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A well-known theorem of Zygmund (6) states that if n; <ny, < ... is a
sequence of integers satisfying

(1) ng /> 14+e (¢ >0),

and, if [«,.| = 0, |b,| — 0 is any sequence, then

18

(2)

> (a cosm+ by sinna)
k=1
converges for at least one a; in fact the set of « for which (2) converges
is of power ¢ in any interval.
Paley and Mary Weiss (5) extended this theorem for power series, i.e.
they proved that if |«,| > 0 and n, < n, < ... satisfies (1) then

a0
(3) > a,zm
k=1

converges for at least one z with |z| = 1; in fact the set of these 2’s is of
POWET ¢ on every arc.
Kahane (3) calls a sequence of integers n; < n, < ... a Zygmund sequence
if whenever |a, | = 0 the series (3) converges for at least one z with |z| = 1.
Kennedy (4) proved that to every g(k) — 0 (as k - co) there is a sequence

1y < ny < ... for which

W/ > 1+ o(k)
and which is not a Zygmund sequence. Kennedy’s result implies that in
some sense Zyegmund's theorem cannot be sharpened.

Kahane (3) observes that ‘a slight change in the proof [of Kennedy]
shows that a Zygmund sequence cannot contain arbitrarily long arithmetic
progressions. Nothing more seems to be known.’

I am going to prove the following

THEOREM. Let ny < ny < ... be a sequence which contains two subsequences
ny, and ny, 1 <10 < 00, satisfying
(4) ky—>o0, k<l;<kyy L=k - o0,

(my,— YV kD 5 1,
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Then our sequence is not a Zygmund sequence. In other words there 1s a
@
power series Y, a 2"k, |ay| —> 0, which diverges for every z with |z| = 1,
k=1

ReMark. The condition (4) can be formulated also in the following
equivalent form: there exists an infinite sequence of disjoint intervals
I, such that, denoting by |7, | the length of the interval I, and by A47(1,)
the number of terms of the sequence {n,} which lie in the interval I,
one has

(4a) lim |7,| =w
and T
(4b) lim A + 0.

11—*3010gifu.| B

It scems quite possible that if #, < n, <... does not satisfy (4), in
other words if there is a ¢ > 0 such that

(5) n,—n, > (1+¢),

then it is a Zygmund sequence. I am unable to prove or disprove the
above conjecture. The gap condition (5) has occurred in several previous
papers (1) but so far it has never been decided that condition (5) is best
possible.

The proof of our theorem will utilize probabilistic arguments which
have been used in several previous papers (1).
It is easy to see that if (4) holds we may suppose that

(6) 0y — Ny, > 8
and

- S ik
(7) (1, — ny, Y 1,

because there exists always a subsequence which satisfies these conditions.
From (6) and (7) we evidently have, for sufficiently large ¢,

: li—ks) /28 e N g B VR
(8) 2R > gy —n )t > By, —ny ).
Our series will be of the form

o | L=k ; - 5
T oo Dottt g =11, 1<i<o, 0<j<—
i=1108 1 j=o

k;.

(9) i
We are going to show that for almost all choices of ¢ = +1 the
series (9) diverges for every z with |z = 1. To show this we put

1 bk .
- E s_,-"”z'"h-r S EQf(a}(z}’
r

0 =
{l ) lﬂg tj—p
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where @,1(z) is the sum of i consecutive terms of (10), except the last
which may have fewer than ¢ terms, and which we shall ignore; hence

1=k

1grg A5
we do not indicate explicitly.

Our proof will be complete if we succeed in proving that, for almost

J. Q,"(z) depends of course on the &;!"; this dependence
1

all choices of ¢;'"), we have that for every A and for every z with |z| = 1,
for every i > i,(A) there is an r = »(z,4, A) satisfying
(11) 1Q,9(2)| > 4.

(11) clearly implies that for almost all choices of £, (9) diverges for
every z with |z| = 1. Thus we have only to prove (11).

There are clearly 2% choices of the sum (10). (11) will follow
immediately from the Borel-Cantelli lemma if we prove the following

Lemma. Let i > i(A). Consider all the 2% choices of (10). With the
; | : y ; ;
exception of 324K such choices, for every z with |z[ =1 there is an
1

r = r(z) for which (11) holds.

Put
Z, = e2min/ng; .ri“:d! 0<u< (Hh_ﬂ;‘_‘)s.
Consider a typical
. 1 .
12 Q {rl(z — AL LI T
(12) ) = o E e

where the prime indicates that the summation is extended over i
consecutive n's. There are 2 possible choices of the sum (12). It follows
from a known result (2) that the number of choices of the sum (12) for
which

(13) 1Q:40(z)] < 24
is less than

9i
(14) cdlogi -_i‘ & 2171,

For different, values of » the expressions @,'7(z) are of course independent;
hence by (14) the number of sums (10) for which (13) holds for all »,

1<r< r‘:ki]. is less than

1 .
I i—ky (li—kg)(1-1/28)
30) 2 SR < 2 :
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(15) implies that, for all but 20-#0-120 chojces of the sum (10),
(16) 1Q,9)| > 24

li—k .
holds for at least one r, 1 <7 < [’—r i—|. There are (n,—n;,)* choices
it ‘

for z,; hence, by (8), for all but

_ Sotli—k(1—1/20) — L oli—t;
(17) (y, — my P2Me k0 (117200 < = i~y

choices of (10), (16) holds for every z,, 0 <wu < (n,—n.)? for some
r = r(u).

To complete the proof of our lemma we have to show that if (16)
holds for some u and r then, for every z on the are (2, 1,2,.1)

(18) |@,\(z)| > A.
The proof of (18) is easy. Instead of (18) we show that
) Lid(=
(19) @ (”)| > A.
2

Q,9(z)/z" is a polynomial of degree less than n,—n,, each coefficient
of which is less than 1; hence its derivative on the unit eirele is less than
(n,—n;)% The length of the arc (z,_;,2,,) is 47/(n,—n,;,)%; hence the
variation of @, (z)/z" on (2, ,2,,,) is less than 4= /n,—n;,. Thus (19)
follows from (16), and this completes the proof of our lemma and our
theorem.

I was unable to extend this result for trigonometric series. The above
method seems to give only the following weaker result: let n, < ny <...
be an infinite sequence satisfying n,'% — 1; then there exists an every-
where-divergent trigonometric series

2

k=1

ay, cosna+b,sinn,x)

v o
-

for which (2 +b,2) = 0.
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