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Introduction

The application of probabilistic methods to another chapter of mathe-
matics (number theory, different branches of analysis, graph theory etc .) has
in the last 30 years often led to interesting results, which could not be obtained
by the usual methods of the chapters in question . These results are in most
cases of the following character : it is shown that in some sense "most" elements
of a set of mathematical objects possess a certain property . Thus these results
deal with typical properties of elements of a certain set, neglecting elements
which behave in a different way, provided that their number is in some sense
negligibly small . If the number of elements of the set considered is infinite a
certain natural measure has to be introduced and relations are studied which
are valid for "almostall" elements of the set considered, i .e . with the exception
of subset of measure zero according to the chosen measure . If finite systems
are studied, then the most natural measure is the number of elements of the
sets considered . In such cases the point of view usually adopted is as follows :
if S,; (n = 1, 2, • • •) is a sequence of finite sets, the number of elements of S„
being equal to N(n) where lim N(n) = + ca, and if A(n) denotes the number

n-++U

of elements of S„ having the property A, and if lim A - = 1, we say that in the
n-+, N(n)

limit for n -~ + co "almost all" elements of S possess the property A .
In proving such assertions, probabilistic methods are usually the natural

tool, in spite of the fact that the problem considered has nothing to do with
chance .

It often happens that the easiest (or the only available) way to prove that
S contains at least one element having the property A for sufficiently large
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values of n, is to prove that liminf
A(

n) > 0 ; in this way the existence of
1,-i+w M(n_)

elements ofS„having propertyA can be proved while the actual construction of
an element of S„ having the property A cannot be carried out . Thus probabi-
listic considerations lead often to proofs of existence concerning finite systems .
While investigations of the above described type have been frequently made in
number theory (see for instance [1], where further references are given) and
graph theory (we mention here for instance our papers [2], [3], [4], [5]),
up to now such methods were only exceptionally (see [6]) applied to the study
of finite algebraic systems .
In the present paper we shall give an example of applying probabilistic

methods to the study of finite groups .
Let G„ be a finite Abelian group of order n. (We use the additive

notation for the group operation) . Let us choose k arbitrary elements of
G,,, and denote them by a 1 , a 2 , • • • , ak . Let us consider all possible 2 k sums
alai +82a2+ "' +Eka k where C1,1'21-,8k are equal either to O or to 1 . In other
words we consider the set of all possible sums a ;, + a l, + . . . + a i, where
1 i 1 < i 2 < • • • < i, _< k and 0 :!-< r <_ k . The question is now, whether all

k

elements b of G„ can be represented in the form b = I E ia i ?
i=1

Of course this is possible only if 2k >= n, i .e . if k >_ tog
112 . We shall prove

in §2 (see Theorem 2) that if we choose the elements a 1 , • ..,ak of G„ at random
log n +log log n + wn

and if k >_ ---10 ---- where w„ tends to + ~ for n -> + ~ arbit-
g

rarity slowly, then every b c G„ can be represented in the form

(1)
k

b = Z E i a i
i=1

with probability tending to 1 for n --> + co . It is natural to ask also, how much
larger the value ofk has to be chosen that each beG„ should have approximately
the same number of representations in the form (1) . We shall prove in §1 that if

k >
21ogn+c_	2 - where c is a sufficiently large positive number then everyg
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b e G„ has approximately the same number of representations in the form (1)

with probability near to 1 (see Theorem 1) . More exactly, if

21og n + 2log
	 e	

+ log
	 b

k
z	

log 2

	

-

th-.n with probability >_ 1 - S the number of representations of b in the form (1)

is contained between (1 - r)
24

and (1 + e)2k for all b e G, ; ; here e and 6 are
n

	

n

arbitrary small positive numbers (Theorem 2) . We conjecture but could not

prove up to now that the factor 2 of log n in Theorem 1 cannot be replaced

by a smaller number .
The method which we apply to prove Theorem 1 consists of two steps :

The first step consists simply in the evaluation of the expectation of the mean

square deviation of the random distribution VZ k

	

where V,(b) denotes the

number of representations of b in the form (1) . This idea has been first applied

to a particular problem of number theory by P . Turán [7] . The idea has been

recently developed by Ju. V. Linnik [8] into a powerful method in number

theory, called by him the "dispersion method" .The second step may be charac-

terized as utilizing the smoothing effect of random choice : if most of the

numbers Vk(b) are almost equal, but a few of them may be considerably smaller

or larger than the average, then by choosing a relatively small number of

further elements ak+l,-- .,ak+ ; at random, the distribution gets smoothed out,

i .e. the distribution {2 -k+r Vk+r(b)}(b e G„) is usually much more uniform

than the distribution {2-kVk(b)} .

§1 . Finite Abelian groups

Let G„ be an Abelian group of order n . The elements of G„ will be denoted

by a, b, c, . . . with or without indices . The group operation will be written as

addition ; accordingly we denote by 0 the unit-element of the group, and by

- a the element for which a + ( - a) = 0 ; for any a e G„ we put 1 • a = a
and 0 • a =0 . Let al,az, . . •, ak be k elements of G chosen at random, inde-
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pendently of each other, so that each aj may be equal to an arbitrary elerr.cr.t

of G, with the same probability 1 . We denote by V,(b) the number of repre-n
sentations of an element b of G„ in the form

(1.1)

	

b = elal + "2a2 + . . . + ekak

where each of the numbers e ; may have the value 0 or 1 . Then for each b E G

Vk (b) is a random variable .
If the values of a l , • • • , a k are fixed, clearly

and thus V2b)1 is a probability distribution, . Let P( . . . ) denote the proba-

bility of the event in the brackets and let E( • • • ) denote the expectation of the
random variable in the brackets .

In what follows we shall often use the following elementary inequality,
called usually Markoff's inequality : if ~ is any nonnegative random variable
and A a real number, A > 1, then

(1 .2) P(~ >_ RE(~»

If A and B are events, ~ and q random variables, we shall denote by P(A 1B)
the conditional probability of the event A under the condition B, by E(~ I B)
the conditional expectation of ~ under the condition B and by E(~ I rl) the
conditional expectation of ~ given q .

We prove first the following

Lemma .

V,(b) = 2k
bcG

2 k 2

	

k
1

(1 .3)

	

Dk =E E (Vk(b)- -) ) = 2( 1 --)
b-G

	

n

	

n



22k
(1 .4)

	

Dk = E E(Vk(b)) -
beo . .

	

n
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Proof of the Lemma. We have clearly

Now

Vk(b) =

	

E 1
E1ú1+Ekak=b

where the summation has to be extended over all 2k k-tuples (e1, • • • , ek) of

zeros and ones . Thus we obtain

(1 .6)

	

Y, E(VA(b)) _

	

Y-P(ela1 + . . . +. ekak = e' 1a 1 . . . +-e 'kak)
b

where (e l , ,ek) and (e',, . .-,& k') run independently over all k-tuples of zeros

and ones . For the sake of brevity, let us put e = (e l , , ek ), e' _ (e' 1, , E'k)
j

	

k

	

k
further a = (a 1 , , a k), (e, a) _

	

eiai and (e', a) _ I e' iaJ . Clearly if e = e'
J=1

	

i=1

then P((e,a)=(e', •a))=1 . Now let us suppose that e and e are not identical .

Then there is value of h (1 <- h <_ k) such that e,, 0 e h' „ i .e . either e k = 1 and

e;,=0, or e,,=0 and e ;, = 1 . Then if the values of e i for j different from h

are fixed the equation (e, a) =(s', a) has exactly one solution for a,, and the

probability that ak is equal to this unique value is clearly l ; thus if e 0 e'
n

we obtain P((e, a) _ ( e ; a)) = 1 . Thus we get
n

k k
(1 .7)

	

Y- P((e, a) _ (e', a» = 2 k + 2 (2 - 1)
s

	

a'

	

n

which proves our Lemma .

We can deduce from the Lemma immediately

Theorem 1 . If

(1 .8),
21og n + 2log 1. + logI

kz
log 2
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where s > 0 and S > 0 area rbitrary small positive numbers then

(1.9)

	

P ( Max
6cG

Proof of Theorem 1 . Clearly

(1 .10)

	

Max

(1.11)

	

P ( Max
bcG .

Thus if (1 .8) holds

(1 .12)

	

P (Max
6E G„

2 k
V,(b)

	

n

k

	

k
V,(b) -

2 <s 2
>1-S

nI = n l

2 2k 2
< Y-

(V,(b)
- n)

b e G .,

and thus by Markoff's well known inequality and the Lemma

k

Vk(b)
2
n

k
I > s 2n

)

2k
>e

	

<S
n

n 2
2ks2

which proves (1 .8) .

It follows from Theorem 1 that there exists in every Abelian group o order

2log n + 2log 1 + log I
S

n for each k >	l02s	 --- k elements a, , a k such that each
g

element b of G„ can be represented in the form b = e, a I + + a k a k where

sj = 0 or 1 (j =1, 2,

	

k) 2" 0 + ab) times where I s b l <_ s8n

An interesting special case is obtained if G„ is the additive group of residues

mod n .

Now we proceed to prove

Theorem 2 . For any S > 0 if

log n +21óg 1 + log log
n

lc __>	
log 2--

lg2
+5



then

(1 .14)

	

P Min V,,(b) > 0 >
GEG

	

/,

Proof of Theorem 2 . Put

(1 .15)

	

k, =[log2] +d+1g

2log 1
where d is a positive integer, d _> 1o 2S- + 2 .

g
Then by Lemma 1, denoting by N,,, the number of elements b of G„ for which

V,,,(b) = 0, we have
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(116)

	

E(N k ,) <== 2k ~*

Thus it follows by Markoff's inequality that for any A > 1

2

(1 .17)

	

P ( Nk , > 2k~ ) <

	

.

133

z
Let us denote by A o the event N k , <

2k
<
Zn

, Supposing that Ao holds, we

select an element a k , +i at random . Let Nk , + , denote the number of elements
b of G„ for which Vk, + I (b) =.0 . Clearly Vk , + ,(b) = 0 if and only if Vk , (b) = 0

and Vk , (b')=0 where b' = b - ah , +I ; and this has probability Nk' . Thus
n

it follows

which implies

2
k ,

E(Nk'
+ I I Nk ' ) =

N

n

~,2 nE(Nk,
+ 1 1 `4 0)

<2
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and thus

(1 .20)
3(

P Nk , + 1 >
2R n
22d

) < 1
= 2

Let A, denote the event Nk, + 1 _<
2A-1n

n, and let us now suppose that both A o and

A, hold. Choosing the element ak, +2 at random and repeating the same
argument, we obtain

E(1Vk , + z 1 Nk,+1) =
N;', +1
n

E(Nk,+21 AOA1) <
4~ °n

•

	

6

(Here and in what follows the product of events denotes the joint occurence
of these events) . This implies

16~,
(1.23)

	

P (Nk,+2 > Z n A oA, ) =
4~ "

Let us continue this process ; let the elements ak,+3+"jak,+; be chosen at
random independently and with a uniform distribution in G„ . Let in general
Ak,+, denote the event

22 1 -t A2 1 + 1 -1 . n
(1.24)

	

Na:+, <	
22'd

	

=M,

	

(i=o,l, . . .,j)

then we obtain, putting B, = A„A I . . . A, (i=0'1'---'j)

(1 .25)

	

P(J, 1 B,-1) s21~ (i=o,l, . . .,j) •
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Now clearly if j is an integer for which

(1 .26)

then

(1.27)

On the other hand we have

i
(1 .28)

	

P(Bj)=P(A0)+ ~P(A,'Bi-1)
i=1

and thus, in view of P(CD) = P(C I D)P(D) < P(C I D)

i
(1.29)

	

P(9i) < P(Ao) +

	

P(Ji I Bi-1)

Thus we obtain that

log n
log log log 2

M% < 1 n(2logA/log2)+2-d

i=1

(1 .30)

	

P(Bj) <

	

+
2~
+ 4- + . . . S .

Now we shall choose

.1 = 2 (d-2V2 .

Then we have 21og .1
log 2

= d - 2, and thus by (1 .27)
g

(1 .32)

	

Mi S 2 < 1 .

It follows that if the event Bi takes place, N,,, +i = 0 . Thus if (1 .26) holds,

(1 .33)

	

P( Min Y,,, +i(b) > 0) >_ 1 - 21-((d-2)/2)
brG„
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21og 1
and thus if d > l0 2S + 4 then

g

(1.34)

	

P( Min V,,, j(b) > 0) > 1 - S .
b G .

As ki is defined by (1 .15) and j is an integer for which (1.26) holds, clearly
k = k i +j is any integer for which (IA 3) holds .

This proves Theorem 2 .

§2 . Some remarks

In order to obtain some further insight into the problem, it would be useful
to compute the moments

(2.1)

	

lir(n, k) = E( Y- [V"(b)] r ) .
bEG

for r = 3,4,, • . . It is easy to show that

k

	

3.2 k (2 k -1)

	

2k(2k - 1)(2" - 2)
(2.2)

	

113(n, k) = 2 +	 n

	

+ -

	

n2

However

Formula (2.2) follows from the fact that if s (i ; s (2) and s X31 are any three
different k-tuples of zeros and ones

(') ) _ (s«)P((s , a

	

, a) _ (e (3)

	

1
, a» =n

P«e. (' ; a) = (e ~ Z , a) = (e , a) = (e , a»
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is not equal to Iii for any four different k-tuples at'1,et2 ;e( 3),a (4 ; and this

m -ikes the computation of lt r (I~, lc) for r > 4 more dificint .

A surprising feature of our results is that they do not depend at all on the
structure of the group G,, .

Let us mention that both theorems 1 and 2 can be generalized for arbitrary
non-Abelian finite groups, in the following way : Let G„ be any group of order
n, let us choose the elements a t , ---, a k of G„ at random (with uniform distri-
bution) and independently . Let Vjb) denote the number of representations
of b in the form b = a j , a iz . . . a ; (we now write the group-operation as
multiplication) where 1 < i i < i z < *- < i, < k and 0 S r < k (an empty
product denotes the unity element) . Then the statements of Theorems 1 and 2
are valid .

However if we consider allpossibleproducts ofdifferent elements a i,a iz a ;,
which can be formed from the elements a i , a z , • . ., ak chosen at random, and do
notconsider only such products in which i, < i z < < ir , then the situation
changes completely . In this case the structure of the gro Lip Q, becomes relevant .
We feel, that the supposition that only such products formed from the elements
a,, . . .,a„ chosen at random should be considered in which a r always prececds
aj if both occur and i < j, is unnatural . This is the reason why we restricted
ourselves in § 1 . to formulate our theorems for the case of Abelian groups .

REFERENCES

1 . A. Rényi, Probabilistic methods in number theory, Proceedings of the International
Congress of Mathematicians, Edinburgh, 1958, p . 529-539 .

2 . P. Erdős-A. Rényi, On random graphs, 1. Publications Mathematicae (Debrecen)
6/1959/290-297 .

3 . P. Erdős-A. Rényi, On the evolution of random graphs, International Statistical
Institute, 32 . Session, Tokyo, 1960, 119 .1-5 .

4 . P. Erdős-A. Rényi, On the evolution of random graphs, MTA Mat. Kut . Int. Kliz-
leményei 5/1960/17-61 .

5 . P. Erdős-A. Rényi, On the strength of connectedness of a random graph, Acta Math .
Acad. Sci. Hung. 12/1961/261-267 .

6. A. Rényi, On random generating elements of a finite Boolean algebra, Acta Sci.
Math . Szeged, 22/1961/75-81 .



138

	

P . ERDOS and A . RÉNYI

7 . P. Turán, On a theorem of Hardy and Ramanujan, Journal of the London Math . Soc .
9/1934/274-176.

8 . Yu. V . Linnik, The dispersion method in binary additive problems /in Russian/,
University of Leningrad, 1961, 1-208 .

MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

BUDAPEST, HUNGARY

(Received October 31, 1963)


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

