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Let f(a) be a holomorphic. function in the open unit disk D in the complex plane. 
Suppose t,hat there exists a sequence of dist,inct Jordan curves J,, J,, . . ., J,, . . . in D 
satisfying the following conditions : 

(a) J, lies in the interior of J,+l (n = 1, 2, 3, . . .) and 

(b) given any 8 > 0, there exists an n, = no(&) suc,h that, for every IL > rtO, J, 
lies in the region 1 - E < 1 z 1 < 1. 

Set 
p!c, = p$ I f(z) I (n = 1, 2, 3, . * .). 

R 

If lim pu, = 00, then we call f, for brevity, an annular function. 
-CO 

As is evident from this definition, an annular fun&ion f is not identic.ally constant, 
and K, the unit circle, is its natural boundary. Furt.hermore, according to Kierst and 
Szpilrajn ([5], p. 291), every holomorphic function in D has at least one asymptotic 
value, and an annular function evidently can have only CYI as an asymptotic value; 
therefore A(f), the set of asymptotic values of f, cont,ains 00 as its sole element. It is 
known that annular functions exist; we shall refer to examples later. 

If f is an annular function, denote by Z(f) the set of zeros of f. It follows from a 
theorem of Collingwood and Cart,wright (131, p. 212, Theorem 9, (ii)), that Z(f) is an 
infinite set of points in D. Let Z’ (/) be the set of limit points of 2 (f). Then clearly Z’(f) s K. 
We shall be concerned in this article with the following 

Problem: If f is an anndar function, does 2’ (f) = K ? 

It is known t,hat there exist annular functions for which Z’= K. A function of Koenigs 
was shown by Fatou ([4], p. 272) t.o be of this nature, and annular functions were con- 
structed by Wolff (see [12]) as well as by Bagemihl, Erdijs, and Seidel (in [1]) in such 
a way that Z’ = K. For each of these functions, every point of K is the end point of an 
asymptotic path of f. 

The following theorem enables us to infer that 2’ = K for other known annular 
functions. 

Theorem 1. Let f be an annular function. Suppose thnt there exists an everywhere 
dense subset E of K such that every point of E is the end point of an. asymptotic path of f. 
Then Z’ = K. 
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Proof. First we require some definitions. 
Let 5‘ = eie, and call the extended complex plane $. The set r(f, 1 8’ - 13 j < v) 

is defined to be the set of all points o E Q with the property that there exists an asymptotic 
path on which f tends to w and whose end is contained in the open arc 

[’ = e”“‘, 6-?j<<‘<O+?j. 

Now put x(f, 5) = t r(f, 1 8’ - 8 1 < 17). Another set that we need is @((f, [), which 

is defined as the set of all points o E Q wit,h the following property. Let (I = eisl and 
52 = e iBa be distinct points of K, with 8, 5 8 2 e4, 0 < 0, - f& < 2 X, and denote 
by rl the closed arc B1 < arg z 2 i&, 1 z 1 = 1. Suppose that {&} is a sequence of Jordan 
arcs in D, where A, has end points ~2) and z:), lim .zp) = {r, lim zf) = cz, A, 

n-too n+m 
is contained in an annulus 1- en < [ z j < 1, lim E, = 0, and rl is the limit of the 

n*m 
sequence {An}. If for every z E II, we have 1 f(z) - o 1 < 8, or 1 l/f(z) ] < 6, according 
as o is finite or is the point at infinity, where lim 6, = 0, then by definition ti < @(f, 4). 

?L+cc 
Finally, R (f, ii) is defined to be the set of values u) such that w is assumed by f at infinitely 
many points in every neighborhood of 5. 

Now Collingwood and Cartwright have proved ([3], p. 129, Theorem 16, (ii)) for 
a meromorphic function f in D, that if r(f, 1 8’ - 8 1 < 7) is of linear measure zero for 
some q > 0, then 

(1) Q- R(f, 0 5 x(f, 5) ” @(f, 5). 

For our annular function f, we have T(f, 1 0’ - 0 I < “17) = {a} for every 7 > 0, so that 
this set is of linear measure zero, and hence (1) holds. Clearly x(/, 5) = (cxj), and due 
to the nature of the set E, we have also that @(f, c) = (00). It follows from (1) that 
0 E R(f, [), and consequently 2’ = K. 

Examples of annular functions in the form of power series 2 uk .zlk have been 
k=O 

given by Lusin and Privalov ([6], p. 148), Davidov (see [lo], p. 119), and MacLane 
([71, P* 181). A n examination of t,he gaps in these series reveals that in each case 

liminf+> 3, 
kern 

MacLane has shown ([$I, p. 46, Theorem 19) that (2) implies the existence of an everywhere 
dense subset E of K such that every point of E is the end point of an asymptotic path 
of the function f represented by the series. Hence, according to Theorem 1, Z’(f) = K. 

Theorem 1 is thus seen to be useful in showing that 2’ = K for some annular funct- 
ions. The next theorem shows, however, that the relation 2’ = K is a consequence of 
a much weaker hypothesis. 

If r”l is a path in B terminating in a point < E K, then c,(f, 5) is defined to be the 
set of all points o E D with the property that there exists a sequence of points .zn E II 
with lim 2% = 5 and lim f (2,) = w. 

n-em n+cG 
Theorem 2. Let f be an annular function. Suppose that there exists an everywhere 

dense subset E of K such that every point 5 in E is the end point of a path A in D with the 
property that 0 4 CA (f, 5). Then 2’ = K. 

Proof. We indicate briefly how this theorem follows from a result established by 
Ohtsuka ([9], p. 319, Theorem 2). 
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First of all, it is not difficult to show (see, e. g., [2], p. 1071) that since f is an annular 
function, the global cluster set of f at any point C, E K (Ohtsuka denotes this set by S,) 
is Jz. 

Take Ohtsuka’s ZU,, to be the value 0. Then, since A (f) = (ooj for our annular 
function /, it is easy to see that the set Nr’) ’ m Ohtsuka’s theorem is a subset of {cQ}. 
Hence, condition (C,) in that theorem is satisfied, and condition (C,) is just our assumption 
concerning the set E localized to a point 5 of K. Since 0 ff A (f), it follows from Ohtsuka’s 
theorem that the value 0 is assumed by f in every neighborhood of 5, and consequently 
Z’(f) = K. 

In view of the fact that for the known analytically defined annular funct,ions it 
is also known that 2 = K, and that there exists a subset E of K of the kind described 
in Theorem 1, it is perhaps natural t,o attempt to solve the problem formulated at the 
beginning of this paper by t.rying to show that, such a set E, or at least a set. E of the 
kind described in Theorem 2, exists for every annular function. This approach is un- 
fruitful, however, because of 

Theorem 3. There exists un unnular function f such that 0 E @(f, 5) for every C C K. 

Proof. We define f as the product of the following two fun&ions g and h. 

Take g to be an infinite product of the sort described in ([1], p. 136). Then g is 
holomorphie in D, and there exists (see [1], p. 139, Theorem 3) an inc,reasing sequence 
{Q,~>, 0 < Qua < 1, lim en = 1, such t,hat, setting 

12+00 

(3) 

we have 

so that g is an annular function. 

We define the function h by an induction process as an infinite product of poly- 
nomials. 

First, for e\:ery nat’ural number ~1, let 

a = (2: 1 z 1 2 @*J ) 

and put 

If a function is holomorphic in D,, and continuous on D,, u V,,, then, as is well 
known (see [ll], p. 47, Theorem 15), it can be approximated arbitrarily closely and 
uniformly on D, u V,, by a polynomial. 

Let (Q) be a sequence of positive numbers such that 
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The function that is idemically 1 on D, and identically 0 on V, is holomorphic in 
D, and continuous on D, u VI- Hence, there exists a polynomial pi(z) satisfying the 
conditions 

I Plb) - 1 I < El Iz c DA, 

lPl(4 I < El (2 E Vl) . 

Now let. k > 1, and assume that polynomials pj(z) and natural numbers 
nj(j = 1, . . ., k - 1) have been defined, where 12~ = 1. 

Since g is an annular function, and pi(z) . * * pr-l (z) is bounded in D, there exists 
a natural number ~1, > nkmI suc.h that 

(6) I g(z) * PlI4 * * -P/+-~(Z) I > k ( I z I = en,). 
Put 

(7) M,=~~~XIg(~).Pl(Z)..~Pk-l(Z)I. 
nk 

As before, there exists a polynomial ~~(2) such that 

(8) jd+--l 1 x&k 

and 

(9) I PkL4 I -=+ 

The sequence of polynomials {pk(z)} is thus defined by induction on k, and we set 

(10) h(z) = kzTl PkC-5) (z E D). 

Because of (5) and (S), h is holomorphic in D. 

Take 

(11) f(z) = g(z) * h(z) (z E D). 

Then f is not only holomorphic in II but is also an annular function; for if I z j = enk, 
then by (II), (lo), (6), and (8) we have 

I f(z) I = I g(z) - Pl(4 * * * P&l(Z) I * I Pk(Z)Pk.+l(4 - * * I 
> k . I Pi I I PX+~ (~1 I . . - 
> k .(I - &k) (1 - Ekfl) . . * , 

and the last expression tends to 00 as k--f co. 

If z E V,+ then using (7), (9), and (8) we find that 

and the last expression tends to 0 as k-t 00 . Bearing in mind the definition of Vak, mu 

see that this implies that 0 E @(f, 5) for every 5 E K. 
The problem formulated in this paper is unsolved, and we hope that what we have 

said about it will tempt the reader to try to find a solution. 
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