each having at
most k& elements, then there are ¢; of them A;, . . ., A;, which
have pairwise the same intersection. Rado and I [33] proved this
with kl(c; — 1)* instead of [¢;*]. (44) seems to be the natural
boundary of my method. Very likely

(45) P[I1 )] > a*+9,
n=1
but this seems very difficuit. (44) would follow easily if we could
prove that the number of integers n < z for which all prime factors
of f(n) are < z is greater than ¢z, but this has not even proved for
flo) = 1 4+ =%
It seems probable in fact that

P| f[ fmy ] > ot

when f(2) is a polynomial of degree k.
A well-known result of Poélya [34] states that if the degree of
f(z) is > 1 then

) lim P[f(n)] = .
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If f(x) = 1 + z? Mahler and Chowla [34] (independently) proved
that

(47) P[f(n)] > clog log n.

(47) is certainly very far from being best possible, but I do not know
of any reasonable upper bound for P[f(n)] which is valid for infinitely
many n. [Added in proof: Schinzel just informed me that he showed
that for every ¢ there are infinitely many n for which P(n* +¢) <
exp (¢ log n/log log log n).]

Another result of Polya [34], related to (41), states that if py,
. . ., pr is any finite set of primes and a; < ay < - - - is the set
of all integers composed of the p’s, then a;11 — a; tends to infinity.
This was improved by Siegel [34] to

(48) Aipy — @i > a;!™
forevery e > 0if ¢ > dg(e). Itiseasy toseethatifk > 1then

(49) )

a;
as t— o, There is a gap between (48) and (49) which as far as I
know has not yet been filled.

Here I would like to mention a problem of Wintner which he
communicated to me orally. Does there exist an infinite sequence
of primes p; < p2 < * * * such that if a; <ay < -+ - is the
set of all the integers composed of the p’s then
(50) lim (@531 — a;) = »?

i=m
It seems certain that such a sequence exists, but I was unable to
prove this,

One final result about greatest prime factors. It is not difficult to
prove that for every n

PO —1) > n.
Schinzel [34] recently proved that for n > 12
(51) P@7 —1) > 2n.

The proof of (51) is surprisingly complicated. Very likely
lim P(2" — 1)/n = .

As far as I know P(n! 4+ 1) has not yet been investigated.
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The polynomial z? + = + 2 is even for all integral values of z,
thus it cannot represent any odd prime. A well known elementary
theorem states that if f(z) is of degree k and f(z) = O(mod n) for
all integral values of = then n | %! One could conjecture that f(n)
represents infinitely many integers of the form a - p where a| &!.
As already stated Dirichlet proved this for polynomials of degree 1 in
1837. But the conjecture has never been proved even for a single
polynomial of degree greater than 1. The only result for expres-
sions of degree greater than 1 is due to I. I. Pjatezkij-Schapiro [35].
He proved that the number of primes of the form [2]inl1 < n < z
is(1+o(1))x/(1 +c)logzif l <c¢ < 31

The result very likely holds for all nonintegral ¢ > 1.

Heilbronn [36] proved using Brun’s method that the number of
integers n < z for which f(n) is a prime is less than cn/log n; also
it follows from Brun’s method that there is an absolute constant ¢,
depending only on the degree of f(z), such that f(n) represents
infinitely many integers having fewer than ¢; prime factors,

Another conjecture states that f(z) represents infinitely many
integers of the form aQ, where a | k! and @ is squarefree. It is well
known and easy to prove that f(z) represents infinitely many kth
power-free integers, and in fact the density of the integers n for
which f(n) is kth power-free is positive (k& being the degree of f(x)).

I proved [37] that if & > 2 then f(z) represents infinitely many
(k — 1)-th power-free integers, the only exception being that if
k = 2! then it may happen that f(n) = O(mod 21 for all n, but
then f(z) represents infinitely many integers of the form 21-1Q where
Q is odd and (k — 1)-th power-free. The proof is fairly com-
plicated. We would expect that the density of the integers for
which f(n) is (k — 1)-th power-free is positive, but I could not prove
this. I could prove nothing about the representation of (k — 2)-th
power-free numbers, for example, I cannot show that n* + 2 repre-
sents infinitely many squarefree numbers.

As far as I know the question whether 2" + 1 represents infinitely
many kth power-free integers, is intractable at present, and the same

is true for n! + 1.

7. Now I want to discuss a set of problems which could be said
to belong to combinatorial number theory, that is, the questions
have both number-theoretic and combinatorial character. These
problems perhaps do not all have great importance but they are very
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close to my heart (or rather I should say to my brain) since two of
my main interests are number theory and combinatorial analysis.

I will start with Van der Waerden’s theorem [38]. This asserts
that if one splits the integers into two classes in any way then at
least one of them contains an arbitrary long arithmetic progression.
We shall be more coneerned here with the finite form of this theorem,
also proved by Van der Waerden: For every k there exists a smallest
integer f(k) such that if we split the integers 1 < ¢ < f(k) into two
classes then at least one of them contains an arithmetic progression
of & terms. The upper bound obtained for f(k) is enormously
large; the reason for this is that all proofs use a double induction.
Denote by f(k, I) the smallest integer such that if we split the inte-
gers 1 <t < f(k, 1) into [ classes then at least one of them contains
an arithmetic progression of & terms. The induction is carried out
with respect to k& and ! and so gives a very poor estimation for
f(k, ) and in particular for f(k) = f(k, 2). At least I believe that
the estimation is very bad, though no one succeeded in obtaining
any better one. Rado and I [38] obtained the first nontrivial
lower bound for f(k), by proving that f(k) > ((k — 1)2%)*, The
proof is based on the following simple consideration: The total
number of ways of splitting n integers into two classes is clearly 27,
and the number of splittings such that one of the two sets contains
a given arithmetic progression of k terms is easily seen to be 2" %1
and since there are fewer than n® arithmetic progressions all of
whose terms are < n we obtain that the total number of ways of
splitting the integers 1 < { < n so that one of the sets will contain an
arithmetic progression of & terms is at most n?2"*+1. This is less
than 2" if n < 2%~D% whence f(k) > 2%, and a more careful
estimation of the number of arithmetic progressions gives f(k) >
[(k — 1)2¥]%,

W. Schmidt [38] obtained by a difficult and ingenious improve-
ment of our method

(52) (k) > gh—ctklosb¥

and this is the best known lower bound for f(k) up to the present
time.

Using Van der Waerden’s theorem, A. Brauer [39] proved that
to every k there is a po(k) so that if p > po(k) then p has k consecu-
tive quadratic residues and also k consecutive quadratic non-
residues (in fact Brauer proved a somewhat more general theorem).
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Probably the right order of magnitude of po(k) is expck. It
can be deduced from the results of A. Weil on congruences in two
variables that po(k) < exp ck.

In the same way as for the well-known theorem of Ramsey, define
g(k, 1) as the smallest integer for which if we split the integers
1 <t < gk, 1) into two classes then either the first class contains
an arithmetic progression of k terms or the second an arithmetic
progression of I terms. If k <[ then clearly f(k) < g(k, 1) < f(D),
but I do not know of any nontrivial estimation of g(k, [); in par-
ticular it would be interesting to have upper and lower estimations of
g(3, ).

Let A(n) be an arbitrary number-theoretic function which takes
on the values +1 and —1. Van der Waerden’s theorem asserts
that for every k there is an arithmetic progression for which i(a) =
hle+d)=--+ =hla+ (k— 1)d]. For a long time I con-
jectured that for every c there exist a d and an m such that

(53) | S hkd) i > ¢
=1

more precisely, perhaps there exists a constant ¢ such that for every
function h(n) and every & there exist d and m with md < x such that

(54) | 21 h(kd) | > 1 log 2.

It is easy to see that (54) if true is best possible. (53) requires
much less than Van der Waerden’s theorem but the arithmetic
progressions are much more restricted. K. F. Roth recently proved
(to appear in Acta Arithmetica) that there exist a > 0, d < n't
a + md < n for which

(54) | Y h(a+ kd) | > en.
£=0

Roth in fact proves a more general theorem. In conversation Roth
raised the question whether if we drop the condition d < n”, then
en® can perhaps be replaced by ne I showed by probablhstlc
reasoning that (54') is false in general with en’® when ¢ is sufficiently
large. It is probably false with cn* for every ¢ > 0 if n > no(c),
but I have not been able to show this.
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Assume now that h(n) = +1 is multiplicative, that is, A(a - b) =
h(a) - h(d). Then (53) would imply that

(55) | i W) |
k=1

is unbounded. (55) seems quite difficult [38]. If A(p®) = (—1)=
we obtain Liouville’s funetion A(rn) and (55) is well known in this
case, in fact

3

(k) = o(n¥).

k=1

An interesting and beautiful conjecture on multiplicative func-
tions A(n) = +1 states that

(56) lim . h(n)
z=wu I

n=1
always exists and that the limit of (56) is 0 if and only if

(57) E %= 0,

h(p}=—1p

If (57) does not hold it is easy to see that the limit (56) exists and is
different from 0. The conjecture (56) does not seem easy; it cer-
tainly contains the prime number theorem, for if A(n) = A(n), (56)
is well known to be equivalent to the prime number theorem.

Wintner observed that if we only assume [h(ﬂ)| = 1 then (56)
does not have to hold. Rényi recently observed that A(n) =
e' °¢ ™ provides a simple counterexample. [Added in proof: Wirsing
just informs me that he proved (56).]

If h(n)* = 1 for some k, (56) probably remains true.

Another variant of Van der Waerden’s theorem is the following:
Define f(k,¢) (0 < ¢ < 1) as the smallest integer such that for
every h(n) = +1 there exists an arithmetic progression

O<a<a+d< - <a+ (k—1)d<flkc

for which

-1
I;Z‘o h(a + id) ‘ > ck.
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Clearly f(k, 1) = f(k). Using the same method as that which
Rado and I used, I showed [38] that for every ¢ > 0

fk,e) > (1 + ad)f,

where ¢, — 0 as ¢— 0 and a,— V2 — 1 as ¢— 1 (perhaps the
method of Schmidt would allow one to prove that e, — lasc— 1,
but this has not been done). I would expect that for everye < 1

flkye) < (14 a)k

I am doubtful whether the same inequality holds for j(k) (that is,
for¢ = 1). Possibly

Eim [fk, ))V* = ae), 0<ec<l.

The problem of obtaining a good upper bound for f(k) led Turédn
and myself [40] to the following question: Let 1 < a; < - - -
< a; < n and assume that the sequence {¢;} does not contain an
arithmetic progression of & terms. Put

maxl = yi(n).

If we could show that, for a certain n, vi(n) < n/2, we would
immediately obtain f(k) < n. Unfortunately this has been shown
only for k& = 3, n = 20. In our paper [40] we only obtain crude
inequalities for v3(n), and Szekeres conjectured that vx(n) = o(n)
and that v;(n) < n'~*. Behrend [40] observed that i}im ye(n)/n =

¢ exists; he further showed that either all ¢ = 0 or lim ¢ = 1.

k=r
Salem and Spencer [40] disproved yx(n) < n'~*%, in fact they showed
that ya(n) > nl=¢/ele® gand Behrend showed [40] that

(58) van) > ni-eViee s,

This is still the best known lower bound for y3(n). Rankin [40]
improved (58) for & > 3.
Roth [40] proved v3(n) = o(n), in fact he showed that

n
ya(n) < °

log log n

Unfortunately Roth’s method does not seem to give v4(n) = o(n).
It would be of great interest if one could prove that yi(n) < =(n)
for every k if n > ng(k) since this would imply that for every k there
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are k primes in an arithmetic progression. Sevedinskij observed
that 23143 4 1-30030 is a prime for 0 <1 < 11. Chowla [40]
proved that there are infinitely many triplets of primes in arith-
metic progression. His proof does not use vi(n), but runs as
follows. As is well known Vinogradoff proved that every suf-
ficiently large odd number is the sum of three primes, and Van der
Corput, Esterman, and Tchudakoff proved using Vinogradoff’s
method that the number of even numbers not exceeding x which are
not of the form p + ¢ (p # ¢) is o(z/(log x)*) for every k. Thus for
infinitely many primes r, p + ¢ = 2r is solvable, hence there are
infinitely many triplets of primes in arithmetic progression. This
proof no longer works for quadruplets, and I do not see how a proof
could be obtained except through an estimation of wi(n). If
vi(n) < w(n) could be proved, then the fact that the primes con-
tain arbitrarily long arithmetic progressions would be deduced
just from the fact that the primes are numerous and would not use
any special properties of the primes. This method is sometimes
successful, for example, I proved [41] in this way that to every k
there is an ny, such that n; = p*> — ¢ has more than % solutions.
Denote by fi(n) the number of solutions of

k

pg'k = Mn.

i=1
I proved in [41] that lim sup fa(n) = o ; the proof used special
properties of primes, but it could be modified so as to use only
x(n) > n/(logn)®. 1 can also prove that lim sup f3(n) = « (un-

==
published), and the proof of this seems to need some special prop-
erties of the primes. I can prove nothing for & > 3.
Now I have to break my word given in the introduction, since
I have to mention a conjecture of Hardy and Littlewood which is
of importance in Waring’s problem: Denote by ¢z(n) the number
of solutions in positive integers of

The famous K-hypothesis of Hardy and Littlewood asserts that
Yrin) = o(n) for every e > 0.
It is well known that this would imply G(k) < ck, in other words
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every sufficiently large integer is the sum of at most ck positive
integral kth powers (more precisely the K-hypothesis would imply
G(k) < 4k for all k, and G(k) < 2k + 1 if k is not a power of 2).

For k = 2 the K-hypothesis is well known to hold. For k = 3
Mahler [42] disproved the K-hypothesis; he showed by an identity
that

(59) ¢3(n'?) > cn.
As far as I know lim ys3(n)/log n has not been determined. The

K-hypothesis is probably wrong for k > 3 too but this has never
been proved.

For the applications to Waring’s problem it would suffice to
show that for every ¢ > 0:

(60) Y, Wa(m)? = o).
k=1

(60) is probably true but this has never been proved.
Chowla, Pillai, and I [42] proved that for every &k and infinitely
many n

(61) Yi(n) > exp (cx log n/log log n).

(61) is of course not enough to disprove the K-hypothesis.
Let A be a sequence of integers of positive density. Denote
by ¢&(4 ;n) the number of solutions of
k

aif = n.
=1
I can prove (unpublished) that
(62) lim sup ¥z{A;n) = o=.
More generally if ¢; and ¢» are given and n > ng(cy, ¢2), then if
a; < ag < + - <ap where I > ¢in, there always exists an m

such that the number of solutions of

)
m = E aik
=1

is greater than c.. The proof is similar to the proof of (61) but is
considerably more tricky.
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Turén and I conjectured that if a; < as < -« - -, ap < ck?,
is an infinite sequence of integers, then the number of solutions of
n = a; + a; cannot be bounded. I eould only prove that the sums
a; + a; cannot all be different [43]. One would expect that a; < cl®
implies that the sums of the o’s taken k at a time cannot all be
different. Unfortunately the proof works only for even k, and
though the result is undoubtedly true for odd %, I cannot prove it.
The reason for this difficulty is very simple. For k = 2, if the
sums a; + a; are all distinet, then the differences a; — a; are also
all distinet. It is easy to see that a; < ck? implies that the number

of solutions S(z) of ¢; — a; < z satisfies lim S(2)/2 = «, and there-
fore the differences a; — a; eannot all be distinct. This argument
breaks down for & = 8. For further problems and results on this
subject I have to refer to my paper on unsolved problems [2a] and
to the interesting review article by Stohr [43].
Varnavides [40] proved using Roth’s theorem that if 1 < a; <
« < a; < n, where I > an, o > 0 fixed, n sufficiently large,
then the a’s contain more than c.n® arithmetic progressions of three
terms. Except for the value of ¢, this result is best possible since
the total number of arithmetic progressions 0 < a <a +d < a +

2d < nis:

Bl)+ ({25}

(2])+ 2 ])=—4-+0(n)'
2 2

It would be interesting to determine the best value of ¢, and to find
the structure of the extremal sequence.

Many problems of combinatorial and numbertheoretical nature
are discussed in my paper on unsolved problems [2a], aad here I
only wish to mention a few of them in which some progress has
been made since I wrote the paper.

Denote by 5:.1 <+« < ap < rasequence of integers for which

all the sums Z e;a;, €, = 0 or 1, are distinct, and put
i=1
max k = A(z).
Many years ago I asked whether
log
64 Ax) = — + 0(1
(64) @ = jogs + OO

holds. (64) seems surprisingly resistant fo any attack.
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I also asked whether A(2F) > k4 2 is possible. This was
answered affirmatively a few years ago by Guy and Coiway
(independently). Their example is unpublished. Moser and I
proved (see [2], Collogue . . . Bruwelles, 136—134) that

log i (1 + e)loglogx
log 2 2log 2

Alz) <

and recently Moser showed (to appear in the report of the A.M.S.
Pasadena Conference, 1963) that

k
A%
65 a,fz > ]
(65) -_21 2= 3

with equality only for a; = 2%, Moser easily deduces from (65)
that

log z " log log z
log 2 2 log 2

A(x) < + 0(1).

This is the best upper bound for A(z) known up to the present.
It 1s quite easy to see that if a; < @2 < - - * is an infinite sequence

of integers for which all the sums Z e:a;, ¢ = 0 or 1, are distinct

then for infinitely many 7, a; < 2% Another somewhat related

result states that if A(z) denotes the number of solutions of
Y e < vandif A(z) = & + 0(1) thena; = 2 fori > ép. (This

is proved in a paper, which will soon appear in Acta Arithmetica, by
P. Erdés, B. Gordon, L. A. Rubel, and E. Straus.)

Lorenz [44] proved the following conjecture of Straus and myself:
Let a; < as < - -+ be an infinite sequence of integers; then there
always exists a sequence b; < by < - * - of density 0 such that
every integer n can be written in the form a; 4 b;. In particular
he proved that if the a’s are the primes then the b’s can be chosen

so that B() < c(log 2)° (B(z) = Z 1). By using probabilistic
bi<z

arguments [44] I improved this to B(zx) < e(log z)2. The prime
number theorem trivially implies B(z) > (1 + o(1))logz and I
cannot disprove that B(z) = (1 4+ o(1))logz. In 1956 Hanani
stated the following conjecture: If @y < - - - ;b1 < - - - are two
infinite sequences such that every integer can be written in the form
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a; + b; then
(66) lim sup A(x)B(z)/z > 1

Special cases of (66) were proved by Narkiewicz [44]. Recently
Danzer disproved (66) (Danzer’s paper has just appeared in J.
fir reine und angew. Math). It easily follows from the result of
Narkiewicz that to every e > 0 there is an infinite sequence z; — <
such that

(67) A(z)B(zs) — i >z

The example of Danzer implies the existence of two sequences
satisfying

(68) z < A(@)B(z) <z + o).

There is a gap between (67) and (68) which as far as I know has
not yet been filled. Danzer and I conjectured that (68), for two
sequences such that every integer can be expressed as a; + b
would imply that

A(x)B(x) — x— oo,

but as far as I know this has not yet been proved.

Lorenz’s result implies that there exists a sequence ¢y < as * - -
satisfying A(z) < ex log log z/log x such that every integer is of
the form 2¥ + a;. One would expect that this can be improved to
cz/log x, but this seems to present unexpected difficulties,

Davenport and I [45] proved that if ay < - : - is an infinite
sequence of positive lower density then there exists an infinite
subsequence @, a@;, * * - satisfying a; | as,. I conjectured that
there are infinitely many triples a;, a;, a; of distinet integers of the
sequence satisfying [a;, aj] = a;. This would follow from the
following purely combinatorial theorem: Let A, . . . A, be sub-
sets of a set S of n elements and assume that there are no three
distinct sets A,, A;, A; for which

Aghd Ay = A
Put max r = f(n). Then
(69) f(n) = o(2").
Recently Sdrkézy and Szemerédi proved (69) (unpublished);
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in fact they showed that f(n) < ¢2"/log log n. Perhaps
f(n) < c2"/+/n,

n

in fact perhaps f(n) = (1 + o(1)) ([g]) Thus the above con-
2

jecture about triples is now proved. A well-known combinatorial

theorem of Sperner [46] should be mentioned here: If the A/s are
such that no one of them contains any other, then their number is

n
at most ([ﬂ]) This theorem has many applications in number
2
theory and analysis.
Turdn and I conjectured that if @; < * + - is an infinite sequence

of integers, and if F(n) denotes the number of solutions of a; +
a; < n, then
F{n) = en + O(1)

is impossible. TFuchs and I [47] proved that for ¢ > 0
4%

n
e o) = en+ o)
is impossible. In the case a; = k* Hardy and Landau [47] proved
that

(71) F(n) = an + o(n log n)*

is impossible. This is the classical problem of the number of lattice
points in a large circle. It has been conjectured that in (71) the
error term is o(n**¢), but this seems very deep. It is surprising
that in our much more general case we obtain a lower bound for the
error term which is nearly as good as (71) and our proof is very
much simpler. Recently Jurkat proved that the error term in (70)
cannot be o(n’*) (unpublished). Fuchs and I suspected a long time
ago that a sequence a; < * * * can be constructed for which

(72) F(n) = en + 0(n*);

this would show that Jurkat’s result is best possible, but we have not
succeeded in constructing a sequence satisfying (72). Bateman,
Kohlbecker, and Tull [47] generalized (70) by replacing ¢ by a slowly
oscillating function, but as far as I know the following simple
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conjecture has not yet been proved: There does not exist a sequence
a; < @y * + + for which the number of solutions of a; + a; + as < =
is of the form ¢z + 0(1). My proof with Fuchs breaks down.

Heilbronn and I (our paper will appear in Acta Arithmetica
[added in proof: 9 (1964), 149-159]) proved thatifa,, . . . , a; are
distinet residues (mod p), and k > 3.6"+/n, then every residue
class (mod p) can be written in the form

k

€iti, e =0orl,
i=1
This result probably holds for & > 24/n. To show this it would be
sufficient to show that if a;, . . . , a; are k distinet residues (mod p)

then the number of distinet residues which can be written as the
sum of at most r distinet a’s is at least

(73) min (p, rk — r? 4+ 1).

E—1 k
Taking the @’s to be the residues — [—2—], e [5] we

see that (73) if true is best possible. (73) is not even known for
r = 2. A special case of a well-known theorem of Cauchy-Daven-
port [48] states that the number of distinet residues which can be
written as the sum of r a’s (not necessarily distinct) is at least

min (p,rk — r + 1).

Heilbronn and I further proved that if k/p’® — = then the num-
ber of solutions of
k
Z e;a; = u(mod p), e, =00rl
i=1
is (1 4 o(1))2*/p. The condition k/p* — o« is best possible, and
k > ep® does not suffice.
We further conjectured that if a;, . . . , a; are distinet residues
(mod n) and k > en*, then
k
(74) Y eai=0@modn), & =0orl

im=]

is always solvable. Perhaps (74) is solvable for every ¢ > /2
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if n > mg(e). Flohr and I could only prove that (74) is solvable if

1

k vte .~ SR,
A =1 + log 2/log 5"

our proof is unpublished.

A famous unsolved problem in number theory asks for the
estimation of the least quadratic nonresidue of . This problem
goes back to Gauss who proved that the least quadratic nonresidue
is < 2p" 4+ 1if p = 1(mod 8); he used this estimation in his first
proof of the law of quadratic reciprocity [49]. The first result
which used the modern methods of analytic number theory is due to
Vinogradov [49], who proved that the least quadratic nonresidue
na(p) satisfies

(75) na(p) < ep”*¥*(log p)*.

Davenport and I [49] improved the exponent of log p to1/4/e. The
first significant improvement on (75) was found by Burgess [49]
who proved

(76) ny(p) < ep™¥(log p)=.

The ingenious proof of Burgess uses the following deep result of
A. Weil [50]. Let f(x) be an irreducible polynomial of degree n;

then ((j%) is the Legendre symbol)

™ 5w
z=0

André Weil used the methods of algebraic geometry in the proof of
(74). For polynomials of degree 3 and 4, (77) was proved by
Hasse [50] and weaker inequalities that (77) were proved by Daven-
port, Mordell, and others [50].

It seems certain that ne(p) < p° and in fact perhaps ni(p) <
clog p. Turdn observed that n:(p) > ¢’ log p.

Linnik [49] proved that there is a c. so that there are at most ¢,
primes in z < p < z* which do not satisfy ns(p) < p°. Linnik
developed his famous large sieve for the purpose of proving this
result.

Davenport and I [49] observed the trivial result that there
exists a constant ¢ > 0 so that every interval of length ¢p* contains
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both a residue and a nonresidue (mod p). We were not able to
prove that this holds for every ¢ > 0, but Burgess [49] proved the
stronger result that every interval of length p¥** contains both a
residue and a nonresidue. It seems probable that p*¥* can be
replaced by p* or even by ¢ log .

I proved [51] that

(78) z ) = (L+ o) 2 .
k=1

p<z

Very likely, if nz(p) denotes the least kth power nonresidue of p,
one has

xr X
(79) 2 n;,,(p) = C 10g = + e (lo_g_;)’

p<z

but my knowledge of algebraic number theory was not sufficient
to enable me to prove (79). The proof of (78) is surprisingly com-
plicated; I needed to use the prime number theorem for airthmetic
progressions, Brun’s method, and the large sieve of Linnik and
Rényi.

Denote by f(e, p) the smallest integer such that, for every I >

Se, IJ)
?
2 G) < €,
mn=]1
I expect that

T
(80) Zf(e, p) = (1 + o(1))e. i

p<ze

but I do not see how to attack (80).
Denote by r(p) the least primitive root of p. Vinogradov
proved 7(p) < pt**; Hua, Shapiro, and I [52] improved this to

(v(p — 1))

The first significant improvement on Vinogradoff’s result is due to
Burgess [52] who proved

r(p) < ptt.

Very likely r(p) < c¢log p. Ankeny [52] deduced from the general-
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ized Riemann Hypothesis that ns(p) < c(log p)?, and obtained a
weaker result for r(p).
It seems very hard to prove that

) = (1 o) o

ogx

p<r
in fact I cannot even show that lim r(p) < «. Artin conjectured
that there are infinitely many primes p for which 2 is a primitive
root, in fact he made a plausible conjecture about their density.
As far as I know it is not even known whether to every p there is
a prime ¢ < p which is a primitive root of p.

In the last 35 years significant new results were obtained in the
additive theory of prime numbers, also in Waring’s problem, but I
do not wish to speak much of these since several excellent books
discussed them recently in great detail. I only wish to state the
closest approaches known to the famous Goldbach conjecture:
Selberg and Wang [53] proved, using Selberg’s improvement of
Brun’s method, that every sufficiently large integer can be written
in the form @ + b where a has at most 2 prime factors and b at most
3. Rényi proved [53] that there is an absolute constant ¢ such that
every integer is the sum of a prime and an integer which has at
most ¢ prime factors. Rényi used the large sieve of Linnik and
Rényi and new results about the distribution of the roots of L-func-
tions. I have been informed that recently Barban proved that
every large integer can be written in the form p + a where »(a) < 4.
One of the main new ideas of Barban’s proof is a remarkable
improvement of the Linnik-Rényi large sieve.

Another remarkable recent result is due to Linnik [31]. He
proved by his dispersion method the following conjecture of Hardy
and Littlewood: The number of solutions of n = p + u® + v* is
of the form

n
{1+ ofL))ea logn . log log n

where ¢, is a complicated constant which depends only on n. He
also obtains asymptotic formuls for sums of the form (a'.;,,(-m) =

1)

Zy=r-xk=Mm

Y, dx(m) dy(m + a)

m<n
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and

Y di(m) difn — m)

m=n
for k; = 2 and ks arbitrary. For the details and the history of this
problem I have to refer to Linnik’s book.

Many of the results mentioned in this chapter can be proved by
Brun’s method, which is perhaps our most powerful elementary
tool in number theory. Recently Selberg [12] obtained a sig-
nificant improvement of Brun’s method and in a certain sense
showed that further improvement is impossible beyond a certain
Iimit. As far as I know the following question has not yet been
investigated. Determine or estimate the smallest fi(x) with the
following property : there exists a set of residue classes a;(mod p;),
for p; < fi(x), such that every 1 < u < z satisfies at least one of
the congruences u = a;(mod p;). Similarly for f:(z), defined as
follows: there is a set of residue classes a;{mod p;), p: < fo(x) so
that the number of integers u < z which do not satisfy any of the
congruences u = a;(mod p;) is o(x/log z).

Here I would like to call attention to another problem on sieve
methods which as far as I know has not yet been investigated. The
essential result proved by Viggo Brun was the following. Let
p < n%, e = e(k) and consider k, < k congruences:

(81) r=a;® (modp), 1<Lj<k,<k

Then the number of integers £ < n which do not satisfy any of the
congruences (81) is between

@ en]l(1- %) and exn [] (1 = 2)

p<n® p<nt P

(82) was improved by Selberg [12] in two ways; he permitted a
larger choice of € = ¢(k), and he brought ¢, and ¢, closer together.

Linnik and Rényi investigated the other extreme; in their case
the number of congruences (81} is very large, and roughly speaking
they prove that if “many” integers are given up to z then, with
the exception of a few primes, each residue class mod p contains
“nearly” the same number of integers if we neglect a “few’” excep-
tional residue classes. For a precise statement I have to refer to the
papers of Rényi and Linnik [53].

As far as I know nobody investigated what happens if in (81) the
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number of congruences increases with p but not very quickly, say
like log p or like log log p. I have not been able to find a reasonable
application for the estimation which would correspond to (82) and
this may be the reason why this question was neglected.

Now I would like to call attention to another group of problems
on congruences. A set of congruences:

(83) ai(mod n;), mp < my < v < W

is called a covering set if every integer satisfies at least one of the
congruences (83). The simplest covering set is 0(mod 2), 0(mod 3),
1(mod 4), 5(mod 6), 7(mod 12). I asked if for every choice of n;
there is a covering set (83). This problem seems very difficult
and has been solved only for n; <8 (by Seliridge and others).
Many similar questions can be asked, for example, it is not known
if there exists a covering set with all the n; odd. A simple but not
q;.lite trivial result about covering sets of congruences states that

1
2?; > 1 [54].

Two congruences are called disjoint if no integer satisfies both of
them. Stein and I asked: let (83) be a system of pairwise disjoint
congruences for which n;y < z. Put maxk = f(x). We conjec-
tured that f(z) = o(x). We proved that for every ¢ > 0 and
x> zole)

flx) > z exp (— (log z)"7).

It is surprising that the proof of f(z) = o(x) presents difficulties
and this perhaps due to our overlooking an obvious idea [54].

Stein conjectured that if (83) is a disjoint system then there
always exists a 0 < u < 2% for which u # ai(mod n;), (=1,
2, ..., k). This conjecture was recently proved by Selfridge
(unpublished). The system

2 (mod 2%, 1<i<k

shows that this conjecture is best possible.

I conjectured that if a;(mod #n;), 1 < ¢ < k is any system of con-
gruences such that there is a u for which u # a;(mod n;) (7 = 1,
..., k), then there is such a w for which 0 < uw < 2% I could
only prove that there is such a u for which 0 < u < f(k) where f(k)
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depends only on k, but I did no give an explicit estimation for
f(k) [54].

Recently Elliott (in publication in Quari. J. of Math.) proved
that if a;<a2< -+ <ar<n and k> en/(logn), where
¢ > 2, then there exists a prime ¢ such that every residue class
(mod ¢) is represented among the ;. He uses Selberg’s sieve.

8. I now refer briefly to a body of recent work on Diophantine
equations and Diophantine inequalities in many variables. We
consider equations first.

The treatment of equations of additive type, such as

fl@) + - fl@a) = N

where f(z) is an integer-valued polynomial, is possible by the
Hardy-Littlewood method, and presents no essentially new dif-
ficulty. In particular a homogeneous additive equation:

@+ - et =0

always has an infinity of solutions, provided n is greater than a
suitable function of k, and provided a1, . . . , @, are not all of the
same sign if £ is even.

The general homogeneous equation

flxy, A an) =0

of degree k, offers much more difficulty. The first method of
reducing such an equation to additive equations (in a smaller num-
ber of variables) was given by Richard Brauer in 1945, This
method was not directly applicable in the rational number field,
because it required the solubility of all additive equations of every
degree &’ < k, and this cannot be ensured for even values of k'.
But Lewis (1957) modified Brauer’s method to obtain a proof that
when k = 3 the equation is always soluble if n is sufficiently large.
Birch (1957) generalized Brauer’s method to prove the following
remarkable theorem: every system of simultaneous equations, of
odd degrees ky, . . . , k,, is soluble in integers (not all 0) provided
n is greater than a certain funection of &y, . . . , kr.

Davenport (1959 and 1963) attacked the problem of a single
homogeneous cubic equation directly by the Hardy-Littlewood
method, and proved that the condition n > 16 is sufficient to ensure
solubility. It is conjectured that n > 10 suffices and it is known
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that this would be best possible. A treatment on similar general
lines of homogeneous equations of higher degree, and simultaneous
systems of such equations, was given by Birch (1962), but here it
becomes necessary (and it is indeed essential) to impose further
conditions.

A connected account of much of this work, with references, is
available in Davenport’s notes: Analylic Methods for Diophantine
Equations and Diophantine Inequalities (Ann Arbor Publishers,
1963).

There is a close connection between these problems and the
problem of the solubility of homogeneous equations in p-adiec num-
bers. In several recent papers, Birch and Lewis have established,
for particular values of k, the conjecture of Artin that for such
equations the condition n > k? is sufficient to ensure solubility.

As regard Diophantine inequalities, the principal result of a
general character proved so far is the following: if Q(z;, . . . , &)
is any indefinite quadratic form with real coefficients, then the
inequality

@y, -+ .,z <

is soluble for every e > 0 provided n > 21. (For references see
Davenport’s notes, mentioned above.) The proof is complicated.
It is conjectured that n > 5 suffices, and it may even be true that
n > 3 would suffice if one excluded forms which are proportional
to forms with integral coefficients. A similar result (but with a
very large lower bound for n) can probably be proved for cubic
forms, but further extension seems to present great difficulties.
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