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1 . Introduction . A (round-robin) tournament T consists
n

of n nodes u 1 , u2 , . . . , un such that each pair of distinct nodes

u. and u . is joined by one of the (oriented) arcs u .u . or u.u . .
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The arcs in some set S are said to be consistent if it is possible
to relabel the nodes of the tournament in such a way that if the
arc u.u . is in S then i > j .

	

(This is easily seen to be equiva-
1 3

lent to requiring that the tournament contains no oriented cycles
composed entirely of arcs of S . ) Sets of consistent arcs are
of interest, for example, when the tournament represents the
outcome of a paired-comparison experiment [1] . The object in
this note is to obtain bounds for f(n), the greatest integer k
such that every tournament T contains a set of k consisten ,

n
arcs .

2 . A lower bound for f(n) . In this section we shov,
for all positive integers n,

(1)

x .

f(n) > [2]

	

[n21 ] ,

where, as usual, [x] denotes the largest integer not exceeding

This is trivially true when n = 1 ; suppose it has been
established for all n such that 1 <n <m - 1, and consider any

1
tournament T . Since such a tournament has a total of 2m(m-1)m

arcs, there must exist some node, say u
m

, from which at least
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[jm] arcs issue . By definition, the tournament defined by the

remaining m-1 vertices contains a set S of at least f(m-1)
consistent arcs . It is clear that the arcs issuing from u

	

andm
the arcs in S are consistent ; therefore, appealing to the induc-
tion hypothesis, it follows that T m contains a set of at least

[2 ] + [ 2 1 ] [ 2 ] _ [ Z ] [m2 1 ]

consistent arcs . This suffices to complete the proof of (1) by
induction .

3 . An upper bound for f(n) . In this section we show
that for any fixed positive E and all sufficiently large values
of n,

(2)

Let E > 0 be chosen . In a tournament T there are n!nnways of relabelling the nodes and N = ( 2 ) pairs of distinct nodes .

Hence, there are at most n'. ( Nk ) such tournaments whose largest

set of consistent arcs contains k arcs . So, an upper bound for
the number of tournaments T which contain a set of more than
(1 +E )N/2 consistent arcs is given by

(3)
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{k) < n'. N(
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]~ ([ N ]~ .[

	

~}k>(1+E)N/2

	

[(1+E N/2

	

N/2

	

N/21

1
< n! IN2N

	

N
([(1+E)I

N
\T/2]) ([N/2]~

N (N-[N/2]}(N-[N/2]-1) . . . (N -[(1+E)N/2]+ 1)n! N2 {[N/2] + 1) ([NJ2] + 2)

	

[(l+E)N/2]

2
< n! IN 2N

e_E N /4

f(n) < 1 + E (n~	 2 	2 ,
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The last inequality of (3) follows from a simple computation

using the fact that "_ - x < e _ x for 0 < x < I

	

But -for &I .,
sufficiently larze n the last quantity in (3) is easily seen to

7
be less than 2

	

the total number of tournaments with n nodes .
Hence, there must be at least one tournament T which doesn
not contain any set of more than (1 + E)N/2 consistent arcs .
This proves (2), by definition . With a more careful analysis
of inequality (3) this argument actually implies that

(4)

	

f(n) < I/2 (2) + ( 1/2 + o(1)) (n log n)1/2 .

It would be desirable to obtain a better estimate for f(n) .

The argument employed in the preceding paragraph illus-
trates the usefulness of probabilistic methods in extremal
problems in graph theory, for while we can easily infer the
existence of a tournament with a certain required property we
are unable to give an explicit construction actually exhibiting
such a tournament in general .

4 . A more general problem . Let G(n, m) denote an
incomplete tournament, or oriented graph, with n nodes and
m arcs . Let f(n,m) denote the greatest integer k such that
every incomplete tournament G(n, m) contains a set of at least
k consistent arcs . If it is assumed that n log n/m-0 as n and
m tend to infinity then it can be shown, by arguments similar
to those used above, that

(5) lim f(n,m)/m = 1/2 .
n-> o0
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