
Extremal Problems in Number Theory 

BY 

P. ERDijS 

I would like to illustrate the problems which I shall investigate in this 
paper by an example. Denote by r&z) the maximum number of integers 
not exceeding n, no k of which form an arithmetic progression. The problem 
is to determine or estimate the value of rk(n). This problem is connected 
with several known questions of number theory. If r&) <(I-t)n/log n 
for every K, if n is sufficiently large, then the prime number theorem implies 
that for every k there are k primes in arithmetic progression. r&z) <n/2 
would imply the well known theorem of Van der Waerden. The first paper 
on rk(n) is due to Turzin and myself [ 21. The best bounds for r3(n) pre- 
sently known are [ 1;7 ] 

n’-‘I’* <r&n) <c,n/log logn. 

It is not even know if r&)=0(n). 
Some of these extremal problems lead to interesting and deep questions 

in number theory, others are mere exercises. Recently I published in Hun- 
garian a paper entitled Extremal problems in number theory (Mat, Lapok 
13(1962), 228-255).’ The present paper consists of a discussion of somewhat 
unrelated extremal problems. In the first part of this paper I will give a short 
resume of the principal results of my Hungarian paper and in the second 
part I will give in more detail some recent results which L. Moser and I 
found jointiy during my recent visit at the University of Alberta. 

1. An old conjecture of Turin and myself [ 31 states that if al <a2 < - -. 
is an infinite sequence of integers and f(n) denotes the number of solutions 
of n=oi+aj then f(n) >0 for n >Q implies 

(1) liF*szp f(n) = m. 

More generally it can be conjectured that (1) follows from ak<ck” (k= 

L2, . . . ). These conjectures seem very deep. I can prove the mdtiplicative 
analog of (1). Let u1 <a2 < . . . and denote by g(n) the number of solutions 
of n = a;aj. Then g(n) >0 for n >no implies 

ca ksup g(n) = m . 

l If a result is stated without any reference, a reference to this paper is &en&d. 

181 



182 P. ERDOS 

In fact (2) follows from the following weaker hypothesis. Let A(X) = 
C.i<‘l’ Assume that for every k 

Then (2) follows. 
The proof of these statements is difficult and has not yet been published. 

The following question can be considered: Let al <aS< . . . <a, srt be a 
sequence of integers so that the products 

r!I 6, c,=O or 1 
i=l 

are all distinct. What is the maximum of z? I proved that z<~(n)+2n”~ 
and it seems likely that z <n(n) fen’ ‘/log n. We obtain a completely dif- 
ferent question if instead of (3) we assume that 

(4) iJa~=,I!jui 

can hold only if Ii= 12. This condition is clearly satisfied if the a’s are the 
numbers ~2 (mod 4). Perhaps here max z>n(l--t) for every c>O if n>no. 

Selfridge recently pointed out that max z > (n/e) (1 - 6). To see this let p1 < 
p2< * *- <pk be a sequence of large primes with ~~~, l/p,=l+o(l) and 
the a’s are the numbers of the form 

Pitt lSiik, 
(. > 

fipj,t =l. 
,=I 

2. A system of congruences 

(5) a, (mod n3, nl< --- <nk 

is called a covering system [ 41 if every integer is satisfied by at least one 
of the congruences (5). It is not known if the value of n1 can be arbitrarily 
prescribed nor is it known whether all the nj can be odd. S. Stein calls a 
system (5) disjoint if every integer satisfies at most one of the congruences 
(5). He conjectured for every disjoint system (5) there is a u satisfying 

(6) 0 <u 5 P, u# a, (mod n,), 1 =<i 9. 

I proved (6) withk2’instead of 2kby showing that for every disjoint system (5) 

and (7) is easily seen to be best possible. 
Perhaps the following stronger conjecture holds: Let 
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(8) Ui (mod ni), 1 Si ,<k, 

be a system of congruences (ni, # ni, is not assumed) such that there is an 
integer u for which u + Cli (mod ni), 1 =< i =< k.Then such a u exists satisfying 
0 <u 52’. I can only show that such a u exists satisfying 0 <uSA but 
I cannot give an explicit estimation for A(k) . 

Finally Stein and I considered the following question: Let Ui (mod $), 
nl < - * - < nk 5 x be a disjoint system of congruences. What is the maximum 
value of k? Put max K=f(r). We conjectured that 

(9) limf(r)/x=O 
x=-m 

but were unable to prove (9). We proved that for every t >0 and x >x&) 

f(x) >X/exp ((log x) I”+‘). 

3. Denote by h(n, K) the maximum number of integers not exceeding n 
from which one cannot select k +l integers which are pairwise relatively prime. 
Denote by A (n, k) the number of integers not exceeding n which are multi- 
ples of at least one of the first k primes 2, 3, . . . ,ph. It seems likeiy that 

(10) h(n, k) = A (n, k), 

It is easy to prove (10) for k = 1 and not hard to prove it for K= 2 but for 
larger values of k the proof seems more complicated and I have not been 
able to prove (10) for all values of k. 

4. What is the maximum number of integers not exceeding n so that the 
least common multiple of any two of them does not exceed n? I conjecture 
that the extremal sequence is given by the numbers 1 <i<(n/2)‘/* and 
(n/2)1i252jg(2n)1’2. 

S.What is the largest k=k(n) for which there is an m in so that each of 
the integers m+i, 1 5 i _I k, are divisible by at least one prime > k? It is 
not hard to prove that 

k(n) >exp (log n)“*+. 

It seems likely that k(n) -o(d), but I have not been able to obtain any non- 
trivial upper bound for k(n). 

In the second part of this paper I now give some results together with 
their proofs which we obtained jointly with L. Moser. Let a, <a2 < . - 9 <ak 

be k distinct real numbers. Denote by f(n; al, u2, 1 s ., a3 the number of 
solutions of 

(11) 

k 

n= Cc,a,,r,=O or 1, 
1=1 

and put 

F(k) = max f(n; al, -..,ac). 
%a,, ..‘,cIk 
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(If we had not assumed that the a’s are all distinct but only that ai $0 then 
we would have easily obtained that F(k)=Cr.ik& 

It seems likely that f(n; al, .= ., a3 assumes its maximum if n= 0 and 
the Q’S are 0, *l, ~2, - - - . In other words 

(12) F(k)=l(O; -[k], -[y] ,..., O,l)..., [@, 

but we have not been able to prove (12). It may be possible to obtain an 
explicit formula for the right side of (12) but we have not succeeded in 
doing so. It is easy to see that 

F(k)> cl zzklk3” 

and in fact it is not hard to show that the right side of (12) is >c, 2’/k3”. 
We conjecture that 

(13) F(k) < ~2~/k~‘*. 

A still sharper conjecture than (13) would be that the number of solutions of 

Iz= itiDiy 
i=l 

fi’i=t, Ci=O or 1 

is less than c32’/k2 (cg is independent of t). We were unable to prove (131, 
but prove the weaker 

THEOREM 1. 

First we prove a Lemma: Let b,<b,< + em <b,,, be such that no b equals 
the sum of any number of other b’s; then for every n 

fb; h, .-- , b,,J < c52m/mJ ‘. 

Denote by&, . . ‘, B, the set of those b’s for which 

(14) C bi=n. 
b,En, 

We have to show 

(15) t cc5 Zm/m3/‘. 

First of all we can restrict ourselves to those B’s which contain more than 
[m/4]b’s since by a simple and well known computation we obtain that 
the number of B’s containing at most [m/4]b’s is at most 

(16) =o(2”/m3/2), Osk r F [ 1 , 

in fact the sum in (16) is less than (2-c)” for a fixed c > 0. 
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Denote by B,, . . . , B,, the B’s satisfying (14) which have more than [m/4 ] 
elements. To prove (15) it will suffice to show 

(17) tl -3, 2m/m3f2. 

Denote by D1, . . ., Dl the set of all subsets of Bi, 1 6 i s tl which we obtain 
from Bi by omitting one 6 E B, in all possible ways. All these D’s are distinct 
for if Dj U bl= Dj U bz then by (14) b,= b2. Thus since we obtain more than 
(m/4) D’s from every B, we have 

(18) 

Next we show that one D cannot contain any other. Assume to the con- 
trary that D,CD, and say DICB1, Dz~Bl (B,#BJ, and Bi=D,ubl, Bz 
= D,u 62. Put 

(19) Dz=D1~b,~--.ub,. 

Then by (14) and (19) 

bl= b,+bl+ . . . b, 

which contradicts the hypothesis of the Lemma. 
By a well-known theorem of Sperner [ 9 ] we obtain 

(1’7) now follows from (18) and (20), hence our Lemma is proved. 
Now we prove Theorem 1. Without loss of generality we can assume that 

at least [k/2 ] of the a’s are positive. We now distinguish two cases. In the 
first case there is a u >O so that there are at least c,kllog k U’S satisfying 

(21) u la, <a2 < . . - <a,<2u, s= [c&logk]. 

Then clearly no ah 1 s r s s is a sum of other a,‘~, 1 sj 5 s. Denote by 
as+l, ..-, ah the other a’s and consider 

(22) 

We have 2’-” choices for cfiEs+i ciai, and once x!=,+i CiOi has been chosen 
we must determine ES=, eiai so that 

(23) 

But by our Lemma (23) has at most cS~“/?,~ solutions, which proves 
Theorem 1 in case I. 

Assume next that (21) holds for no u. Then there are at least log K/c, dis- 
joint intervals (u,, 2~:) which contain at least one a,. But then clearly there 
is a sequence 
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(24) 
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log k 
h,<a2<SN. <CZj, jsr ,~,+~>2a,,l Siij-1. 

7 

We obtain a sequence satisfying (24) by considering the disjoint intervals 
(Ui,2UJ, 1 =( i $ log k/c; and taking ai to satisfy uzi-l $ a; < ~a. From (24) 
it follows that the sums 

(25) ifi& 

are all distinct. As in case I we write 

We have 2’-’ choices for cf-,+i E,oi, but once cfXJ+, c,a, has been chosen 
there is at most one choice for CJ ,=.I tiai, hence (14) has at most 

2k-J <2k/k2 

solutions for suitable choice of ~7, This completes the proof of Theorem 1. 
It would have been easy to give an explicit inequality for Q. We have 

refrained from doing this, since Theorem 1 probably does not give the 
right order of magnitude for F(k). 

Theorem 1 clearly remains true if the a’s are distinct complex numbers 
and in fact vectors of a finite dimensional euclidean space. It is not clear 
if it remains true if the u’s are vectors in Hilbert space. If the u’s are distinct 
elements of an abelian group the above proof gives F(k) < c2k/k (since the 
D’s are distinct here too), Here this result is in general best possible as is 
shown if the Q’S are the residue classes (mod kl. 

Trying to improve Theorem 1 led us to a few questions of independent 
interest. Let al,a,, -. -, a, be n real numbers all different from 0. Denote 
by f(n) the largest integer so that for every sequence al, . . .,a, one can 
always select k=f(n) of them a,i, +. ., Q,~ so that 

w av, + aC~2 f aIj3i3, 1 s j, $ j, < j, 5 k. 

THEOREM 2. 

f(n) 2 n. 
3 

The proof is very simple. Denote by I, the set in LY, 0 < LY < T, T large for 
which a,a (mod 1) is between 1/3 and 2i3, m(Id denotes the measure of 
I,. We evidently have 

where A is independent of T. It may depend on the 0’s. From (28) it clearly 
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follows that there is an (I so that for at least (n/3) a’s a,,a (mod l), 1 5 r 
6 n/3, is between l/3 and Z/3. Clearly these a’s satisfy (27), which proves 

Theorem 2. 
Can Theorem 2 be improved? The sequence 1,2, . . . , n shows that in any 

casef(n) 5 /(n+2)/2j and if we permit j,=js in (27) then 

f(n) 2 L. 7 

PROOF. Consider the numbers 2,3,4,5,6,8,10. It is readiIy verified that 
one cannot choose 4 of these without choosing one which is the difference 
of two others. Now consider the above 7 numbers each multiplied by lo’, 
r=l,2, -.a, k. We then have 7k numbers from which at most 3k can be 
chosen. This construction is essentially due to D. Klarner. An independent 
example giving a slightly weaker result was obtained earlier by A. J. Hilton. 

If in (27) we exclude ji=j, then perhaps f(n) = [(n+2)/2]. It is surpris- 
ing that this simple question seems to present considerable difficulties, but 
perhaps we overlook the obvious. 

Theorem 2 holds for any finite Abelian group, perhaps it holds for a non- 
Abelian group too (perhaps with a different constant than l/3). An an- 
alogous theorem also holds for measurable sets of real numbers and pro- 
bably holds under more general conditions. It can be shown that l/3 is the 
best possible constant for measurable sets (mod 1) or for residues (mod p). 

Denote by cp(n) the largest integer so that if al,ez, a. .,a, are n distinct 
realnumbers one can always find b(n) of them a+ . . ..oik. k=&(n) so that 
a9+ai, # ur, 1 5 j < 1 s k, 1 r r 5 n. To obtain a nontrivial result it is 
necessary to assume here j # 1, for otherwise ai = 2’, 1 5 i 2 n would imply 
4(n) = 1. We showed I + m as n 4 05 and a remark by Klamer implies 
that 

dn) > clogn. 

We do not give proofs since these estimates for b(n) are probably very far 
from its true order of magnitude. A simple example shows that #(n) < (n/3) 
+0(l). To see this let the a’s be the following 3m numbers: 

2k+” _ 1,2k+“, 2ki2 + 1, Osksrn-1. 

Clearly from each triplet 2’+‘- 1,2ki’,2k+‘+1,Cl 2 k s m- 2 one can 
choose only one Q+ Thus b (3m) =< m+2. 

J. L. Selfridge has improved this to 6(n) < (1/4+c)n by considering 

2’+ m, m=O,*l, . . ..ft. 

It seems likely that $(n)=o(n). 
A possible generalization would be the following result: To every k there 

is an no=no(k) so that if n > no(k) and al,a2, . . ., a, are n elements of a group 
so that none of the products a;oj equal the unit element then there are 
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k U'S U$p " '9 Uih SO that all the products akla,i differ from all the (I:s, 15 r 
g n. We have not shown this even for k = 3 (compare a result of L. Moser 161) . 

Denote byg(n) the largest integer SO that from any set of n real numbers 
01, I’., U, one can always select g(n) = k of them oil, . . .,aik so that no oik 
is the sum of other aQ’s. Denote by k(n) the largest integer k so that from 
n real numbers a,, . + e, a,, one can always find k of them ai,, s. .,aih so that 
two sums 

can hold only if 1,=12. By the same method as we used in the proof of 
Theorem 2 we can show 

(30) 

and 

g(n) 2 v/wz, 

(31) h(n) 1 n1;3. 

In the proof of (30) I, is the set for which a,01 (mod 1) is between 1/4(2n) 
and \/(2/n), in the proof of (31) I, is the set for which afl (mod 1) is between 
l/n’.3 - 1/2n”,” and l/n’ ’ + 1/2n”“. (30) and (31) are probably far from 
being best possible. It is known that h(n) < can5 ’ [ 5] and by complicated 
arguments we can show that g(n) =o(n), very likely g(n) < n’+ for some 
cg> 0. 

It is not difficult to show that if al, . . ., a,, are given numbers one can 
always find Q;~, . . . , a,, k 2 [logn/log3], SO that all the sums c:=l~l ai,are 
different for ci=O or 1. Perhaps this can be improved to k 2 [ logn/log ‘21. 
The example a,= i, 1 5 i s n shows that this result if true is nearly best 
possible. The bound (31) cannot be generalized to measurable sets, since 
it easily follows from the density theorem of Lebesgue that (29) is satisfied 
in every set of positive measure. On the other hand it is easy to see that 
every set of real numbers of positive measure contains a subset of positive 
measure no element of which is the sum of any others (we simply take the 
intersection of our set with the interval (ak, Zkf’) for some suitable k), but 
it is not clear whether it is possible to give a lower bound for the measure 
of such sets. 

Denote finally by H(n) the smallest integer so that we can split the 
integers 1 S m 5 n into H(n) classes (.fZi, 1 5 i 5 H(n)) so that the equa- 
tion x+y=z, x,y,z in %‘i is unsolvable for every 1 <= i 5 H(n). Schur [ 8] 
proved that H(cn!) > n. It seems very hard to debide whether H(n) 
> clogn holds for a certain c > 0. Define H”(n) as the smallest integer so 
that one can split the integers 1 s m 5 n into H”(n) classes i$,, 1 5 i 
I H”(n), so that no element of %t (1 g i =< H”(n)) is the sum of distinct 
elements of %‘i. Here H’(n) > c iog n follows immediately from 15 j 
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oar< lo3. 
I 1 

We have not been able to determine H*(n) or even to prove that 
lim,,, H*(n)/logn exists. 

ADDITIONS. Several of the problems which were stated as unsolved in the 
above paper have been settled in the meantime. First of all I refer to some of my 
papers which I have published since then on this and related subjects. 

P. Erdiis, Problem und results on combinatorial number theory. I, II, II’, and 
III. 

I. A survey of combinatorial theory (J. N. Srivastava, Editor), North-Holland, 
Amsterdam, 1973, pp. 117-138. 

II. Joumte d’ArithmCtique Bordeaux, 1974. 
II’. Indian J. Math. 40 (1976), 285-298. 
III. Nuder themy day (Proc. Conf., Rockefeller Univ., 1976), Lecture Notes 

in Math., vol. 626, Springer-Verlag, Berlin and New York, pp. 43-73. (I apolo- 
gize for II and II’, I made the wrong references.) 

P. Erd6s, Some extremalproblemr in combinatorial number theory, Mathemati- 
cal Essays Dedicated to A. J. Macintyre (H. Shankar, Editor), Ohio Univ. Press, 
Athens, Ohio, 1970, pp. 123-133. MR 43 # 1942. 

Now I list the progress made on the problems stated in my paper. 
Szemeridi proved our conjecture with Turan rk(n) = o(n); Fiirstenberg ob- 

tained another proof using ergodic theory. 
E. Szemeredi, On sets of integers containing no k elements in arithmetic 

progression, Acta Arith. 27 (1975), 199-245. 
Fiirstenberg, Ergodic behnviour of diagonal measures rind a theorem of 

SzemerPdi, J. Analyse Math. 31 (1977), 204ff. 
The proof of (2) appeared in the meantime (P. Erdlis, On the multiplicative 

representation of integers, Israel J. Math. 2 (1964), 251-261). 
Now let us consider (3). I proved the conjecture 

2 i= r(n) + cn’/2/log n. 

P. Erdos, Remarks on number theory. V, Extremal Problems in Number 
Theory. II, Mat. Lapok., 1965. (Hungarian) 

With respect to (4) I. Ruzsa proved that 2 < n(l - E) holds if E < 0 is a 
sufficiently small constant. His proof is not yet published. 

(5) is still open-the best result is due to Choi, he proved that n, = 20 is 
possible. S. L. G. Choi, Covering the set of integers by congnrence classes of 
distinct moduii, Math. Comp. 25 (1971), 885-895. 

(6) and (8) have been settled by Selfridge and independently by R. B. 
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Crittenden and C. L. Vanden Zynden, Any n arithmetic progression covering the 
first 2” integers cover all integers, Proc. Amer. Math. Sot. 24 (1970), 475-48 1. 

Szemeredi and I proved (9); in fact we proved a somewhat stronger result. 
P. ErdGs and E. Szemeredi, On a problem of Erdiis and Stein, Acta Arith. 15 

(1968), 85-90. 
The problem stated in $4 (p. 183) is still open. For a partial result see S. L. G. 

Choi, l%e largest subset in (1, n) whose integers havepairwise I.c,m. not exceeding 
II, Acta A&h. 29 (1976), 105-l 11. 

The conjecture (13) has been proved by &k&y and SzemerBdi, ober ein 
Problem uon Erd6s and Moser, Acts Arith. 11(1965-66), 205-208. 

The conjecture (2) is still open, see J. H. van Lint, Representation of 0 a.s 

Xc--N~kk, Proc. Amer. Math. Sot. 18 (1967), 182-184. 
Many of the problems stated at the end of the paper have been investigated in 

a more general form, under the heading of sum free sets, by Diana&a, Yap, 
Ann Penfold Street and others. See the book by W. D. Wallis, Ann PenfoId 
Street and Jennifer Sebessy Wallis, Combinatorics: Rome squares, sum free sets, 
Hadamard matrices, Lecture Notes in Math., vol. 292, Springer-Verlag, Berlin 
and New York, 1972. 

Several of the problems stated were settled (or the old results improved) by 
Choi. He proved $(n) < en/log n (see p. 187). 

Choi improved (31) to h(n) > en ‘j3 log n (on p. 188, lines 4-6, h(n)). Strauss 
proved h(n) < c6 . 

S, L. G. Choi, On an extremalproblem in number theory, J. Number Theory 6 
(1974), 109-I 12; On sequences not containing a large sum-free subsequence, Proc. 
Amer. Math. Sot. 41 (1973), 437-440; The largest sum-free subsequence from a 
sequence of numbers, ibid. 39 (1973), 42-44; Problems and re&ts on finite sets of 
inregers, Finite and Infinite Sets, vol. 10, Colloq. Math. Sot. Janos Bolyai, 
(Keszthely, Hungary, 1973), North-Holland, Amsterdam, 1975, pp. 269-273. 
MR 51 #5544. 

E. Straus, On a problem in combinatorial number theov, J. Math. Sci. 1 (1%6), 
77-80. 
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