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ON THE MULTIPLICATIVE REPRESENTATION
OF INTEGERS
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P. ERDÖS
Dedicated to my friend A . D . Wallace on the occasion of his 60th birthday.

ABSTRACT

Let a i < a2 < . . . be an infinite sequence of integers . Denoteby g(n) the
number of solutions of n = a ; . . .a ; .Ifg(n)>0 for a sequence n of positive
upper density then lim sup g(n) = cc .

Let a t < a2 < . . . be an infinite sequence of integers and denote by f(n) the
number of solutions of n = a, + a, . An old conjecture of Turán and myself states
that if f (n) > 0 for all n > n o then lim sup, = j(n) = oo . A stronger conjecture
(which nevertheless might be easier to attack) states that if a k < ck2 then
lim sup„ = f (n) = co . Both these conjectures seem rather deep . I could only
prove that ak < ck2 implies that the sums a; + a; can not all be different [6]
(c, c t , c2 , • • • denote absolute constants) .

In view of the difficulty of these conjectures it is perhaps surprising that the
multiplicative analogues of these conjectures though definitely non-trivial are not
too hard to settle. In fact I shall prove the following .

THEOREM 1 . Let b, < b 2 < . . . be an infinite sequence of integers . Denote by
g(n) the number of solutions of n = bb;. Then

(1)

	

g(n) > 0 for all n > no

implies
(2)

	

lim sup g(n) = co

A well known theorem of Raikov [5] states that (1) implies that for infinitely
many x
(3)

	

B(x) > c l x/(logx)` 12

Thus to prove Theorem I it will suffice to show that if (3) holds for infinitely
many x then (2) follows . In fact I shall prove stronger results .

Denote by u,(n) the smallest integer so that if bi < . . . < b, <_ n, t = u,(n) is any
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sequence of integers then for some m, g(m) >_ 1 . Theorem 1 would follow from
u,(n) = 0(n/(logn) 1/2 ) .

THEOREM 2 .
u2<<(n) < c2

10g
_(log logn)k+1

In a previous paper I [1] proved that

(4)

	

11(n) + c3n314/(logn) 3" 2 < u2(n) < 11(n) + c4n 314 .

I1(n) denotes the number of primes not exceeding n and IT k(n) denotes the
number of integers in >_ n the number of distinct prime factors of which does
not exceed k . The right side of (4) can in fact be stregthened to

(5) u2 (n) < 11 (n) + csn3/4/(log n) 3/2

I do not prove (5) in this paper .
(4) and (5) suggest the possibility of obtaining an asymptotic formula with an

error term for u,(n) also for l > 2 . I am going to outline the proof of

THEOREM 3 . Let 2k-1 < l <_ 2k . Then

u,(n) _ (1 + 0(1) n(loglogn)
k-1

(k - 1)! log n

Finally I am going to prove the following

THEOREM 4. To every c and l there is an n o = no(c,1) so that if n > n o and
b 1 < . . . < b s <_ n is such that the number N(n) of integers t < n which can be
written in the form b,b i is greater than e n then there is an m with g(m) > 1 .

Theorem 4 clearly implies Theorem 1, but not Theorems 2 and 3 .

Our main tool will be the following

LEMMA. Let S 1 , • • • , Sr be r sets of integers, S, has N, elements (N 1 > • • • > Nr)
x~'), 1 _< <j Nr . Let u 1 < u 2 < • • • < u r be a sequence of integers where each
uj , I <_ j < t is of the form f,r= 1 x(i.e. every u can be written as the product of r
integers one from each S) . Then if

3 r rr

	

r
(6)

	

t:>	 rj N,
N12r-1 i - 1

r

there is an in so that the number of solutions of

iii = u1,u .i,
is at least 2 r-1 .

To each integer of S,, 1 < i < r we make correspond a vertex and to each
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uj = fi= 1 x 1j`.) we make correspond the r-tuple { xj i}(,` ) 1 <_ i <_ r. Thus we obtain
an r-Graph [2] G (r)(1i=1 Ni ; t) and if t satisfies (6) then by the corollary of
Theorem 1 of [2] there are integers xIi) ,xz i) in S i , 1 <_ i < r so that all the 2 r
integers

are u's . Thus H i_ , (x ; i)xzi) = 1i p 111h has at least 2 r-1 solutions, which completes
the proof of the Lemma .
Let now b 1 < . . . < bs S n be a sequence of integers for which g(m) < 2 k for

all in . To prove Theorem 2 we have to show

(7)

	

s <
c2 n(log log n)k+ I

log n

To prove (7) we split the b's into two classes .
In the first class are the b's which can not be written in the form (exp z = ez)

k+1
(8)

	

fl ei, ei > exp ((log log n) 2 ) .
i=1

Denote these b's by b1 , . . ., b s, and write b i = u iv' where all prime factors of u i
are not exceeding exp ((log log n) 2 ), and all prime factors of v i are greater than
exp ((log log n) 2) . By (8) v i has at most k prime factors (for otherwise v i and there-
fore b; = u ivi would be of the form (8) . Further a simple argument shows that
ui < exp ((2k + 2) (log log n) 2) (for otherwise ui and therefore b' would be of the
form (8)) . But then clearly

(9)

r
(i)x;L ,

i=1
A=1or2

S1 <
i ui <

	

/ Dk

	

t )

253

where the dash in the summation indicates that 1 5 t < exp ((2k + 2) (log log n)2) .
Now by a theorem of Landau [4]

(10)

	

llk(x) _ (1 + 0(1)) x (log logx)k- I

(k - 1)! log x

Thus from (9) and (10) we obtain by a simple computation

(11)

	

s1 < c6n(log log n)k+ I /log 11 .

Denote now by b" 1 , . . . b"s2 the b's of the form (8) . If c2 > c 6 and (7) would be
false, we would have from (11)

n (log log n)k+ I
(12)

	

s2 > (c2 - c6)

	

log[n
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Put for 1

	

<_ s 2 (we write e;') instead of e ;i) )
k+1

b, =

	

e(` ) , 2;Lit)< eJi) < 21+Au)
(13)

	

` = 1

(log log n) 2 <_ A(') <
l
log n
og 2

To each b we make correspond the (k + 1)-tuple

(14)

	

{, ')},

	

1 <_ i <_ k + 1 .

By (13) the number of possible choices of the (k + 1)-tuples (14) is for n > no
less than (log n/log 2)k+ 1 Thus by (12) there is a (k+ 1)-tuple (~l1 , , 2k+ 1)
which corresponds to more than n/(log n) k+3b""s say b~ ,

	

b"

(15)

	

S3 > n/(logn) k+3

Now we apply our Lemma with r = k + 1 . The sets Si are the integers in (2 k ',
21+- '), thus N i = 2", and by b;" <_ n we have

k+1

	

ik+1 2N<<2 '-1 1 Sn
i=1

By (15) and Ai > (log logn) 2 a simple computation shows that s 3 = t clearly
satisfies (6). Thus by our Lemma there is an m for which m = b;, blZ has at least 2k
solutions, which proves Theorems 1 and 2 .

COROLLARY . Let b 1 < • • • be an infinite sequence of integers so that every n > n o
can be written as the product of k or fewer b's . Then limsup,. g(n) = oo .

Raikov's theorem implies that for infinitely many x B(x) > cx/(logx) 1 lk . Thus
the corollary follows from Theorem 2 .
Now we prove Theorem 4. We shall show that there is an a = s(c) > 0 so that

to every T there is an no = no (T, s) for which, n > no , N(n) > cn implies that
there is an L > T satisfying.

(16)

	

B(L) > aL/(log L) 11 ' .

(16) by Theorem 2 implies Theorem 4.
(16) implies Raikov's theorem with a = c3 . Our proof of (16) will not use

Raikov's theorem but we will use his method .
We evidently have

(17)

	

cn < N(n) <_ E B (

	

+ Y-2 + ~ 3

where in 1: 1 bi <_ T, in E 2 T < b i < n/T and in E 3 b i z n/T. Clearly



(19)

	

Eg < TB(n) .

(19) follows from the fact that there are most B(n) summands in ~ 3 and each
summand is <_ T. If (16) does not hold then for every L > T

(20)

	

B(L) < EL/(log L) 1/2 .

Thus from (18), (19) and (20) we have for n > n o (T, a)

(21)

	

`1 + Y- 3 <= 2TB(n) _<_ 2Trn/(logn) 1/2 < cn/2 .

From (20) we further have

(22) E 2
<_ Z
T<n;<nIT

cn/b ; (log

	

1 / 2
-

Now from (20) we have by a simple argument that for b, > T, b; > i (log i) 112 .

Thus from (22) we obtain by a simple computation

n

	

1

	

C
(23)

	

Y 2 < sn ~:	
i1 1/2

< c 7en < 2 n
`=2

i ( log i)" 2 (log-
)i

if c is sufficiently small . (21) and (23) contradicts (17), thus (20) can not hold
for all L > T (or (16) holds for some L > T) which completes the proof of
Theorem 4 .

The following problem can now be put : Assume that (1) holds . What can
be said about

F(n) = max g(m) .
m <_n

I can prove that there are two constants a 1 and a 2 so that (1) implies for n > no

(24)

	

F(n) > (log n)"

But there exists a sequence b 1 < . . . for which (1) is satisfied and for all n

(25)

	

F(n) < (log n)" 2 .

In this paper I do not give the proof of (24) and (25) but only remark that the
proof of (24) is a refinement of the proof of Theorem 2 and the proof of (25)
uses probabilistic arguments similar to the ones used in [3] .
Now we outline the proof of Theorem 3 . By (10) Theorem 3 implies that

for 2k-1 < 1 _<_ 2k u,(n) = (1 + o(1)) 17,(n) .
First we show

(26)

	

U2k-,+,(n)_(1+o(1)) IIk - 1 (n)=(1+o(1))
n(loglogn)k-1

(k - 1)!
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(18)
and

TB(n)
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Denote by vM < • • • < v"k ) <= n the set of integers of the form
k

(27)

		

n < fl pi < n,

	

pi+ t < ptA 2 , pk > ( log n) 2 .
log n

	

i = 1

It is a simple exercise in analytic number theory to prove by induction with
repect to k that

(28)

	

tk = (1 + 0(1)) n (loglog n) k_'
(k - 1)! log n

We leave the proof of (28) to the reader . To prove (26) we now show that for
every m the number of solutions of

(29)

	

v (k)v (k) = mJi Ji

is at most 2k- ` . Observe that if (29) is solvable we must have
k

(30)

	

m = fl pigi
i=t

where Ilk=, pi and fl ;` , q i both satisfy (27) . Every solution of (29) must be of
the form

k

	

k
(31)

	

vk) _ H x (i) v(k) _ fl x«) x ( ' ) > . . . > x (1) ; x (2) > . . . > x ( 2 )
J,

	

i,

	

Jx

	

r,

	

1

	

k

	

1

	

k
i=1

	

i=1

where the W ) and x, 2) are the P's and q's and Ilk=, xl' ) and Ilk=,$2) satisfy (27) .

x~ l) and x ;2) we will call the i-th coordinate of v~k ) respectively v ;k ). Clearly p, and
q, must be the first coordinates of any possible solution of (29) . To see this observe
that (27) implies

k

pigi <11 1 ' 2 <n/log n
i=2

and hence (27) can be satisfied only if the first coordinates are p, and q, . Assume
that the first i - 1 coordinates of a solution v` ) of (29) has already been chosen .
I claim that there are only two possible choices for the i-th coordinate of v(k) To
show this it will suffice to prove that only one p and only one q can possibly
occur as the i-th coordinate of v~k) If this is not so we assume that both
vi~ = x1 • • • xi_tp„x;+t • • • xk and v; = x, • • • x 1 _ 1 p„x;+t • • • x k would be solution
of (29) . But then clearly
"<X,. . . xi_1pv

Hence by (27) and (32)

log n > vs/v > p„l p,k >_ p„1,12> log n

an evident contradiction .
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The fact that the first coordinates of every solution of (29) must be p, and q,
and the fact that for i > 1 there are most two choices for the i-th coordinate of
v;k ) immediately implies that (29) has at most 2 k-1 solutions . Thus by (28), (26)
is proved .
To complete the proof of Theorem 3 we have to show

n(log log n)k-1uz~(n)<_(1+0(1)) (k-1)!Iogn(33)

To prove (33) it suffices to show that to every e > 0 there is an n o = n0(e, k)
so that if

k

	

I
(34)

	

b, < . . . < b,, I > (1 + c) ik(log log)
(

	

)Vlog n
is any sequence of integers then there is an in with g(m) _>_ 2 k . We will only outline
the fairly complicated proof .
Assume that there is a sequence satisfying (34) for which g(m) < 2 k for all m.

We shall show that this assumption leads to a contradiction . We split tile b's
into five classes . In the first class are the b's which can be written in the form

k+1

(35)

	

fl e i , e i > ( log n)"I _<_ i 5 k + I
i=1

where ck is a sufficiently large absolute constant . Using (35) and our Lemma in
the same way as we used (8) and our Lemma in the proof of Theorem 2 we obtain
that g(m) < 2k for all in implies that the number of integers of the first class is
0((n/(log n)2 )) . The integers of the second class have at most k - 2 prime factors
> (log n) and they can not be written in the form (35) . In the asme way as we
proved (11) we can show that the number of integers of the second class is less
than (cn(log logn) k-2 )flogn). The integers which do not belong to the first two
classes can be written in the form

k-1
t o p i , pi > (log n)", 1 j i 5 k -1

i=1
(36)

257

and where t can not be written as the product of two integers > (log,,) ck (for
otherwise our number would be of the first class) . In the third class are the
integers where all prime factors of t are less than (log n)" where 11, = 1I,(E)
is sufficiently small . We can assume t < (log n) 41k for otherwise t would be the
product of two integers > (log n) Thus the number of integers of the third
class is at most Y-' II k _ 1 ((n/t)) where the dash indicates that t < (log n) 4"and all
prime factors of t are less than (log n)'" . By a simple computation we have from
(10) and 17 i = q j (a)
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n

	

n (loglog n)k-2

	

1

	

a n (loglog n)k- '
(37) Y-'II k- I

	

_ (I + 0(1)	Y-'- < -	-
I

	

(k-2)!logn

	

t

	

10 (k-1)!logn

Thus by (37) the number of b's which belong to the first three classes is less than
(e/2)(n(log logn) k-1 )/(k- 1)! log n) and hence by (34) there are at least

a n (log log n) k- i
(38)

	

(1 + 2 ) (k - 1)! log n

b's which do not belong to the first three classes . These b's can by (36) all be written
in the form (Pk is the greatest prime factor of t)

k

	

t
(39)

	

t' ll p;, p i > ( log n)", I .<_ i < k - 1, p, > (log n)n'
i=1

	

Pk

In the fourth class are the b's for which

(40)

	

t' < ( log n) " 2 where n2 = 11 2(ri i )

is sufficiently small . We shall now show that our assumption g(m) < 2k for all
m implies that the number N of integers of the fourth class is less than

E

	

n (log logn)k-r
(41)

	

N < 1
+ 4) (k - 1)! log n

If C is any set of integers N(C) will denote the number of integers of this class .
Let b 1 be any integer of the fourth class, b; can be written (uniquely) in the form

(39) and by I, we denote the set of integers b;lt' . The integers in I,, have all k
prime factors . If (41) does not hold then (in Y- ' t' < ( log n)" 2 )

) > (1 I E ) n (log log n)'- '
(42)

	

N =

	

N(h .
t .

	

=

	

4 (k - 1) ! log n

We evidently have (I,, n I,-, is the set of integers belonging to both I,, and It . .
In

f
(43)

	

N(I,,) < TIk(n) +

	

N(It , n I t „) <

L TIk(n) + (log n) 212 max N(I,, n I t ..) .

From (42), (43) and (10) we obtain that for n > n o
k-1

(44)

	

max N(I,, n I,,,) > e

	

n(log log n)

	

> _ n
t , t „

	

10 (k - 1)!(logn)'+ 2 112

	

(log n) 1+311 2

Hence there are values oft' and t" say t i t and t (2)(t(l) :A t (2) ) for which(44) holds .
We are going to prove that (44) implies that there are primes p ;M, p, (2), 1 < i 5 k
so that all the 2k products
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k

(45)

	

F1 p ly'' ) , .? = 1 or 2
i=1

belong to Ill n 1, 2 . But then all the 2k+1 integers .

k
IM fl Pi(A) 2 = 1 or 2

i=1

are b's of the fourth class . Thus for in = t (1)t(2)TT,k , pi
( ' )
pi (2) we have g(m) >_ 2 k ,

which contradicts our assumption, hence (41) is proved .
Thus we only have to show that if the primes p!zt, 1 <_ i <_ k with the property

(45) do not exist then (44) can not hold . This will be accomplished by arguments
similar to but more complicated than the ones used in the proof of Theorem 2 .

We will only outline the argument. Denote by

(46)

	

r, < • • • <r,, 1 > n/(logn) l+3 ",

the integers belonging to 1,, r1 I . 2 . By (39) each r ; is the product of k primes each
greater than (log n)" . As in the proof of Theorem 2 we make correspond to
r ; = Fk=, pi the k-tuple

(47)

	

(2, . . .
Ak)

	

)', > . . . > 'ak, 22" < pi
< 21+fl1

Denote by N(2 1 , •, ) k ) the number of is corresponding to the k-tuple (A,, • • •, ; k ) .

We shall show that

(48) N

	

2 E1=1a•i

	

~

1

	

-12-2k/2 k+1 .

( 1

	

k) <

	

(
11 i

)i=

By the prime number theorem the number of primes p; satisfying (47) is
(1 + o(1))(2z1 /2,log2). Now we apply our Lemma with r = k and

2z"

	

1
(49)

	

N, = (1 + o(1))	kl0g 2 > 2'k/z,
2xk > 2 (logn)".

We obtain by the Lemma by a simple argument that if

(50) N(A, , . . .,
~k)

> (1 + o(t))21' = 1 ~i
(1 1

k

	

-1
1- ) (log 2) -k 2-Ak/2k>

~

	

1

k

	

k
2E, =1A, ,__,

	

_12 _ ak/2 k +1

t~=~1 t ~

then primes p, (1 , A (2)
,

	

<_ i <_ k exist so that the numbers (45) are all r,'s and we
have assumed that such primes do not exist . Thus (50) is false or (48) is proved .

E k 2, .
(48) clearly implies (the dash indicates that 2 +-1

	

5 n and 22k> #(log n)"'
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[~ Yk-

	

k
1

	

I,'N(~,1, . . .,2k) < L'2 i-1 i( fl A, l-1 2 -~k/2k+1

1=

	

l1

By an elementary but somewhat lengthy argument (using elementary inequalities)
which we supress we obtain that (51) implies

(52)

	

1 < n/(logn) 1+312

if 172 = 112(111) is sufficiently small . (52) contradicts (46) and this contradiction
proves that (44) can not hold, which finally proves (41) .

The remaining b's are in the fifth class . By (41) these integers can be written
in the form

k
(53) t' fl Pi, pi > (log n)" I < i <_ k - 1, Pk > (log n) °i, (log n) 12 < t' < (log n)4 ck

i=1

(if t' >_ (log n)4ck then a simple argument would show that our t' f1ik 1 p i can be
written in the form (35) and hence belongs to the first class) . By (38) and (41)
there are at least

(54)

b's of the fifth class. To each such b we make correspond a (k + 1)-tuple
(~1, . . ., ~k+ 1), '1 > . . . > 4+1 satisfying

2 A, < pi < 2 1+"I1 < i < k

	

22k+1 < t < 21+).k+ 1

(55)

(56)

E n(log log n) k-1

	

n
- >4 (k- 1)!logn

	

logn

2z1 > 2I(log n)
11, 1 < i < k

, i (log n)" < 2
,k +

I < (log n)4ek ,

2Y'k±1 Ai <n.

Denote by N1 (~1,"',).k+1) the number of b's of the fifth class belonging to
to (01, . . . , 2k+ 1) . By (54) we have

n
N,(A,, . . .' 2k+1) > to

where the dash indicates that

(57) 21k=i ~ i < n, 2"'> i (log n) n1,
1 <_ i <_ k, i(log n)'' z < 2'k +

1

Now we prove
k+1

	

k
(58)

	

N1(,11, . . .,)k+r)<2~fjAil- 2 -zk+12k+Z
i=1

As in the proof of (48) we obtain that if (58) would not hold then there would be

< (log n)4c k



1964]

	

MULTIPLICATIVE REPRESENTATION OF INTEGERS

	

261

primes pi-l, 1 < i <_ k, 2 = 1 or 2 and two integers t(1) and t (2) so that the 2k+1

integers

k

2 = 1 or 2
=1

all would be b's of the fifth class, but as we have already seen this implies
g(m) > 2 k (for in = tt 1 ~t«1 fk= l pti llp;21) . Thus (58) is proved . Now we obtain
from (58) by a simple computation the details of which we supress that (the dash
indicates that (57) is satisfied)

(59)

	

E Nl(21, . . .
2k+1) <=

	

2 Ek±1~`(
fj 2i)-1 2-)"+1/zk+z =o ( n ~ .

t _ 1

	

logn

(59) contradicts (56) and this contradiction proves (34) and also (33) and hence
completes the proof of Theorem 3 .

Let 2 k-1 < l < 2k . Theorem 3 could be sharpened to

n (log log n)k- 1

	

)+
	+U ((Jog(k - 1)! log n ((log n)r+c

where c > 0 is a suitable positive constant. But at present I can not prove for I > 2
a result as sharp as (4) and (5) .
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