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ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY

BY
P. ERDOS

ABSTRACT

The author proves that if C is a sufficiently large constant then every graph
of n vertices and [Cn?/2] edges contains a hexagon X, x>, X3, X4, X5, X and
a seventh vertex Y joined to X, X3 and Xs. The problem is left open whether

our graph contains the edges of a cube, (i.e. an eight vertex Z joined to X, Xs
and Xg).

Throughout this paper G, G’ will denote graphs, V(G) denotes the number
of edges, n(G) the number of vertices of G. G(n;m) is a graph of n vertices and
m edges. Vertices will be denoted by x, --- y; -+ edges by (x, ¥). {Xy, -, X,} denotes
a path whose edges are (xy,x,), -, (X,-1,X,), the vertices x,,---,x, are assumed
distinct, n — 1 is the length of the path, similarly (x,, -, x,) is a circuit of length n
whose edges are (x,x,), -+, (X, - 1, X,), (X5, X1). v(x), the valency of x is the number
of edges incident to x. G(xy,:--,x,) is the subgraph of G spanned by (x;,---,x,).
In an even graph all circuits have even length. It is well known and easy to see
that the vertices of an even graph can be divided into two classes 4 and B so that

every edge joins a vertex of A to a vertex of B. C,c,c, --- denote suitable positive
absolute constants.

Recently several papers appeared which discussed various extremal problems
in graph theory [1]. Denote by f(n;k,l) the smallest integer for which every
G(n; f(n;k; 1)) contains a G(k,[). Two years ago Turdn asked me to determine
or estimate the smallest integer m for which every G(n;m) contains the various
graphs determined by the vertices and edges of the regular polyhedra. For the
tetrahedron the problem was solved many years ago by Turén himself [6], for the
octahedron I proved several years ago that (n%/4) + cn*? < m < (n?/4) + Cn®?,
details of the proof have not been published [1] and in this note we do not discuss
the octahedron. The question for the dodecahedron and icosahedron seems
difficult.

It is well known that f(n;4,4) > cn®2, but for a sufficiently large C every
f(n;[Cn*?]) contains a rectangle [2]. One might conjecture that for a sufficiently
large C every G(n;[Cn®?]) contains a cube. In fact I proved that f(n;8,12) < Cn*/?,
and I even showed that every G(n;[Cn>'?]) contains a G(8;12) having the vertices,
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X1,X2s X3, X453 V1> V2 V3, Vo and the edges (x;,y;) where min(i,j) <2 [3]. But at

present I can not prove that it must contain a cube. I can prove the much

weaker result that it contains a G(7,9) consisting of a hexagon (x;,+:+,X4) and a

vertex y joined to x,,x; and x5. To prove the existence of a cube we would need

an eighth vertex z joined to x,, x, and x,, and I have not succeeded in showing this.
More precisely I am going to prove the following

THEOREM. Let n > ny(k). Then every G(n; 10[k'*n*?]) contains a
G(2k + 1; 4k — 2)
which has a path of length 2k{xy,y;,-",VisXs+1} and the further edges
(xlsyi),(yl?xj)s Zé l é k, 3 g} é k + 1

Clearly our G(2k + 1,4k — 2) contains for every 2 =1 =< k a circuit of length
and another vertex joined to every second vertex of our circuit.

It seems likely that for a sufficiently large ¢, every G(n;[cn**]) contains

k
aG(l+k+ ( 5
1S i<j=k, xqis joined to all the y’s and z; ; to y; and y;. I can not prove this
for k> 3.
To prove our Theorem we need two lemmas.

) ;k?) defined as follows: The vertices are Xo3 ¥y, Vi 5 Zij»

LevMa 1. Every G(n;m) has an even subgraph having at least m[2 edges.

We prove the Lemma by induction for n. It is clearly true for n < 2. Asetme
that it is true for n — 1, we shall show it for n. Denote the vertices of G(n;4)
by x,,---,X,. Since the lemma is true for n — 1, we can split the vertices x,; --- X,
into two classer 4 and B so that the number of edges joining a vertex of 4 to a
vertex of B is at least 1V(G(xy,-+, X,-1)). Without loss of generality we can assume
that the number of edges joining x, to the vertices of B is at least 4v(x,). But then
the even graph spanned by the vertices A U X, and B has at least 3(V(G(x,_,X,—1)
+ v(x,)) = (m/2) edges, which proves the Lemma.

By a slightly more careful induction process we can prove that if the graph
G(n;m) has no vertices of valency O then it contains an even graph having at

least [’;—l- + :—] edges. The complete graph of n vertices G (n; ( ; )) shows that

this result is in general best possible. It seems probable that if we know that our
G(n;m) contains no triangle, the lemma can be considerably strengthened i.e.
m/2 can perhaps be improved to cm for some ¢ > 1/2, but I did not succeed in

doing this.

LemMMA 2. Every G(n;m) contains a subgraph G' every vertex of which has
valency (in G') greater that [m/n].




1965] ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY 115
The Lemma is known [4]. The proof is very simple.

Now we can prove our Theorem. By Lemmas 1 and 2 our G(n;10[k"/*n*?])
contains an even subgraph every vertex of which has valency greater than
SKk'2p12 Let x,--,%,3 gVt + 0 < n be the vertices of G”. Let yy,--, ¥,
1> 5kY?n''? be the vertices joined to x, and let x,,---,x,, 4’ < u be the other
x’s joined to a y;, 1 £ i =t G"is the subgraph of G" spanned by y;, - y,, X5 = X,..
Clearly each y in G” has valency > 5k*2n'/? — 1 > 4k'?n'/?, i.e. each y; has
valency (in G’) greater then 5k**n*/?, Thus

M V(G") > 4tk *n'/2.
Denote by x,, - x,» the x; with
(2) o(x;) > 2tk 2,

Let G” be the subgraph of G” spanned by x;,---,x,-; ¥{,-, ¥ By (1), (2) and
u” < n we have

(3) V(G") > V(G") — 2tk'*n'? > 2tk 02,

By (3) one of the y’s has valency > 2k'2n'/? (in G"). Let this vertex be y,
and let x5, x,, ;1 > 2k*>n''? be the vertices joined to y, . Consider finally the
graph G"(x;,--X;4,1, Va--.¥), each x; has by (2) valency greater than

12

20<'%In%t — 1 > tkY?n''? (¢t > 4k*/2n"/?), Thus by a simple computation
; 1/2
4 V(G2 s Xy 1 Vi e 1)) > ——> km(G"(xz, > Xt 15 Y2705 Vo)
since by t > 4k'/2p'/%,
12k o112 H > fien o e

t+1° 6k'2n'2

and 7(G"(xy - Xpe Y2 ¥y =1+ 1= 1.
From (4) we obtain by a theorem of Gallai and myself [5] that

G" (X35 Xps 15 Ve Vo)

has a path of length 2k — 2{x,, V5, ", Y4 Xx + 1} By our construction x, is joined
to every y of our path and y, to every x of it. Thus finally G"(xy, = X;4+ (V15" Y0)
satisfies the requirements of our Theorem.

The constant 10 could clearly be reduced, but I made no attempt in doing so
since I am not sure if the factor k'/? is of the right order of magnitude.
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