ON THE REPRESENTATION OF DIRECTED GRAPHS
AS UNIONS OF ORDERINGS

by

1", ERDOS and MOSER L.!
Introduction

Consider an m x n matrix in which each row consists of a permutation
of the integers 1,2, ..., #. Such matrices will be called A-matrices (they
really should have been called mxn R- matrices, but where there is no danger
of confusion we omit the m xn). Corresponding to such a matrix £ we define
an oriented graph on the vertices 1, 2, .. ., », in which there is an edge oriented
from ¢ to j (notation: i — j) provided 7 precedes j in a majority of the rows
of B. If i precedes j as often as j precedes i the vertices ¢ and § are not joined
by an edge. It has been known for some time [1] that every directed graph
in which every pair of vertices are joined by at most one oriented edge can be
realized as a graph associated with some R-matrix in this manner. The prin-
cipal ohject of this paper is to obtain relatively sharp estimates for the smallest
number mi(n) such that every oriented graph on 22 vertices corresponds to some
m ¥ n matrix of the type described.

This as well as some related problems which we will treat arise from
questions concerning methods of combining individual transitive preferences
on a set of alternatives by means of majority decisions. Thus we may think
of the rows of the matrix R as representing orderings by individual voters,
of a set of n candidates 1,2, ..., n in order of preference. Although each
voter thus expresses a set of tramsitive preferences, the majority opinion
need not be transitive and indeed we will prove that every preference pattern
(ties permitted) may be achieved by no more than ¢, nflog n voters, (¢, a fixed
constant), i.e. m(n) < ¢, nflog n. On the other hand it was shown in a relatively
simple way by Stearns [2] that some preference patterns on « candidates
cannot be schieved by ¢, nflog n voters (where ¢, is another fixed positive
constant) so that m(n) > ¢, nf log n.

In § 1 we consider the following problem: What is the largest number
f(n) such that every oriented graph on n vertices in which every pair of dis-
tinct vertices is jointed by a directed edge has at least one Qubgraph of f(n)
vertices in which the orientation is transitive, i.e. in which i—jand j—>k
implies { — k. Our result here is that f(z) < 2[log,n] + 1. STEARNS has
shown that f(r) = [log, n] + 1.

In § 2 we will develop some lemmas concerning oriented graphs which
can be represented by 23 n R-matrices. In the voting terminology this means
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that we study the preference patterns of candidates that can be achieved by
a pair of voters — we will call them a couple. The point in considering such
pairs of voters is that by balancing their transitive preferences in a certain
way the pair of voters can achieve a preference between certain pairs of
candidates in the manner in which these pairs are to be preferred by the
majority, while with respect to all other pairs the preferences of the couple
cancel one another.

In § 3 we relate the graph theoretic lemmas of § 2 to the problem of
estimating m(n) and obtain the result

e, nflogn = m(n) = ¢, nflog n .

We conclude with a number of unsolved problems.

§ 1.

The problem discussed and partially solved here is independent of our
main problem the estimation of m(n). By a complete oriented graph or comp-
lete paired comparison we mean a graph in which every pair of vertices is
joined by one oriented edge. As mentioned in the introduction, STEARNS hax
proved that every such graph on # vertices contains a subgraph on [log, n] -
vertices on which the orientation is transitive. For the sake of completeness
we sketch the relevant argument: Consider a complete oriented gr d.]lh on
vertices. Let w(7) be the number of edges oriented away from vertex i. Relabel

the vertices so that w(1) = w(2) = ... = w(n). Since every pair of vertices
: o 43 " —1 .y
contributes 1 to X w(d) we have W w(i) = l so that w(l) = — . To eon-
= 2 2
struct a transitive chain of [log,n] -+ 1 wvertices place vertex |1

at thc beginning of the chain and use induction to find in the subgraph
of

vertices which are joined to 1 by edges oriented avay from 1, a
2
1 n—1
ng,l
i 2
tex 1 form the required set.
To obtain a lower bound for the largest transitive set in some com-
plete oriented graph on n vertices, assume that every such graph has a
transitive subset of 4 elements. Now such a transitive subset must be one

of

transitive =subset of + 1 vertices. These together with the ver-

n . . 4 : .
Il} subsets of £ of the vertices. and any one of these subsets in order

to be transitive, can be ordered in k! ways. Having fixed the transitive
subset (including its order) we observe that such a transitive subset can appear

. (my (& . . ; 3
in exactly 2z) () complete directed g¢raphs, since the complete graph is

; . . i [0
determined by the orientations on its

Bl .
edges, [ y of which have already
‘)

‘. . . » ) . .y
been fixcd. Finally, since each of the 22) oriented craphs has a transitive
subgraph of L vertices we have

‘“}k! o(8) (%) = o)
p >
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. [ 1
and using ’:J < 2%k we are lead to

2 log n

k<

s |
log 2
which completes the proof of

Theorem 1.
[og, n] + 1 < f(n) < 2[log,n] + 1.

We remark that f(7) = 3. That f(7) = 3 follows from the left hand
side of the inequality above while f(7) < 3 is obtained by considering the
directed graph on 1, 2, ..., 7 in which ¢ — jiff the number ¢ — j is a quadratic
residue (mod 7). We would like to call the attention of the reader to the fact
that we have been unable to disprove the conjecture that f(n) = [log,n] + 1.
In particular we cannot decide if f(15) = 4.

§ 2.

In what follows G will denote a directed graph in » vertices, not neces-
sarily complete, i.e. each pair of vertices is joined by at most one directed
edge. The graph H will be called bipartite and unidirected if the vertices of
H can be split into two disjoint subsets 4 and B (one of which can be empty)
such that every vertex of A is joined to every vertex of B in the direction
from A to B and no other edges exist in H. Suppese the vertices of 4 are
ay, ..., a; and those of Bare by, by, ...,b, (k -1 = p). 4 and B will be called
the levels of our subgraph (A4 the top level, B the lower level).

Lemma 1. A bipartite and unidirected graph H can be represented by a
2 % p R-malriz.
Proof. C'onsider the matrix

(ayay .o bbb
Wty ooy by by oy

The graph induced by this matrix has edges directed from each vertex
in A to each vertex in B. However there are no edges joining vertices of .
to vertices of 4 (or vertices of B to vertices of B) since for ¢, j < k, a; precedes
a; in one row and follows it in the other.

Next, if a graph H can be decomposed into disjoint bipartite and un-
directed graphs it will be called bilevel.

Lemma 1 can be generalized to yield

Lemma 2. A bilevel graph H with n vertices can be represented by a 2 ~
R-matriz.

Proof. If the top level of H consists of the disjoint sets of vertices
Ay, Ay, ..., A, and the lower level of the corresponding sets By, B,, .... B,
and if A; = {a;y, a4 ...}, B;i={b;;,b;, ...} then the required matrix
has first row consisting of the elements of 4, in some order followed by those
of B, in some order. These are followed by the elements of 4, in some order
and the elements of B, in some order, ete. In the second row we have first
the elements of A, in the reverse order to that which they had in the first
row, followed by the elements of B, again in reverse order. Then come the
elements of 4, _, followed by those of B, ; again in the order opposite to that
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in which they appeared in the first row. We continue in this way up to the
elements of A, in the reverse order to that in the first, row, followed finally
by the elements of B, in reverse order. It is easily seen that this matrix induces
the required graph.

We proceed to prove

Lemma 3. If G is a directed graph with n vertices and e edges with

n? n? log n
S <eS_— whore —5"_>
22r+4 92r+1 20) _‘ 1

then G contains a bipartite unidirected graph with levels A and B having [ [/n |

log n
and l%] vertices respectively, and tn which the valences of the vertices of
20r 41 |
A in the graph G do nol exceed 16m;2'.
Proof. Consider first the vertices of G (it any) of valence at least 16n[2".
If their number is @ then we must clearly have a:16n/2" < 2n%2%+1 or
2 = n/27% Thus the number of edges containing two such vertices does not
exceed 'J)_E_. n?2°r+¢ Hence if we omit all these edges there remain more
9

than 7%2%7 % edges at least one endpoint of which has valence < 16n2".

Denote the vertices of valence < 16a/27 (in () by v, v, ..., 2, and let their
valences he g, y,. .. ..y, Clearly
w(l —2 i) <t <n
and
t n?

N B

;4-/- ”‘ > 22r 3

t=]

Without loss of generality we may assume that
t 2
T
Y r
Dyi>

o 22{4.-.5

where y; is the number of edges directed away from v,. Let k(k = 1) be an
indeterminate for the time being. A k-tuple of vertices will be said to belong
to p; (1 <7 < {) if every vertex of the k-tuple is adjoined to »; by an edge

directed away from »;. There are exactly 3,;: k-tuples belonging to »;. Denote
by 8 the system of k-tuples belonging to one of the v; (1 < 7 < ) (if a L-tuple
belongs to exactly » #'s it occurs in S r-times). Clearly S has \‘ [J" elements.

f r

- Ui . — N "

Now }“‘J'] will be a minimum if all the y; are equal and if £ is as large as
=1\ R

possible. This is achieved by letting ¢ = n and y; :[

T @
Q2r+6 nk+1

£y
V(?h'gw(<‘ > : —,
el I3 k ket (22r + Tk

] . Thus

22r+ﬁ
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Now the total number of I-tuples that can be chosen from » points

(7 n <
equals I]g T so that the same A-tuple must occur in § at least

9(2r + ik
log n

times, If b= l og
200 + 1

will oceur at least [[/n]times. or there will be at least [[/n] vertices form a set
log n

207 - 1
Note that the set A was chosen from the vertices whose valences did not
exceed 16n/2" so the lemma is proved.
We next prove the crucial

| a simple computation shows that the same k-tuple

A each connected to each vertices of a set B which has elements.

Lemma 4. Lel n = n. If G is a directed graph with n vertices and e edges
where

<e = e and r < 10loglog n
o

nlog n

('J" _;_ 1) or 15
Proof. First we omit all edges connecting vertices with valences at

then O contains a bilevel graph of at least edges.

"

L . S : n?

least 16n/27. As before the number of omitted edges is at most — - Hence
& 92r |-

we are left with at least

edges and by Lemma 3 we have a bipartite unidirected subgraph (A, B,)
with levels A, and B, previously deseribed. Since the vertices of A, have
valence < 162/2" and those of B, have valence <an — 1 aund sinee

r< 10 < loglog n the number of edges incident to 4, {J B, is at most

20 n?*
or

M

_ [ lﬁy H

- log n| <
51 k 8 )

We remove these edges and there still remain

s 20) 2 n*
= > —
‘)'Jr _': Qr 92r -4

edges, provided n = n,. Lemma 3 can therefore be used again and we obtain
a bipartite unidirected graph (.. B,) with levels 4, and B, of the required
type. (In the bipartite graphs (A4, B;) it is not necessarily assumed that the
edges go from 4, to B, their direction may depend on i). Now we repeat,
the procedure and omit the edeges incident to 4, U B,. If we repeat this

9 A Matematikai Kutato Intézet Kozlemenyed 1X. AJ1—2.
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n ; s :
procedure ' v times we are left with a graph which has at least

12{|_2r-6.

n? 2('Jn:-‘-'”, Vn ] n?
= = : >

QL 20 [20.2r8) 7 g2

edges. We can therefore apply Lemma 3 once more and thus obtain a bilevel
graph with the components (4,, B))
/n
Y 1
20-2r=0

Vi ; log n _ nlog n
- + 1lyn — 2 s T
20 .2+ 2() p - ] (r+41)2r+1s

(1A
[IA

of at least

|

edges and the proof of the lemma is complete.

Lemma 5. Let G be a connected directed graph of m vertices. Then G has a
p— 1
bilevel subgraph of ‘m ] edges.
4

Proof. We prove first that if 7' is a directed tree then it can be decom-
posed into four bilevel graphs. For this purpose consider first the corresponding
undirected tree T*. Let @, be an vertex of 7%. Number I all edges of 7* which
can be reached from a; in an odd number of steps. Number I1 all edges which
can be reached from ; in an even number of steps. The edges labelled T form
a union of disjoint stars (a star is a tree in which all but one vertex has valency
1) which can be split into two bilevel graphs and similarly for the edges label-
led I1. The lemma now follows by considering for G a spanning tree T, ie. a
tree whose edges are a subset of the edges of G and which contains all the
vertices of . Such a tree clearly has » — 1 edges.

Lemma 6. Let G be a directed graph of e edges. Then G contains a bilevel

o

graph of at least 1; edges.

Proof. A graph ¢ of ¢ edges must have at least [ V2e ] vertices. Consider

the connected components @; of G having u; vertices, i =1, 2 k.

. . . - 1
Now by Lemma 5, each (; contains a bilevel graph nf' ‘i Z edees,

so that ¢ contains a bilevel graph of

Ly — 1
b

We are now ready to prove our main result, namely that every prefer-
ence pattern on n candidates can be achieved by not more than ¢, nflog n
voters. For this purpose it will suffice, by Lemma 2, to show that the directed
graph G corresponding to the preference pattern can be decomposed into
edge-disjoint bilevel graphs G, G,, ..., (. the set of whose vertices is iden-
tical with the set of vertices of @, and { < ¢, n/(2 log n).

Ve

8

cdges.
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We are going to define the graphs

G, and GO 1<i< [216 _.n
log n

by induction. We will put GV =6 — G, U G, U ... U G, (i.e. we obtain
GO by omitting from @ the edges of G|, G,. ..., G)). G, is one of the bilevel
subgraphs of ¢ having the maximun number of edges and if G,, .... G; are
already defined then 4, is one of the bilevel subgraphs of G having the
maximum number of edges. Denote by ¢; the number of edges of G\, Let /
run through the integers » = 0,1, ..., [10 loglog n]. Denote by 7, the smallest
integer for which
"

Fzh

i =

92r 1 .

We shall prove that for » < |10 loglog »]

; ; r+4+1 n
M A
2r+l - logn
If e 5—2—; = then i, ,, — ¢, = 0 and (1) is satisfied thus we can assume
r-o

o o
n? x g n? <
—— Let i = i< then e, > and hence by Lemma 4 GU/

r=17 r+1 i .
22r-,'—2{ Q2r+3

contains a bilevel subgraph of at least

e; =

i3

nlog n
(r+1) 2+
edges and hence by the maximality property of G
g nlogn
(2) o) —€jpy = :

(2) immediately implies (1).
From (1) we obtain that by the removal of at most

. " . 2Bm 2r41l  219p
; (B — %) < ——— B T
U=r=[101oglogn] l"}_.’; n r=n 2 I(Jg "
bi ; . 916 T .
ilevel graphs G, 1 <¢<| ~—"—| we obtain a
log n
; ; ; 216
GO=0G¢ UG, 1=i=<
logn
where GY) has fewer than
n* "we
221.!11:L{In;.fn (l”}_’, H;.l:l

edges.

0%
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To complete the main result we need to show that a graph with this many

edges is the union of o

] edge — disjoint bilevel graphs and this is an

log n
almost immediate consequence of Lemma 6.

As already stated the proof of m(n) > ¢, n/log n is relatively simple but
we include it for completeness. Since each voter can vote in n ! ways the number
of distinet ways in which m voters can vote is (n!)™.

The number of preference patterns on n candidates is (since ties are

permitted) 3() _ If all these patterns can be achieved we must have (n!)™ > 3(2)

from which the required result follows by a simple computation.
One might conjecture that that m(n) log njn tends to a limit but this
conjecture is clearly well beyond the methods used in this paper. We cannot

even prove that lim m(n) log nfn > log 3 .
R o= 2

Still another problem suggested by the present considerations is to obtain
good estimates for the largest number s = s(e) such that every ordinary graph
of e edges contains a bilevel (undirected) graph of s edges. By more complicated
arguments than those used here we can prove s > c¢|e log e.

(Received November 25, 1963)
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NMPEACTABNEHUE YNNOPAJOYEHHbLIX 'PA®OB CHMCTEMAMHU
MEPECTAHOBOK

P. ERDOS » L. MOSER
Pesome

Pacemarpusaem MaTpuily ¢ # CTOJILOLAMH U € 111 CTPOKAMH, KayKjlas CTPoKa
KOTOpOit — TepecTanoBKa uuced 1,2, ...,n.. C oToit MaTpuued Mbl Coe/WHUM
vy mopsi;loueltpiil rpad cieayiomum 06pasom: BepluMHbl Trpada OyjayT ukcid
1,2 .... n. Ecin B GOnblIMHCTBE CTPOK MATPHILI ¢ TpPeAliecTBYeT j, TOrLd
rpad coepsuT pedpo ynopsigouentoe ot ¢ 10 j. Ecim ¢ npeecTyeT j B CTOJIb-
KUX 7K€ CTPOKAX, B CKOJbKHX j NpellecTByeT 7, TOMAa ¢ H j He CO¢/IMHATCS.
[TycTh m(n) obo3HAUAET HAHMEHbLIEE YKCI0, TAKOe, UTO U3 MATPHLL € m(n) CTPOY-
KaMi [1pe;IcTaBuMbl TAKUM 00pa3om Bee Ipafbl ¢ 7 BepLUIMHAMK, B KOTOPBIX Kaj-
Aast napa Beplil i CoeMHenHa He Gosee 0HON BepuMHOiT STEARNS [2] fokasas,
uTo m(n) = cy n/logn.

Cnagnell peayastar nacTosulell padoTel JOKA3aTENLCTBO HepaBeHCTRA

m(n) < ¢, nflogn

tp I e, TIOJIOWRHTEIbHBIE  KONCTANTDI).
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