A PROBLEM ON TOURNAMENTS
P. Erdds and L. Moser

(received November 14, 1963)

By a tournament we mean the outcome of a round-robin
tournament in which there are no draws. Such a tournament
may be represented by a graph in which the n players are
represented by vertices labelled 1,2,...,n, and the outcomes
of the games are represented by directed edges so that every
pair of vertices is joined by one directed edge. We call such
a graph a complete directed graph. One can also represent

such a tournament by an nXn matrix T =(t. ) in which t_,
1) 1)
is 1 if i beats j, and 0 otherwise, sothat T isa (0,1)
matrix with t.  + t.. =1 for i ;-/j and (by definition) t__=0.
i ji i1

In the summer of 1962 K. Schitte asked P. Erdds
the following question: Does there exist for every k, a
complete directed graph such that for every k vertices

xi, Xy wens xk there is one vertex y such that the edges

(xiy), i=1,2,...,k, are all directed away from y ? Erdds[1]

proved that, provided n > (log 2 + ¢ ) kz Zk (e a positive

constant which can be taken arbitrarily close to 0 if k is
large enough), there do exist complete directed graphs with
this property. He also proved that such graphs do not exist

k+1
with n< 2 - 1. It is not obvious, and as far as we know

it has never been proved, that if such graphs exist for a given
n then they must also exist for every m > n.

At the seminar of the Canadian Mathematical Congress
in Saskatoon in August, 1963, H. Ryser asked the following:
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Is it true that in every tournament matrix, there is a set of 4
or fewer columns, such that every row has at least one 1 in
at least one of these columns. L. Moser showed that the
answer is no and in fact showed that for every large n, there
are tournament matrices in which for every set of

[Iogzn - Zlog2 logzn] columns there is some row which has no

1 in any of these columns. He also showed that there does
exist, in every nXn tournament matrix, [I.og2 (n+1)] columns

such that every row has a 1 in at least one of these columns.
He further observed that for n>n (k,f) there are nXn
o

tournament matrices in which for every k columns there are

£ rows such that the kX{ submatrix determined by these
columns and rows consists entirely of zeros. It is easy to see
that our results, which were obtained independently, are closely
related. By our methods we can obtain, almost without any
essentially new ideas, somewhat stronger results.

Consider a tournament on n players 1,2,...,n. Pick
k of them, say xi, xZ, e xk. Clearly one of the other
players, y, can obtain 2 different sets of results with the
players xi, xz, ~ I xk. Now we prove

2 _k
THEOREM 1. Let n> (log2+ )k 2 . Then there
exists a positive a =ale ) so that for each £ <k and every

choice of ¢ players Xys Xy cney
in which the remaining n-{ players are divided (two players

are in the same class if they perform in an identical way against

k
XE, each of the 2 <classes

the players X0 Xys oes X ) contains more than cm,r’Zf players,

-1)/2
for all but O(Zn(n i ) of the tournaments.
By a slightly more complicated calculation we can prove

THEOREM 2. For every n >0 there is a c‘l = ci{n)

2_k
such that for n > Cik 2 and any £ < k players Xys Kpsocoes xﬁ ;
each of the 22 classes contains (1 + 6)11,’2E players, where
-1)/2
|6] <m, for all but c>|{2n(n M ) tournaments.
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Theorem 2 can also be stated as follows. For every

n >0 there is a CZ = cz(q} such that in almost all tournaments

on n players, for every set of { players xi, xz, &5 E xf <

each of the 21 classes will contain (146)n/2¢ players,
]6] <7, provided ¢ < logzn - Zlogz(logzn) - cz.
Proof of theorem 1. The total number of tournaments

-1)/2
of n players is Zn{n L . Thus it will suffice to show that

the number of tournaments which do not satisfy the conditions

- 2
of theorem 1 is 0(21!1(11 1/ ). Further, a simple argument

shows that it will suffice to prove the theorem for { =k.

The k players ¥ X v+ X, can be chosen in {z) ways

RS
and, as already stated, there are 2 classes into which the
remaining n-k players are decomposed. Let us fix our

attention on a particular set of k players Xi' b e x

s "
and a particular class (i.e., y is a member of the class if

he wins against a fixed subset of the x's and loses against

the complementary subset). Let us determine an upper bound
for the number R(t) of tournaments in which our class contains
exactly t players.

x

PAN
and the remaining n-k players are restricted by our conditions

First of all, only the games between xi. X

so we have (2}-1&(11—1() unrestricted games and these yield for
n

2|-k(n-1k).

R(t) a factor 2 Next, the t players may be chosen

ln-k

from the n-k players in ways, and for the games

between the t players and xi, xz, Sy g xk the outcomes are

determined. Finally, the games between x , x x

27 7T Tk
and any one of the remaining n-k-t players can go in 2k g
ways, since the only excluded case is if such a player is in the

given class with respect to X0 xz, ik § Hye Hence

(;l-k{n—k} (n-k

(1) R(t) < 2 5 A,

t 1{(2 - 1)
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s k ,
Since we are assuming t <[en/2] =L, and since the k players
k
can be chosen in (zl ways and there are 2 classes, the total

number of tournaments S which do not satisfy the conditions of
theorem 1 fulfills the inequality

i
(2) s < (‘;) X = Ry
t=0

To obtain an upper bound for S we note first that for k large,
k k
(;) 2 <n and that in the range 0<t< L, R(t) is increasing

with t. Hence using (1) and (2) we obtain

n
(3) S <2’ (L+1) 2(2][1][1 *1—k]jD Lz'kL

and

(4) S<nk+1 2(121)(111) e—(n—L}_ka Z-kL.

Our theorem will be established if we can show that

S = D(Zn(n-‘.l};"Z)

(n-L
n) Z-RLe Zk - o(1)
L =0

(5) nk+i{

-kL k L L
Now, note that (IIZ)Z <(ne/L2") < (e/a)” so we must still

prove only

(LL
L k
k

(6) n +1(§] ez =o0(1)
From

n>-(10g2+e)k22k
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we find

D5 (44e)k2"
log n 1
and
(7) (k+ 1) logn<=>— (1-¢.)
ERSTX 2! !

o

where € and e, are positive numbers depending on ¢ .

Taking logarithm of the left hand side of (6) and using (7) it is
seen that it only remains to prove that

(8) *n—-—L-L(‘.l-logar}-(i-s}n—-m.
Zk 2 Zk

Since L =na!2k and a1 - loga) =0 as o -~ 0 the required
result follows.

We suppress the proof of theorem 2 since it is similar
to that of theorem 1.

By the method used in the proof of theorem 1 we can also
prove

1
THEOREM 3. let ¢ < *° n>n (¢, k). Consider all
(8]

2-¢
incomplete tournaments on n players who play [n ] games.
n(n-1)/2

2-¢
]
these tournaments contain, for each k players, at least one

The number of tournaments is ( Almost all of

player in each of the Zk classes.

Theorem 3 is not very far from being best possible since

2-1/k
if the number of games is cn / then we can show that for

almost all tournaments there are k players for which there is
no player who plays with all of them.

We conclude with two problems:
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Problem 1. What is the minimum number of edges in a
graph of n vertices so that it can be directed in such a way
that to any k vertices xi, xz, ot g xk there is a vertex vy
such that all edges (x,,y), i=1,2,...,k are directed from

i
xi to y ? Of course we must assume here that n is large
enough that some complete directed graph has the required
property.

Problem 2. Let n> k. What is the smallest number
E(n;k) for which there is an ordinary graph of n vertices and
E edges in which for every set of k vertices, there is some
vertex, joined to each of these k.

We have solved this problem and hope to return to it.
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