LARGE AND SMALL SUBSPACES OF HILBERT SPACE

P. Erdds, H. S. Shapiro, and A. L. Shields

In this paper we consider closed subspaces V of sequential Hilbert space ¢, and
of L,(0, 1). Our results are of two types: (1) if all the elements of V are “small,”
then V is finite-dimensional; (2) there exist infinite-dimensional subspaces V con-
taining no small elements (except 0).

For example, Theorem 3 says that if V is a closed subspace of ¢; andif V — (
for some p < 2, then V is finite-dimensional. On the other hand, the corollary to
Theorem 4 states that there exist infinite-dimensional subspaces V of ¢, none of
whose nonzero elements belongs to any (;,-space (p < 2). [For L(0, 1) the results
are somewhat different: (1) if V isa closed subspace of Ly(0, 1) and if VC L,
then V is finite-dimensional. Theorem 6 gives a condition for the finite-dimension-
ality of V in terms of Orlicz spaces, and by Theorem 5 this condition is best pos-
sible; in particular, L, cannot be replaced by Lg for any q < =. (2) There exist
infinite-dimensional subspaces of L, none of whose nonzero elements is in any L,-
space (q > 2) (Theorem 7).

Since the elements x € (, are functions x = (x(1), x(2), *--) on the nonnegative
integers, there are various ways of defining “small” elements. For example, Theo-
rem 1 states that if all the elements x € V satisfy a condition I (n)i = O(p,), where
@pn < w0, then V is finite-dimensional. On the other hand, Theorem 2 states that if
Z.pn = then there exists an infinite-dimensional closed subspace V all of whose
elements satisfy the condition |x(n) ] = O(py ), but none of whose elements (except 0)
satisfies the condition |x(n | = o(pn]

Theorem 8 gives a formula for the exact dimension of any closed subspace V of
f; . The paper concludes with an application of Theorem 8 to a problem involving
bounded analytic functions in the unit disc: we give an elementary proof that an in-
ner function cannot have a finite Dirichlet integral unless it is a finite Blaschke
product.

We need the following compactness criterion [3, Chapter I, Section 10/
If p, >0 and p < =, then {x:x€ (,, |x(n)| <p,} is compact.

THEOREM 1. Let V be a closed subspace of (5, and let {p,} be given, with
Pn > 0 and llpr% <o, If |x(n)| = Olp,) for all x € V, then V is finite-dimensional,

Proof. Let Vi, = {x:x€ V, |x(n)| <mp, forall n}. Then V,, is compact
and hence, if V were infinite-dimensional, V,,, would be nowhere dense in V. But
this would contradict the Baire category theorem, since V = U Nogae

THEOREM 2. Letp, >0, p, — 0 and I‘;pﬁ ==, Then there exisls an infinile-
dimensional subspace V of (, such that for each x € V

(i) |x(n)| = Olp,).

(ii) '}x(n)] = o(pn) =>x=0.
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[In other words, the elements of V are not too large, but nonetheless V contains no
small elements. |

We omit the proof of the following lemma.

LEMMA 1. Ifd, >0, d, — 0, and Zd,= =, then theve exists an infinite subset
N of the positive integers such that ZieN di =1

Proof of Theovem 2. Let Ny, N,, *** be disjoint infinite subsets of the positive
integers such that

> pif-:1 (j=1,2 ).
i€ N,
J
(Apply the lemma repeatedly, each time deleting the subset NJ- selected at the pre-
vious stage.)

Consider the functions f, , f,, «+- given by
S,Oi (ie Nj )
fJ(l.} = 4
lo G¢N;).

Then {f J-} is an infinite orthonormal set in (. Let V be the subspace spanned by
it. Each x € V has the form x = Za;f; (2 |aj|-’* < «), Let M = max |aj|. Then

|x(1)| < Mp; forall i,

which establishes (i). On the other hand, if x # 0 then at least one coefficient, say
a ), is not zero. Hence

|x(1)] > Lim sup |ai?i|

lim sup — = |al| >0,

i— oo 1 1€N; +

which establishes (ii).

Remavk. If all the elements of a closed subspace satisfy an O-condition, then
they satisfy it uniformly. More precisely, if |x(n)| = O(p,,) for every x € V, then
there exists a constant M such that

1) x| < Mpolxl (e v).

Proof. Let e, be the n-th coordinate functional, that is, let (x, e,) = x(n) for
all x. Assume p, > 0 for all n (since (1) holds automatically for indices n for
which p = 0).

Let f,=e,/p,. By hypothesis, to each x € V there corresponds a constant ¢,
such that |(x, f,)| < c, for all n; that is, the functionals {f,} are pointwise
bounded on V. By the uniform-boundedness principle, there exists an M such that
I, <M for all n.

THEOREM 3. If V is a closed subspace of {; and V C Uy for some p < 2,
then V is finite-dimensional,

Proof. Choose £, > 0 with Yg <=, For x € V, let



LARGE AND SMALL SUBSPACES OF HILBERT SPACE 171

NG = 2 [x@[, R&= 2 |x0)".
n<k n>k

Choose an x) € V such that 1 < Rg(x;) <1+ ¢, and an n; such that
an(xl) >1.

If V were infinite-dimensional, then by suitably combining n; + 1 linearly in-
dependent vectors we could produce an x, € V such that

x,(m)=0 (m<n;) and 1<Rnl(xz)<1+sg.

Now choose n, so that Nna{xz) >1,

Continuing in this manner, we construct a sequence {xk} < V and an increasing
sequence of positive integers {nk} such that, for all k,

X M) =0 (n<ny), 1 <Rnk(xk+1)<1+aﬁ+l, Nnk(xk)zl.
Let

g xi(n) (0 <ny),

f, (n)
k

?0 (n>ny),
g = Xy - Iy

Then {f)} is a bounded orthogonal family in (,, and

(2) ltd, > 1, ey < &

Let {ak} be a square-summable sequence of positive numbers that is not in EP'
and let

y1 = Dagf, V2 = Eakgk’ ¥ =¥ v

By the Riesz-Fischer theorem, the series for y; converges in (,. Since
Zak|rg ilp <, the series for y, converges in (p and hence in (, (the 2-norm of
an element is less than or equal to the p-norm). Thus y = Zay x,, with the series
converging in ¢, and so y € V.

However, y; }: EP' Indeed,
Zlyi)|® = Zayl® el = =

by (2). But y, € (,, and so y £ ly.

THEOREM 4. If p,> 0 and Zp% = = then theve exists an infinite-dimensional
subspace V of 5 such that % |x(n)| py = © for all x +0 in V.

Proof., Divide the positive integers into a countable number of disjoint infinite
subsets Ny, N,, *++ such that
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E plz-_-oo (j=l.2,"').
‘].ENj

Choose unit vectors f;, f;, **+ in (, such that fj(i) =0 for i 4{ N; and

2 fip; = (1=1,2 ).

i€ Ni

Then {f;} is an infinite orthonormal set; let V be the subspace spanned by it. Let
X = Eaj fji € V, x# 0. At least one coefficient, say a,, is not zero. Thus

2 |xm)|p, > la,| 2 |t3)]p, = .

; i
i€ N

COROLLARY. There exists an infinite-dimensional subspace V of [, none of
whose nonzero elements belongs to any ﬁp (p < 2).

Proof. Choose {p,} € ¢ q for all g > 2, with 2 pZ2 = =, and apply Theorem 4.
By Holder’s inequality, no nonzero element of V can belong to any class (;, (p < 2).

We now consider L;(0, 1), Here the situation is quite different. Since Ly L,
for q > 2, the analogue of Theorem 3 would be that if a closed subspace V of L, is
contained in Lg for some q > 2, then V is finite-dimensional. This is false, how-
ever, as the following theorem shows.

THEOREM 5. There exists an infinite-dimensional closed subspace V of
L2(0, 1) each of whose elements { belongs to every class Lq (q < =), and in fact
salisfies the condition

)

(3) S exp {c |f(x) [‘)‘} dx < =

for every c > 0.

Proof, This is well known from the theory of Fourier series: let V be the sub-
space spanned by the Rademacher functions (see [8, Chapter V, Section 8.7]).

In Theorem 5, we cannot take q = =; in fact, condition (3) is “best possible.”

THEOREM 6, Let V be a closed subspace of L over a finite measuve space.
Let #(x) be a convex, conltinuous, strictly incveasing function on [0, o) with
$(0) = 0, and with

CXE'

(4) lim ¢(x)e” = o

X —+ 00

for each ¢ > 0. If j ¢(‘f|)du <o forall £ € V, then V is finite-dimensional.
COROLLARY. [IfV is a closed subspace of L over a finite measure space,
and if each function in V is essentially bounded, then V is finite-dimensional.

Before proving the theorem, we introduce some notations about Orlicz spaces
that will be uged in the proof.
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Let By, denote the set of measurable functions f for which
Yotlthan < 1.

Ey is the set of functions f some constant multiple of which belongs to By, (vf € By
for some y > 0). We do not distinguish between functions that agree almost every-
where. The proof will show that Theorem 6 is valid under the weaker hypothesis
that V C Eg.

The Orlicz norm [f| 4 in Eg is defined as follows:
I, =0 if and only if £=0 a.e.;

otherwise, |f|| 4 is the reciprocal of the (unique) positive number ¢ for which
S‘¢(c|f|)du: 1 (since ¢ is strictly increasing, ¢ is well-defined).
With this norm, Eg is a Banach space; By is the unit ball. For a discussion

along these lines see [4] and [7]. Using (4), we can show that L., C E4 C Lq for all
q < =,

It will be convenient to modify the function ¢ somewhat. Let
$*(x) = max (¢(x), x°).

Then ¢* is a convex, continuous, strictly increasing function on [0, =) satisfying (4)
and

(5) o*(x) > x> (x> 0).

Finally, Egx = Eg, since ¢*(x) = ¢(x) for all sufficiently large x. Since the proof
of Theorem 6 will only require the hypothesis V C E;, we may replace ¢ by ¢*. In
other words, dropping the star, we may assume in what follows that the function ¢(x)
of Theorem 6 also satisfies (5).

LEMMA 2. E4C L, and ||f]; < || ¢ for aill £ € Ey.

Proof. Tt suffices to show that if f € By, then f € L, and [[f], < 1. This fol-
lows immediately from (5): )

§ 1P an < Volf]an < 1.
We now assume that V is a closed subspace of L, and that V © Eg.
LEMMA 3. V is a closed subspace of Ey.

Proof. Let {f,} CV, f, —f in E4. By Lemma 2, f, —f in L,, and hence
feV,

LEMMA 4. On V the ¢-norm and the 2-noym ave equivalent.
This is a well-known result of Banach [1, Chapter III, Section 3].

Proof of Theorem 6. Assume that V is infinite-dimensional, and let {h, | be
an orthonormal basis for V, Let
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Enx = {x: |hy(x)| < k}.

We distinguish two cases, and we show that Lemma 4 is violated in both. In the first
case much more is true: V cannot be a subset of Lq for any q > 2,
Case I. There exists a 6 > 0 such that
soogil 2
inf | |ny
Enk

de < 1-6 (all ).

Here, for each k there exists an n such that j |h,|? du > &, where F denotes
F
the complement of E_, . For each q > 2,

Sial®> § Il > 632§ ngft > et 2.

Since k is arbitrary, the g-norm is not equivalent to the 2-norm on V, and thus V
cannot be a subset of L.

Case I1.
sup infj lh,[“dp = 1.
k n Enk
All we really require is that
(6) ) Ih,dp > d >0
Enk

for some fixed k, some fixed constant d, and for infinitely many values of n.

We now show that (6) implies the existence of a positive constant 6 and a se-
quence of measurable sets Fn} such that

(7) p(F) > 06, |h(x)|>6 (xeF,).

Indeed, fix an o > 0 such that &% < min(d, k%), and choose any n for which (6)
holds. Let G, be the subset of E,j where |h,| < @, andlet F, = E,; - G,. Then

. S
jE‘nk.|hn| dp ‘SGH}‘}Fn

d

1/

< @ u(Gy) + KA u(Fy) = (° - a®) u(Fy) + o p(Ep).

Since p(E ;) cannot exceed the measure of the whole space, which we take to be 1,
we have the inequality

w(F,) >

which establishes (7).
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By considering real and imaginary parts of h,, on suitable subsets of F, (which
we continue to denote by Fy), choosing a smaller &, and passing to a subsequence,
we may assume that

(8) W(F) > 8, Shy(x) > 6 (xe€Fy, n=12 ),

By a result of Visser [6], there exists a subsequence of {F,}, which we continue
to denote by {F _}, for which

(9) B(Fp N FpN e N FY) > %5“

Let f, = (hj + *** + h,)/¥n6. Then ||f,], =1/6 and %f,>Vn onaset E, of

measure at least —12~n5 n Choose ¢ > 0 such that e > 1. Then

cn-—voc (n—-;m).

(10) 5 exp (¢ |fn|a no>
>

n

MI'—‘

We assert that |1, || — =, Indeed, fix & > 0 and choose an N such that
o(ex) > exp (cx?) for x > N. Then, for n > N%, we have the relation

\' ofelt, an > S o(et, [Ndu > 5 explcf,|*)ap;
" YE YE

n n

the last member tends to infinity, by (10). Hence ||fn|] e 1/e. Thus Lemma 4 is
contradicted, and this completes the proof.

We now establish a theorem analogous to Theorem 4.

THEOREM 7. If h(x) > 0 (0 < x < 1) and S hdx = w, then there exists an in-
finite-dimensional subspace V of L,(0, 1) su(-}a thal ‘S |fh| dx == forall f e V
(f#0).

Proof. Let E = {x:n<h%x)<n+1} (n=0, 1, «) and let

p2 = j hldx < © (n=0,1, -).
n
El'l
Then Zpﬁ ==, Let N}, N,, --- be disjoint subsets of the positive integers such that

T optew (1=1,8 ),

i€ M.
i€ N

and let Fj = UiEN E;. Let g,, g,, *=* be nonnegative functions, with g; supported
J

in Fj, ‘S g-f: 1, and \hrr- =w (j=1,2, »+). Then {gj} is an orthonormal set.

Finally, let V be the subspace spanned by {g }, and let f = ;aJ- g; € V. At least
one coefficient, say a,, is not zero. Thus
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1 ~
5 lth| dx > |a] j g hdx = .
0 F].
COROLLARY, Theve exisls an infinite-dimensional subspace V of L,(0, 1)
none of whose elemenls (except zevo) is in any space Lq (q > 2).

The proof is similar to the proof of the corollary to Theorem 4.

We now return to sequential Hilbert space {, . Evaluation at the n-th coordinate
is a continuous functional on any closed subspace V C {; . Hence there exist ele-
ments Ay, Ay, +++ in V for which

(11) (x, ;) = x(n) (x € V),

(If we regard V as a Hilbert space of functions on the positive integers, then An(j)
is the “reproducing kernel” for V.) Thus

|x(n)| < [|x]| |ra] (all n, all x € V).

THEOREM 8. Let V be a closed subspace of (5, and let {An} €V be the co-
ordinate functionals (11). Then

dim Vv = 2| an?

(finile o infinile).

Proof. Let {xJ} be an orthonormal basis for V. Then
dim Vv = 2 [|x;[* = 2 Z[xm)|? = 2 Z|(x5, )12 = 2]
J ]l n n j n

Theorem 8 has an application to the theory of bounded analytic functions. We
require a few definitions.

An inner function is an analytic function ¢(z) = Za,z", bounded by 1 in the unit
disc, whose radial boundary values have modulus 1 almost everywhere. Equivalent-
ly,

o so k=1, 2 ),
Z; a’n5’n+k = Y
n=0 ' 1 (k = 0).

We shall show that if ¢ is an inner function, then Zn |a,| ¢ <« (that is, ¢ has a

finite Dirichlet integral) if and only if ¢ is a finite Blaschke product. This result
was proved in [5] by means of the theory of dual extremal problems. Our proof is
based on Theorem 8. For a discussion of inner functions and of the Hilbert space
H, of power series with square-summable Taylor coefficients, see [2, Chapter 5].

By ¢H, we denote the subspace of H, consisting of all multiples of ¢. It is a
closed subspace, since multiplication by ¢ is an isometry. We state the following
lemma without proof.

LEMMA 5. Let ¢ be an inner function, and let V = (z;t;Hz)l . Then V is finite-
dimensional if and only if ¢ is a finite Blaschke product, in which case the dimen-
ston of V is the number of factors in the product.
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THEOREM 9. Let ¢(z) = Za,z™ be an innev function. Then

Zinlay|? = dim(¢H,)" .
Thus the Divichlet integral of ¢ is finite (and is then an integval multiple of ) if
and only if ¢ is a finite Blaschke product.

Proof. Let W denote the subspace ¢H;, and let V be its orthogonal comple-
ment. Let {en} be the usual orthonormal basis for ¢, (e,(j) = 6,;) and, as in
Theorem 8, let {\,} denote the coordinate functionals in V. Finally, let { Lyt be
the coordinate functionals in W. Then e, = A, + [y, .

Note that {z¥¢} (k= 0, 1, ---) is an orthonormal basis for W. Hence
[2al? = 1 Jual® = 1-Z|E*s, w2 =1- Z Ja, 2 = T |a|?,
k k<n k>n

since Z |a,k|a =1. Summing on n, we see that

dim V = Zn|a,|?.

Our results can be applied to other function spaces. For example, let H denote
the space of entire functions f= Za, z" with norm

I£]* = Znt |a )?.

These functions all satisfy the condition

1(z)]* = o(er&) (r=|z]),

hence they all have order at most 2, and if the order is 2 then the type is at most
1/2. Suppose that V is a closed subspace of H and that

|1(z)|* = O(Era/r‘*)

for all f € V. Then, using Cauchy’s inequality for the Taylor coefficients, together
with Theorem 1, we can show that V is finite-dimensional. Hence every closed
infinite-dimensional subspace of H contains functions of order 2 and type 1/2.

On the other hand, our results do not answer the following question: does H;
contain an infinite-dimensional closed subspace V with

|t(z)| = 0((1 - [i|)1 4) (|z] <1)

forall f e V?

In conclusion, we mention a problem that arose in this work and was left unset-
tled. Let T be a bounded linear transformation from (4 to ¢, for some q > 2.
Since (, C Eq. we may restrict T to (,, thereby obtaining a map of (, into itself.
Is this new map necessarily completely continuous?



178 P. ERDOS, H. S. SHAPIRO, and A. L. SHIELDS

Added in proof. Dr. Stephen Parrott has pointed out to us that this last question
has an affirmative answer. In outline, the idea is to consider the adjoint map T*
from (, to (, € (. Using Theorem 3, one can show that the range of T*, regarded
as a subset of (,, contains no closed infinite-dimensional subspace. The complete
continuity follows from this, via the polar decomposition and the spectral theorem.
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