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On Some Problems of a Statistical Group-Theory. I
By

P. Erpos and P. TURAN

1. By statistical group-theory we mean the study of those properties of certain
complexes of a “large” group which are shared by “most” of these complexes.
The group considered in this paper will be §,, the symmetric group of n letters;
its group-elements will be denoted by P. The complexes considered here will be
simply the elements P of S;; the property in question will be the group-order
O(P) of P. As to this LaNpAvU proved (see [4]) for

Q(n)*f: — max O(P)
FPeSn
the asymptotical relation

(1.1) lim
n—oo }rlogn

On the other hand P’s of order as low as » are “many’’; all P’s congisting in the

canonical cycle-decomposition of a single cycle (of length n) are of order » and

their number is

(1.2) (n—1)!=_ n!,

e L

which is relatively large. The big contrast between (1.1) and (1.2) would sound a
bit discouraging as to a simple law of the distribution. Nevertheless we are going
to prove the

Theorem. For arbitrarily small positive &, 8 and n > nole, 0) the inequality

elliz=alogin < Py < (1/2+e)logtn
holds, apart from
dn!

exceptional P’s at most.*

The value e'/2198°" fa]ls surprisingly short compared with Laxpau’s upper bound
in (1.1). We entertain hopes to prove in the next paper of this series that for the
number N (n, t) of P’s satisfying with an arbitrary fixed real ¢ the inequality

(1.3) log O(P) = 4 log2n + tlogd2n
the limes-relation
¢
. I 1 : —Ats
(1.4) lmRTﬁ(n,t}=72;_Le 243
holds and even with a sharp remainder-term uniformly in » and #. Also the case
will be of int srest when ¢ varies strongly with =, e.g. ¢t = nl/4,

% Actually a bit more; see (7.1) and (14.3); with a little more care our proof had given
even the inequality |log O(P) — $log?n | = w(n)logd2n with o(n!) exceptions at most if
only w(n) — oo with z.
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2. Which results were known in this theory ? Quite a few only, as far as we
know. 8. CHOwLA, HERSTEIX and MoorE (see [7]) for d = 2, and L. MosER and
WyMAN (see [5]) for d = p (= prime) proved that denoting by fz(n) the number
of P’s in S, with O(P) = d, the relation

ﬂ,')n(l—l.fp) e"”"

1) o) ~ p= 12 (%

holds for fixed p and n — co. We were unable to deduce our theorem from (2.1).
This is the only one which is directly related to our theorem. In our proof of it
we needed informations concerning the distribution of the cycle-lengths in the
canonical decomposition of the P’s; so we found that, denoting the number of
cycles by g(P), then — apart from o{n!) P’s* — we have

(2.2) g(P) ~logn.

After having a ready manuscript we learned that this theorem was found first
by V. L. GoNCARrOV (see [2]) in 1944 already, even in a sharper form. Actually
what we need is not (2.2) but the corresponding theorem for k(P), the number
of the different cycle-lengths; also here the value log » is surprisingly low since
the best-possible limitation, one can give for all P’s, is the inequality
—14+)¥8n—+1 ]
——5 |

This sharp preponderance in various problems seems to be characteristical to
this theory.**

LANDAU's theorem in (1.1) gives at the same time the asymptotical maximum
for the order of cyclic subgroups of §;,. Our theorem does nof answer to the
natural question, what is the ,,preponderating” order of non-isomorphic cyclic
subgroups of S, ; perhaps not even the number of non-isomorphie cyclic subgroups
of S, is known. To all these and several other questions of the same sort we hope
to return in this series.

We also call the attention to the last sentence of this paper (though we do
not formulate it as an independent theorem).

(2.3) 1=k(P) =

As pointed out by W. H. H. Hupsox (see Rouse BaLL [7]) in devising card tricks by
repeating the same shuffling procedure we encounter again problems on the orders of the P’s,
So using full pack of 52 cards having bad Iuck in selecting the basic shuffling procedure we
can need G (52) = 180,180 shufflings to come back to the original position of the cards.
According to our theorem we need with large probability only

e1/2 log? 532 ~ 2600
shufflings.

The proof of the theorem will be given in several stages. In Part I. we shall
deal with k(P), in Part II. we give the proof of the upper bound, in Part III,
that of the lower one in our theorem.

The different cycle-lengths in the canonieal cycle-decomposition of P will be
denoted throughout by

(2.4) (1= m<ne<-<ngEp=ng=n

* The o-sign refers throughout this paper to n — ce.
** Somewhat in the same direction lies the paper of ERDOsS-SZEKERES on the mean-value
of y(n), the number of non-isomorphic Abelian groups of order n. See ErDOs-SzERERES (2],



On Some Problems of a Statistical Group-Theory. I 177

the number cycles of length », by m, so that

kD)
(2.5) D MyNy=mn
yam]
and
E(P)
(2.8) 2> my=g(P).

rem]
The dependence of k(P) upon P will not be denoted explicitly later; c1, ¢, ...
stand for explicitly caleulable positive numerical constants.

Part I

3. We shall state GoNCaROV’s theorem as
Lemma I. For any fixed real t for the number hy(f) of P’s satisfying (see (2.2))

g(P) = logn + ¢} logn

we have the relation
¢

b L =1 -2
(3.1) lim () = = fe di.

Applying the wellknown theorem of ESSEEN one could replace the limes-
relation in (3.1) by a formula with error-term. We shall use lemma I in the follo-
wing weaker form.

Corollary I. If w(n) tends to infinity arbitrardy slowly monotonicaily then for
all but o(n!) P’s the inequality

|g(P)—logn| < w(n)]logn
holds.
We state the following wellknown result (see e.g. RIORDAN [6]) as

Lemma IL The number of P’s with fixed

k,ml,...,mk,nl,...,nk
(see (2.4), 2.5)) is
n!
my!img! ... mg! RPN . nTE

Let w; and wsz be positive integers with
W=w1, w2=n
and | [; be the set of P’s with the following properties. If #, < w; then

(3.2) 1 =m, = w3;
if ny > w; then
(3.3) my=1.

This | [; is the set of P’s in which only “short” cycles can occur more than once
and even these “not too often”. Denoting the number of P’s of 1_[1 by ]H1| we
assert the

Lemma I The inequality

ar | Tl =11 <3 (0 + )
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For the proof we remark first that- |n1] is nothing else than the coefficient
of 2" in
34 [Th+25) 11 0+5).
v=1 r=w+1"

The »t% factor in the first product can be written as

2y o 1 ﬁ": R P = i z_l"l

’ £=wzl:+1“(”)_e { ‘ f=wzl;+1“(”J
and analogously for the second product. Since for |z| < 1 we have

= 1
et = - s
El 1 —=z
the product in (3.4) can be written for |z| < 1 as i lz (2), where
(3.5) L) = ﬁ 1 —eg=&r i 1 (z_“}t . ﬁ 1 — (’_zw,% 1 (zl)z )
v=1 I=we+1 v r=w+1 =2 Ui

Equating the corresponding coefficients we get
n
1:.'. |n1] —1= 3 coeffs.2#in Q(z).
! =y

Replacing in (3.5) in each factor in curly brackets the term

— e—z'f" by’ ez"fv
we obtain instead of £2(z) a function £2%*(z) whose coefficients (are positive and)
majorise the absolute values of the corresponding coefficients of 2(z). Hence

n1|—1I = z coeffs. gt in 2% (2) < 2% (1) — Q2%(0)

(3.6) wet
& v 11 = v
=—1+n|1+elfz Fade 1 el
v=1 I=wz+1 v=w+1 {2
Here the first product is

re=l I=ws+t+1

<mpled Frgrms 3 <

I=ums 2 lmwptl

oy Ul’ oo l 1
< exp ze 2 TR <

o0

= exP{(m 24? T {w)‘:n' Z‘, = 1}< ox p{(wgl?m]
and analogously the second is
< exp {a%} .
From these and (3.6) we get
. [Til—1) < — 1 4 elitor+ 1)1+ 3o <3(le_|_i’]

ma!
as stated.
This lemma gives immediately the following three corollaries.
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Corollary I1. If wi(n) and wa(n) tend arbitrarily slowly monolonically lo oo,
then the canonical decomposition of all but o(n!) P’s have the double property that
no fwo eycles of length > wy (n) are equally long and at most ws(n) cyeles can have
the same length = w1(n).

Combining this corollary with Corollary. I. we get the

Corollary III. Apart from o(n!) P’s the rematning ones, whose totality we may
call | |2, have the properties of Corollary I1. and

(3.7) |k(P) —logn| < w(n) ] logn
if only w(n) tends to co arbitrarily slowly.
Though we shall not need it here, we formulate the

Corollary IV. For all fixed real U's for the number H, (1) of P’s satisfying simul-
taneously (3.7) and the two requirements of Corollary I11. we have the limit-relation

4

; 1 1 P 2
Bm — Hylt)=——— {e %243,
lim o Hu () m_ie 7
As well-known, the order of P is given by
(3'8} O(P):[ﬂls?t@;”':nk]

the bracket stands for the smallest common multiple.
Corollary II. gives for arbitrarily small & > 0 at once for all but o(n!) P’s the

inequality
(39) O[P)gnl,ng_“nk<nk<e(1+sllog=n.

But this is much weaker than the upper bound in our theorem.

Part 1T

4. In order to prove the upper bound in our theorem we shall show that if
w1(n) tends to eo monotonically arbitrarily slowly, then for all but o(n!) P’s
the ny-numbers (in (2.4)) are in a certain sense equi-distributed in the interval
1 = < n. More exactly we mean the following. We define N by

(4.1) N = [kV3],

For each Pe ]_[2 we can determine uniquely the nonnegative integers
(£.2) 81,82, ...,8n

so that

43) = <ng<-<ng =¥ <mg < <mg g S0V <

<Ry pgt1 < < Mgy gyp e by = Nk =0

if there is no nj e.g. in "% << x = %Y we have S = 0 etc.
Of course S, = 8, (P) and

(4.4) 81+ 8+ -+ 8y=kF.
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Let [ [3 mean the subset of | [ whose P’s satisfy the inequality

| k! k \4/5
45 By 2 _)
(9 i e
and let iH3| be the number of its P’s, Then we assert the
Lemma IV, o L -
emma IV ﬂh_fo?aﬂnai_’l'

5. For the proof of this lemma it will be sufficient to show that if E; stands
for the subset of I—Iz for which (4.5) is false, i.e. the inequality

] L 1 k 4.1'5
5.1 max Sy — = L
{ ) g=12... N . N '|>( )

holds, and | B;| for the number of its P’s, then the estimation
(52) ;?:l_ IE‘II <= 4w1{ﬂ) 6—1{5 logs n

holds for n > ¢; (of course wy(n) must be < 1/10log2/5» say).
In order to prove (5.2) we write, using lemma TI.

1
(6.3) -—--Iﬁ’:I“E Z Z Ml M N L NP Ry e s

i=1 my, ”v

where j = j(P) denotes the number of different cycle-lengths not exceeding w; (n).
We can perform easily the summation with respect to

My, M2, . en, My 5

this cannot exceed the quantity

R el Rk ”(‘3 eelimgr
and hence
(54) nt !Ell = Ct)lzmlz Z ”lﬂz < 4" z z 73—1"'_‘2_

where the prime indicates that the summation is extended to all n,-systems with
properties (2.4) and (4.3)—(5.1). Since for n > ¢z we have

2logn > logn + cu(n)]/logn =k
and from (2.4)

k i
2nglogn = kng 221.5,: n ——Z(m,.— Dny=n— wfa)g s

=1 r=1 2
we get
1 4logn
(5.5) s e
and hence

W12 .. -1

1 ] ., 1 5
(5.8) o7 |B1] < gmm+2 28T ? S def g2 2L %Sk
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where > refers to the systems
(5.7) l=nm <ne< ' <fp-1<<n

restricted by (4.3)—(5.1).
Let us consider now for a fixed k the quantity Sx. We have

1 1
8= D' > — > NS, SH,
& z S 1= < L B2 - S UV s, e1< Bgi+17 M5+ 8
<

seZngg SRUN < rr<lfisgese = RN

1
v NN_”N{MI_“"HN < ﬂ’S:+Sn+“'+SN-1+1"’ﬂ'k_1 ]
SRS P

where the prime indicates that (5.1) must be satisfied. Hence
1 148 148 148w
o0 5% wtion 2.1 LB L Bl
3,.;,31\' Bt Bl 15_‘1%1%1”\' } nlf~<§snw b nw—ugzssn !
Since for n > c3

1 1
7 < ylogn+1,

nP-LUN < [ < N

(4.4), (5.8) and (5.6) give, changing also the order of summations, the inequality

1 k
s —,]ogn—]——l]
1 4«31-{—-108“ (l\. ' k!
Bl oplB e % =) i ZS 81181, . 8x!
N

Lyvses

6. Now we estimate the inner sum in (5.9) using (5.1). If e.g. u = 1 this
can be written as
(k) (k—Sl)! . Z (k)(N_l)k—Sx

8 82183! ... Sxl 8
18— RN =N L St Sy == 2 Su |S1— k(N[> (k[ T

& k)( HL)E:—S;(LSI'
o lSJ—kIN%(HN)‘-" (81 Lo o )
But for n > ¢4 the last sum, owing to the law of large numbers cannot exceed
the quantity — (kN30
e-lfﬁr"dr & e—l,fsk’ﬁ .

V2 n A
The same holds for 4 = 2, 3, ..., N too; hence (5.9) gives the estimation
1 4m1+3 ]_0g2 n —1/8 s (log n 4 N)k 40143, o —1/4log¥in
Jiw AT gl i g
lk—logniéu{n)l/logn
) Z E?g“'i'_(;.l‘]g”)m)k _ 4213 g—1/4log¥5n 7 (Zlogn)? <4«u.e—1!510g3!5n
! n

for n > ¢5, which proves lemma IV.
7. Lemma IV. gives the possibility to improve (3.9). We get this time
O(P} = ning...ng é (nl_mr')Sl (nml\?)Sz bl {ﬂ.-\',f_!\")&v = n(l\'*+1)f2 m:x Sy
and owing to lemma IV.
o( P) < RN +HDI2 N+ EINPE) - pRl2+EYE N
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for n > ¢g which is only another form of the assertion, (even with
(1.1) O(P) < eti2iostn-2logmytons
for all but o(n!) P’s).

Part 111

8. Before turning to the proof of the lower bound we need some further lem-
mata, Let U(m) stand for the number of different prime-factors of m, further
@ (m) resp. g(m) for the maximal resp. minimal prime-factors of m. Then each
integer m =< n can obviously uniquely be decomposed in the form

(8.1) m = a(m)b(m)
where
(8.2) Q(a(m)) = logbn
(8.3) q(b(m)) > logbn.
Let further be R the set of integers defined by
(8.4) m=n, a(m):=elaoemt

Then we assert the
Lemma Y. For n > ¢; the inequality
.
m‘gﬂ m k& logm n
holds (the summation being extended only to different a(m)-values!).
9. For the proof of this lemma we split our sum in the form

1 1
(9.1) > @ X 2 amy LK1+ K.
wme R I=loglogn meR
U{m)=loglogn Uim)=1

The inner sum in K3 is evidently for n > cg
1 14! 1
ﬂépl’o;“-n
and thus

L s 1
(9.2) Ky < Z il (2 log log log n)t < e~ 1/2l0glognlogloglogn - Sy

l=loglogn
As to K let us observe that each term of it contains, as factor, a “large’ prime-
power, Namely if ¢ is the maximal exponent in a(m), then owing to (8.1) and
(8.4) and U (m) = loglogn we have
(logﬁ n)t]oglogn :_2,. e(loglogﬂ)“
ie.
t= % (loglog n)2.

Thus all m-values of K are divisible by a prime-power pt satisfying the inequalities
9.3) QU6doglogm)® < pt <, p <logbn.




On Some Problems of a Statistical Group-Theory. 1 183

Fixing this p¢ the contribution of the terms divisible by this p! is (roughly)

1
spty o <2ogn:pt

m=n
ie. Ky < 2logn Zp"
where the summation is restricted by (9.3). Since the number of terms is
1
< 'IE'ET_?:' -logbn < 2log’n

(9.3) gives for n > cg
K1 < 2logn - 2 log? n - 2~1/000glogn)* Qﬁéiﬁﬁ :

This, (9.2) and (9.1) prove lemma V.

10. Next let 1_I4 be the subset of 1_[3 (defined before lemma IV.) with the
additional property
(10.1) Q((ny, ny)) < logbn
for each 1 < 4 <v =k — 1 pairs and |] [4] be the number of its P’s. Then we
assert the

Lemma VI. The relation

. 1
tim 2|l =2

kolds.

In other words for almost all P’s, in addition to what was previously said, no
pair ny, ny (1 < p <v <k — 1) have “large” common prime-factors.

11. The lemma will obviously be proved if we can show that, denoting by Es
the subset of | [3 whose elements have the property
(11.1) max Q((1n,, 1)) > logén

1=p<vsk-1

and denoting by | Ez| the number of its P’s, the inequality

1 qondn)-+6
(11.2) ETIEZl‘:'deﬁ_
holds. For the proof of this assertion we can start from (5.6) in the form
1 5 logn 1
113) oy |Ba| <dmmr2 8 oo B o
n! n Jk—log%& logmnz N NG ... R
where Z”’ refers beside (5.7) also to the restriction (11.1). Fixing the g, » pair in
(11.1) as E—2, t—1 say
the corresponding part of the double-sum as (11.3) is
1l < 1
= = ris — . —
p}%sn p2 2 MyTlg ue Ppg Mg Mpy
log 2, R 1)2
< 3 (__P mE £ > S —
p>login P 1sn< o cip-gsn FLRZ .0 Tg-3
13 (14 log n)k—3
< log?n ( > f?) =31
p=login

Z. Wahrscheinlichkeitstheorie verw, Geb., Bd. 4 13
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Summing for all u, v-pairs we get for > "' the upper bound
([2 log n] log?® 1 (14 logn)t3 4 (1 + logn)k—3
2 ) . 3

" logtn (k—3)! “—log*n (k—3)!
Summation with respect to k gives from (11.3)

49 +2logn 4 4en+6
n log2 n Efi log »

-nl—! |E3[ <l
as stated.

12. We have to make a final selection from | [4. For all of its P's we form
their canonical decomposition and for all n, cycle-lengths the decomposition (8.1)
ny = a(ny) b(ny)

(a(ny), b(n,) functions of P)

shortly. Let H5 be the subset of 1—[4, for whose P’s the inequality

(12.1)

max a(n,) < efloglozn)!
S T

holds. Denoting by |] [5| the number of these P’s we assert the
Lemma VII. Tke relation

" 1
b Il =1
kolds

By other words for almost all P’s, in addition to what was previously said,
the contribution of the “not too large” prime-factors of the P’s is “not too large™.

13. Again the lemma will be proved if we can show that, denoting by F3 the
subset of [ 4 whose elements have the property

(13.1) max a (ny) > efloglogn)?!

and denoting by | B3| the number of its P’s, the inequality

1 4wi+5
(13.2) o1 | B8l < g
holds.
For the proof of this assertion we can start again from (5.6) in the form
i logn 1
2 PG o - Edd N : -
(13'3) n! IE31 <4 n % z* LN een BEp-1

where Z * means that in addition to the properties of H4 also (13.1) is fulfilled.
We split the inner sum (13.3) into % partial-sums, the ut? of which replaces
(13.1) by

(13.4) a(ny) > eloglosn?®

First we perform the summation with respect to the n;’s with j + u; this gives
at most
(1 + log n)k—2
®—au



On Some Problems of a Statistical Group-Theory. I 185

Next we perform the summation with respect to n, but taking in account (13.4).

Fixing a value for a(n,) the corresponding n,’s contribute to our sum by
1
E(ﬁj (14 ]Og )
at most; thus

1 (1 + log n)k—2 . 1
*?152... ng-1 o z (k=2 ZIOgng ang) "

Using lemma V. this is

(1 4 log ny*-2 2
<2 k—2)! logPn"
i

Summing with respect to u gives
2 (1 + log n)k-2
2 < OB
Putting this in (13.3) we get

4o+3 (1 + log n)k-2 4m+5_
n log?n < (k—2)! log” n

1
HiEal <

which proves lemma VII.

14. Now we are in the position to establish the lower bound in our theorem.
According to lemma VII. apart from o(n!)P’s the remaining ones have the
following properties (w1(n), wz(n) and w(n) equals 1;"Eglf)_gs€ e.g.)

a) |k(P)—logn| = w(n)]/logn

b) no two mny-cycles of length = w;(n) in P have the same length

¢) at most wg(n)-cycles in P can have the same length < w;(n),

d) the different cycle-lengths in P are “‘equidistributed’ in the sense (4.3) —(4.5)

€) no ny, ny pairs (1 < g < v =<k — 1) have a common prime-factor > log8 =,

f} for all n, cycle-lengths the contribution of the prime-factors not exceeding
logé n cannot exceed exp. ((log logn)4).

For these P’s we have with the notation (8.1)—(8.3) the inequality

(14.1) O(P) = [, ..., ng] = [b(m), b(n2), ..., b(ng-1)]
and since owing to the definition of b(n,) and property e., we have
(Bb(nu), b(ny)) =1

also
Tl N2 wee REp=-1

a(m) a(ng) ... a{ng-1)

[B(n1),b (ng),...,b(ng-1)] = b(n1)b(na)...b(ng_1) =
and thus from (14.1)

Ny N3 ... Nk 1_
a(ny) a{n) ... a(np-1) n °

(14.2) op) =

But owing to properties f) and a)
a(n1)a(ne)...a(np—1) < elosiosn2losn
we get for the remaining P’s, i.e. for all but o(n!) P’s

(14.2) O(P) = ning...ny - e~ 2lognloglogn)t
13*
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The lower bound will be established at once using property d). This gives

namely

N ... Mg = {nl;l\?)Ss {nﬂN)Sa s (n{;\?—])f.’}s.v = p¥-1)2 m’i‘ns’,,.
But from (4.5)
k {’ k ]4;5

mjnSﬂgN ~

i

N1Ng ... g > nk;2-2k"fﬂ\-"f5 = el}?log“n—&]og“f“n

which establishes the upper bound for n > ¢jp (even with
(14.3) O(P) > ¢l/2log?n—4log®t*a

for all but o(n!) P’s).
Finally we remark that what we actually proved (see (14.2) and (3.9)) is that
apart from o(n!) P’s the inequality

fiA,

(14.4) ¢ —3logn{loglogn)* — O(P) 1

= nyng...np

holds i.e. O(P) is “‘essentially” ning...nk, for “almost all” P’s.
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