ON SOME APPLICATIONS OF PROBABILITY TO ANALYSIS
AND NUMBER THEORY

P. Erpis

It would be quite impossible to give a survey of these subjects in a
short article or lecture, and I will only succeed by making some arbitrary
restrictions on the topies with which I will deal. Tirst of all, I will restrict
myself to problems and results on which I worked, and secondly, I will
not discuss subjects which have been discussed in recently appeared
review articles [1].

Probabilistic methods have been used in analysis for several decades ;
it suffices to name Paley, Wiener, Kolmogoroff, Zygmund, Salem,
Steinhaus, Kae, Dvoretzky, Kahane, and many others. I will restrict
myself to some questions my collaborators and I worked on for several

*x
years. Hardy was the first to give an example of a power series ¥ @, 2"
k=1

w
which converges uniformly in |z| <1 but for which ¥ |a;|=00. Piranian
k=1

asked me for what sequences of integers n, <<n, < ... does there exist a
o

power series ¥, a, 2" which converges uniformly in [z| << 1 but for which
k=1

o
51

> || =o0. I proved [2] by probabilistic methods that if the sequence
P

{n;} satisfies
lim inf (n,—n, V0~ =1 where j—i—>o0 (1)

then such a power series exists. Zygmund [3] proved thatifn,. ,/n;, >c¢>1

o m
then if 3 «,z" converges for |z| <1, ¥ |a;| <oo. Thus (1) is certainly
=1 k=1

i
not far from being best possible, and it is quite likely that it is, in fact,
best possible; in fact, Zygmund’s theorem may remain true for every
sequence which does not satisfy (1), in other words, for every sequence
{n;} for which there exists an absolute constant ¢ so that for every 7 < j

n—mn; > (14-¢). (2)

Curiously enough, (1) occurred in a seemingly different context.
xaier and Meyer-Konig [4] call the radius defined by z = re®, 0 <7 < 1,
singular for f(z) = X a, 2" if f(z) is unbounded in every sector |z| <1,

=1

¢—e<<argz < ¢-+e where e>0. They showed that if f(z) = I a,z™
k=1

and ;. ,[n;. > ¢ > 1, and if f(z) is unbounded in |z| <{ 1, then every radius
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is a singular radius. Rényi and I [5] showed by probabilistic methods
o0
that if {n,} satisfies (1) then there exists a power series f(z) = ¥ a,2™
k=1
for which @, >0, ¥ @, = oo, thus the positive real axis is a singular
F=1

radius but no other radius is singular. In fact, f(z) is bounded in |z| <1
if a region |z—1| < e is excluded (for every e > 0). It again seems quite
possible that our theorem is best possible; in fact, perhaps if {n,} satisfies
(2) then the theorem of Gaier and Meyer-Konig remains true, but we
could prove nothing in this direction.

Finally using the methods of [5], Rényi and I solved the following
pmblun of Zygmund [6]: A well-known theorem of Wiener [7] states

that if }_, (@), cos A x--by sin A, x) satisfies A, ,—A,—>o0 and is the Fourier
k=1

series of a function f(a) in L, and if f(x) is in L, in (o, B), 0 <o < B < 27,
then it is in L, in (0, 27). Zygmund now asked whether the same result
remains true for L, instead of L,. We proved that for p > 2 the answer
is negative. In fact, we showed that there exists for every € > 0 a function
fle) in L, (0 <a < 27) with the Fourier series

o
Y (ay cosApz+by sinA, ), A —A—>00
k=1

which is bounded for e << @ << 27—e but which does not belong to any
Ly, for > 0in (0, 27).  For p << 2 we could not make any contribution
to the problem of Zygmund.

o0
Let ;,E |2 =c0. Put
o]

z:ie.a 2 =41, t= 3 .
i@ P T B Fo1 2k
It is well known that for almost all £, ¥ €, ;. 2% diverges almost every-
E-1
where on the unit circle. Dvoretzky and 1 proved [8] that if ¢, is a mono-
tone sequence of positive numbers tending to zero and satisfying
F
E ;2

llm su B et S 25010
Plog (1/ep)

(3)
and if |a,| = ¢, then for almost all t 3 e.a,2" diverges everywhere on
k=1

z|=1. In particular, our theorem holds if @, > ¢/k? (¢ > 0). Further,
we showed that there is a sequence a, sa,tisfying |ay 4| <|az| and

2 |@,.|? = oo so that for almost all ¢ the series E €, 0. 2% has on every arc
=1 k=
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of |z] =1 points of convergence whose power is that of the continuum.
We could not decide whether (3) is best possible; in other words, is it
true that if (3) is false then there exists a sequence {a;} for which |a;| > ¢,

®
and for which Y €,a,z* has at least one point of convergence for almost
k=1
all 7
I would just like to call attention to a problem in the probabilistic
theory of polynomials and power series which I tried several times to
solve, unfortunately without any success. Put

00‘ : n & 1+E
fr(:') :k>:‘1 ekzk’ ff'”(z) Zkz_:1 ekz"’ =l ¢ =k§1 ‘)k+lk

Is it true that for almost all ¢

lim nlllazlc [ fin(2)[(nlogn)t = C, (4)
where C'is independent of t? The proof of (3) seems very difficult. Salem
and Zygmund [9] proved the following slightly weaker result: There
exist two constants ¢, and ¢, so that for almost all ¢ and sufficiently large
n = ny(l)

cy(n logn)t < nllla,)i(|ff_ 2(2)| < cy(n logm)t. (5)
[n (5) the proof of the upper bound is simple; the real difficulty is
the proof of the lower bound.
A well-known theorem states the following [10]:
Let ny <mny,<<..., #q/n,>¢>1, be an infinite sequence of real

oo
numbers and Y] (w,2-+b,%) a divergent series of real numbers satisfying
k=1

N -1
lim (-H03( 3 (02+5,) =0,

Then

lim ¥,

N=

N
{kE (ay cos 27 ng,x-4-by, sin 270, x)
=1

<w (é ki (a2 bkz}i)} ’ = \/—{12;)—.[1 e~ "2 du. (6)

Recently I weakened the lacunarity condition in the case a;, =0b,=1.
In fact I proved [11] (using the method of moments) that if n, < n, < ...
is an infinite sequence of integers satisfying

Cx
gy = nk(l—{— F) (7)

where ¢, — o0, then (6) holds if we assume @, = b, = 1. It is not hard to
see that the theorem is no longer true for all sequences {n,} if ¢, —>o0 is
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no longer assumed, but for special sequences, say n;, = [¢*"], « > 0, the
theorem probably remains true, but probably could only be proved by
deep number theoretical methods. (For o>} this follows from our
theorem (i.e. (7) is satisfied), but I eannot prove it for oo = 1.

I would like to mention, finally, some number theoretic results which
1 have recently obtained by probabilistic methods and which are not yet
published.

1. To every ¢ and e, there exists an »n, so that if »>n, and
m < 20-e)loglosn then all but e,n integers 1 <u <<m have divisors in
every residue class modm. The result is best possible in the following
sense: If m > 20tenloglogn then the number of integers u << n which have
a divisor in any given residue class mod m is less than e,n if 7 > ng(e, €).
The proof of the second statement is comparatively simple and does not
require probabilistic arguments.

The proof cf the first statement depends on the following result, which
seems to have independent interest: Let (/, be an abelian group having
(1+4¢€) logn

n elements, let kz[ -
log 2

] and choose I elements a,, ..., a, at

random. Then for all but o((’z)) choices of ay, ..., a; every element of

&
(, can be represented in the form Il a5 where ¢, — 0 or 1.
i=1

I was led to these questions by the following result of Sivasankaranara-
yanu Pillai: Denote by @™ the number of integers m << n which do not
have a divisor of the form p(kp+1). Then

Q(n) < cnflog log logn.

Using the above results, I proved

'R
Qn) = (l—]--o(l)) log 2.1og logn”

Let a, < a,<< ... be an infinite sequence of integers and denote by
f(n) the number of solutions of n =a;+a@,. Sidon asked the following
question (in connection with his work on lacunary trigonometric series):
How slowly can the sequence {a,} grow so that f(n) should be bounded?
Rényi and I [12] proved by probabilistic methods that for every e there
exists a sequence a, << k***, k=1, 2, ... for which f(n) <e¢.. We could
not give an explicit construction of such a sequence and we could not
decide if a, < k*** can be improved. An old and probably very difficult
conjecture of Turdan and myself states that if @), < ek? then lim sup f(n) = o0.

=90

We can only prove that the sums a;+-a; cannot be all different.

2. I proved several years ago [13] that the density of integers » which
have two divisors d, and d, satisfying d, < d, < 2d, exists, but I could not
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prove that it is 1. Unless I made a mistake I proved this recently; in
fact, I showed that for every » > 0 the density of integers n which have
two divisors d; and d, satisfying

f e\ (1= loglog n
d1<dg<d,(1+(3) ) ()

is 1, but the density of integers » which have two divisors d, and d, for
which

e N (4gloglog n
d1<de<d,(l+(—g) ) (9)

is 0. The proof of (8) is comparatively simple and does not require
probabilistic methods.

References

1. Recently several review articles appeared on applications of probability to number
theory, e.g., M. Kae, ** Probability methods in some problems of analysis and
number theory ', Bull. American Math. Sec., 55 (1949), 641-665 ; see also:
Kubilijus, Uspelt Matem. Nauk., 11 (1956), 31-66 ; P. Erdds, Proc. Infernal.
Congress of Math., Amsterdam (1959) Vol. 3, 13-19.

. Erdds, ** On the uniform but not absolute convergence of power series with gaps ',
Ann. Soc. Pol. Math., 25 (1952), 162-168.

. Zygmund, Studia Math., 3 (1931), 77-91.

4. D. Gaier und W, Meyer-Konig, * Singulire Radien bei Potenzreihen ", Jahresbericht

d.Dm. V., 59 (1956), 3648,

5. P. Erdos and A, Rényi, ** On singular radii of power series ”, Publ. Math. Inst. Hung.
Acad., 3 (1959), 150-169,

6. ———, ""OUn a problem of Zygmund ", Stanford Studies in Math.,, and Stat. 1V.
(Essays in Honor of G. Pdlya) (1962), 110-116 ; see also for a slightly weaker
result P. Turdn, " On a certain problem in the theory of power series with gaps”,
ibid, 404—-409.

7. N. Wiener, ** A class of gap theorems ”, Annali di Pisa, 3 (1934), 367-372,

. Dvoretzky and P. Erdds, ** Divergence of random power series”, Michigan Math.
J., 6 (1959), 343-347 ; see also A. Dvoretzky, ** On the covering of the circle
by randomly placed arcs, Proc. Nat. Aead. Sci. U.S.4., 42 (1956), 199-203.

9. R. Salem and A. Zygmund, ** Some properties of trigonometric series whose terms have

random signs "', Acta Math., 91 (1959), 245-301.

, "On lacunary trigonometric series (1) and (I1)", Proe. Nat. Acad. Sei, [7.5.A4.,
33 (1947), 333-338 and 34 (1948), 59-62. TFor the history of thig problem see the
paper of Kac quoted in [17.

11. P. Erdds, * On trigonometrie sums with gaps ', Publ. Math. Inst. Hung. Acad.,
7 (1962), 37-42.

12. I, Erdés and A, Rényi, * Additive properties of random sequences of positive integers ',
Acte Arithmetica, 6 (1960), 83-110 ; see also ** Problems and results in additive
number theory ", Coll. theorie des numbres, Bruxelles (1955), 127-137.

13. . Erdés, " Density of some sequences of integers "', Bull. American Maoth. Soc.,
64 (1948), 685-692,

b
-—
=

w
5

o0
=

10.

Nemetvolgyi ut 72¢,
Budapest XII,
Hungary.

Printed by C. ¥. Hodgson & Son, Ltd., Pakenham Street, London, W.C.1



	page 1
	page 2
	page 3
	page 4
	page 5

