ACTA ARITHMETICA
XI (1965)

On a problem of Sierpinski

(Extract from a letter to W. Sierpinski)

by
P. Erp0Os (Budapest)

Denote by ug the least integer so that every integer > u, is the sum
of exactly s integers > 1 which are pairwise relatively prime. Sierpin-

termination or estimation of u,. Denote by f;(s) the smallest integer so
that every [ > f,(s) is the sum of s distinct primes; f,(s) is the smallest
integer so that every I > f,(s) is the sum of s distinct primes or squares
of primes where a prime and its square are not both used and f,(s) is
the least integer so that every [ > f,(s) is the sum of ¢ distinet integers > 1
which are pairwise relatively prime. By definition f;(s) = w,. Clearly

fs(s) < fa(8) < fi(s).

Let p, =2, p, = 3, ... be the sequence of consecutive primes. Put

s o+
A@s)= Y, B(s) =) p
i=1 =2
THEOREM. f,(8) < B(s)-+C where C is an absolute constant independent
of s.
First we prove two lemmas.
LevwmaA 1. Let ) be a sufficiently large absolute constant. Then
(1) fi(s) < A(s)+ e slogs.
We shall first prove
(2) fi(s) < A(s)+e,slogsloglogs

and then we will outline the proof of (1).

Denote by #,(N) the number of representations of N as the sum of %
odd primes. It easily follows from the well-known theorem of Hardy-Little-
wood-Vinogradoff ([2], p. 198), that

(3) rs(N) > ¢;N*/(log N)*.
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The well-known theorem of Sechnirelmann ([2], p.52) states

(4) (e e 11( ) BB logligN
lf_ag}\ (log N)

(The last inequality of (4) follows from the prime number theorem, or
from a more elementary result.)
From (4) we obtain that the number of solutions of

Y

(D) N = 'pi'| + P;‘E"" Pig s "':1 =&
is less than
(6) ¢y Nloglog N /(log N)*.

From (6) and (3) we obtain by a simple caleulation that if N =
= ¢slogsloglogs then

{7J N = pu+ Po T Puws s<<u<v<<w

is solvable (since the number of solutions of N = 2p+¢q is clearly <
< ¢N/log N).
Consider now the integer

A(s)+1, t=> ¢,slogsloglogs.
Pui

Ps atPsaTPsTI if tis even,

2+ petpett if s odd.
By (7)

by = Py Dot Piss S<<n<v<w

is solvable. Thus A (s)-~1 is the sum of s distinet primes which proves (2).

Now we outline the proof of (1). It is easy to see that (1) will follow
if we ean prove that for

(%) e.slogs < N < ¢ slogsloglogs
the number of solutions p(N) of (5) satisfies
(9) p(N) < ¢,sN/(logN ).

jut by the above mentioned theorem of Schuirelmann

5

10 < Ynw-m< 2 31T [142).

i=1 - i=1 pl(N—»;)
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Now it can be proved that if N satisfies (8) then

> L[ g)<ee

i=1 PIN=P;)

We supress the proof of (11) since it is not quite short but uses fairly
standard arguments and it is of no great importance for us to have Lem-
ma 1 in the sharpest possible form. (9) follows immediately from (10)
and (11). Hence (1) is proved and the proof of Lemma 1 is complete.

The estimation given by Lemma 1 is best possible (apart from the
value of e)), since considerations of parity shows that B(s)—2 can not
be the snm of distinet primes and clearly

B(s) = A(s)+eeslogs  (since pg = ¢;slogs).
Perhaps f,(s) = B(s)+ o(slogs) but this. T have not been able to prove.
It is easy to see though that

limsup (f,(s)—B(s)) = o

F=00
and probably
Illtl (fi(s)—B(s)) = oc.

LeMMA 2. Put @, = pi— pr, k = 2. Then there exists an absolute con-
stant A so that every even integer grealer than A is the sum of distinet a;’s.

One can easily deduce Lemma 2 from a theorem of Cassels ([1]) (it
easily follows from the results on Vinogradoff ([4]) that if 0 < « < 1 then
(f)u[mml]} has at least one limit point different from 0, thus the theorem
of Cassels can be applied). An elementary and direct proof of Lemma 2
shonld be possible which would have the advantage of determining the
best possible value of A. Such a proof would perhaps require a considerable
amonnt of numerical caleulation and T have not carried it out.

Now we are ready to prove our Theorem. We shall in fact show that
for s > s,(e))

(12) f:(s) < B(s)+A.

Let now w = B(s)+A. If n > A(s)+ ¢, slogsloglogs then by Lem-
ma 1 n is the sum of ¢ distinet primes (we only use (2)). Thus we can
assune

Bs)+A < n < A(s)+e¢ slogsloglogs.
Assume first n = B(s)+ 2. Since 2t > A, by Lemma 2

U=+, k<< ky,
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but 2t < e¢;slogsloglogs clearly implies that for s > s) = s,(¢;), k, < ¢
(since a, = p;—p, > ¢,8logsloglogs). Thus

841 r
B(s)+2t = X pit Y a
f=2 i=1

gives a representation of B(s)4 2f as the sum of s distinet primes or squa-
res of primes where p and p? are not both used.

Assume next n = B(s)+2{+1. Then n = A(s)4 24, 2, < eslogsx
xloglogs. Thus the same proof again gives that » is the sum of s distinet
primes of squares of primes where p and p® are not both used. Thus (12)
and hence our Theorem is proved (the cases § < s, can be ignored because
of Lemma 1).

Finally we remark that f;(s) = B(s)—2 since B(s)—2 can not be
the sum of s distinet infegers >1 which are pairwise relatively prime.
To see this we only have to observe that by considerations of parity no
even number can occur in such a representation.
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