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To Helmut Hasse on his 65. birthday

Let f(z) be a holomorphic function in the open unit disk D in the complex plane.
Suppose that there exists a sequence of distinet Jordan curves Jy, Jy, ..., Jy, ... in D
satisfying the following conditions:

(a) J, lies in the interior of J, . ; (n =1,2,3,...) and

(b) given any £ > 0, there exists an n, = ny(¢) such that, for every n > n, J,
lies in the region 1 — e < |2| < 1.
Set

=101 | ! =1,2,3,...).
I zfgg;.f(z}, (n ==1,2, )

If lim p, = oo, then we call f, for brevity, an annrular function.
=+ oo

As is evident from this definition, an annular function f is not identically constant,
and K, the unit circle, is its natural boundary. Furthermore, according to Kierst and
Szpilrajn ([5], p. 291), every holomorphic function in D has at least one asymptotic
value, and an annular function evidently can have only oo as an asymptotic value;
therefore A (f), the set of asymptotic values of f, contains oo as its sole element. It is
known that annular functions exist; we shall refer to exarnples later.

If fis an annular function, denote by Z(f) the set of zeros of f. It follows from a
theorem of Collingwood and Cartwright ([3], p. 112, Theorem 9, (ii)), that Z(f) is an
infinite set of points in D. Let Z'(f) be the set of limit points of Z (f). Then clearly Z'(f) = K.
We shall be concerned in this article with the following

Problem: If [ is an annular function, does Z'(f) = K?

It is known that there exist annular functions for which Z' =K. A function of Koenigs
was shown by Fatou ([4], p. 272) to be of this nature, and annular functions were con-
structed by Wolff (see [12]) as well as by Bagemihl, Erdds, and Seidel (in [1]) in such
a way that Z° = K. For each of these functions, every point of K is the end point of an
asymptotic path of f.

The following theorem enables us to infer that 72’ = K for other known annular
functions.

Theorem 1. Let { be an annular function. Suppose that there exists an everywhere
dense subset E of K such that every point of E is the end point of an asymptotic path of f.
Then Z' = K.
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Proof. First we require some definitions.

Let ¢ = ¢, and call the extended complex planc £2. The set I'(f, | 6" — 6| < n)
is defined to be the set of all points w € 2 with the property that there exists an asymptotic
path on which f tends to «w and whose end is contained in the open arc

=" 0—n<® <6+ 1.

Now put z(f, ) =NI'(f,]| 8 — 08| < u). Another set that we need is D(f, {), which

n s
is defined as the set of all points w € 2 with the following property. Let ¢, = ¢ and
£, = €% be distinct points of K, with 6, < 06=<6, 0 <0,—0, <2z and denote

by A the closed arc §; = argz = 0,, | z| = 1. Suppose that {4,} is a sequence of Jordan
arcs in D, where A, has end points z’ and 2%, lim 2z = ¢, lim 2 = ¢, 4,

A=+ 0
is contained in an annulus 1 —eg, <|z| <1, lim ¢ =0, and 4 is the limit of the
H—r 0
sequence {A,}. If for every z € A, we have | f(z) —w | < 8, or | 1/f(z) | < 6, according
as o 1s finite or is the point at infinity, where Iim 4§, = 0, then by definition w € @(f, {).

i—= o0

Finally, R(f, {) is defined to be the set of values @ such that o is assumed by f at infinitely
many points in every neighborhood of £.

Now Collingwood and Cartwright have proved ([3], p. 129, Theorem 16, (ii)) for
a meromorphic function f in D, that if I'(f, | ' — 6 | << %) is of linear measure zero for
some 7 > 0, then

(1) L—R({}, 0= xh 0 v @ 0.

For our annular function f, we have I'(f, | 6’ — 0 | < ) = {oo} for every 5 > 0, so that
this set is of linear measure zero, and hence (1) holds. Clearly x(f, {) = {oo}, and due
to the nature of the set E, we have also that @(f, {) = {co}. It follows from (1) that
0€ R(f, ), and consequently Z' = K.

o
Examples of annular functions in the form of power series X a; 2" have been
k=0

given by Lusin and Privalov ([6], p. 148), Davidov (see [10], p. 119), and MacLane
({71, p. 181). An examination of the gaps in these series reveals that in each case
. o Ng41
(2) liminf = > 3.
] R
MacLane has shown ([8], p. 46, Theorem 19) that (2) implies the existence of an everywhere
dense subset £ of K such that every point of E is the end point of an asymptotic path
of the function f represented by the series. Hence, according to Theorem 1, Z2’(f) = K.
Theorem 1 is thus seen to be useful in showing that Z’ = K for some annular funct-
ions. The next theorem shows, however, that the relation Z’ = K is a congequence of
a much weaker hypothesis.
If A is a path in D terminating in a point { € K, then C4(f, {) is defined to be the
set of all points o € £ with the property that there exists a sequence of points z, €
with lim z, = ¢ and nlir& f(zn) = o.

= o0

Theorem 2. Let | be an annular function. Suppose that there exists an everywhere
dense subset E of K such that every point { in E is the end point of a path A in D with the
property that 0 ¢ C 4 (f, £). Then Z' = K.

Proof. We indicate briefly how this theorem follows from a result established by
Ohtsuka ([9], p. 319, Theorem 2).
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First of all, it is not difficult to show (see, e. g., [2], p. 1071) that since f is an annular
function, the global cluster set of f at any point { € K (Ohtsuka denotes this set by S,)
is Q.

Take Ohtsuka’s w, to be the value 0. Then, since A (f) = {oo} for our annular
function f, it is easy to see that the set N° in Ohtsuka’s theorem is a subset of {oo].
Hence, condition (C,) in that theorem is satisfied, and condition (C,) is just our assumption
concerning the set E localized to a point { of K. Since 0 € A (f), it follows from Ohtsuka’s
theorem that the value 0 is assumed by f in every neighborhood of ¢, and consequently
Z'(f) = K.

In view of the fact that for the known analytically defined annular functions it
is also known that Z’ = K, and that there exists a subset £ of K of the kind described
in Theorem 1, it is perhaps natural to attempt to solve the problem formulated at the
beginning of this paper by trying to show that such a set E, or at least a set E of the
kind described in Theorem 2, exists for every annular function. This approach is un-
fruitful, however, because of

Theorem 3. There exists an annular function f such that 0 € D(f, {) for every ¢ € K.
g and A.

=]

Proof. We define f as the product of the following two functions

Take g to be an infinite product of the sort described in ([1], p. 136). Then g is
holomorphic in D, and there exists (see [1], p. 139, Theorem 3) an increasing sequence
{on}, 0 < 0, <1, lim g, =1, such that, setting

» = min I
3) Iz |z]=an|f(z)i
we have

(4) lim u, = oo,

so that g is an annular function.

We define the function & by an induction process as an infinite product of poly-
nomials.

First, for every natural number », let

D, = {Z.’ IZ[S_; Qu}a
and put

2 1 KF/ 3In
Sﬂ {z: |z|:§9n+'§gn+l? _"'Téargzé“ll_]r

IV' | = —.Il.. ..z_. i < l
Tn l‘“ I"l_ 9n+39n—5—1v A = argz = 4 J:

I

|

V,=8,v T,

If a function is holomorphic in D, and continuous on D, v V,, then, as is well
known (see [11], p. 47, Theorem 15), it can be approximated arbitrarily closely and
uniformly on D, v V, by a polynomial.

Let {&;} be a sequence of positive numbers such that

(3)

8;-:1.
1

g

k
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The function that is identically 1 on D, and identically 0 on ¥, is holomorphic in
D, and continuous on D; v V,. Hence, there exists a polynomial p,(z) satisfying the
conditions

[ pi(e) —1| <& (z2€ D),
[p1(2) | <& (z€ V).

Now let &£ > 1, and assume that polynomials p;(z) and natural numbers
ni(j =1,..., k—1) have been defined, where n, = 1.

Since g is an annular function, and p,(2) - - - p;_, (2) is bounded in D, there exists
a natural number n;, > n,_, such that

(6) lg()  pr(2) (@) | > K (12] = ew,)-

Put
M, =max | g(z)  py(2) "+ - pp_y(2) |-

(7 E zel,Mlg() P1(2) " P (2) |
As before, there exists a polynomial pg(z) such that

®) P —1] <& (:€D,)
and

(9) | Pe(a) | <= €V

P | -fui: (Z "k)'

The sequence of polynomials {p;(z)} is thus defined by induction on k, and we set

(10) h(z) = I pi(2) (z € D).
Because of (5) and (8), & is holomorphic in D.

Take

(11) f(z) = g(z) - h(2) (z€ D).
Then f is not only holomorphic in D but is also an annular function; for if |z | = g

"y

then by (11), (10), (6), and (8) we have
| f(2) | =[8(2) - P1(2) -+ Pea (B) | * | Pa(@)PRsr (2) - - - |
>k pe(@ | | Peya(@) |-
>k (l—g)(l—egy) -,
and the last expression tends to oo as k— oo.

If z € Vnk_, then using (7), (9), and (8) we find that
| H2) | = | &(2) pr(3) -+  Pea (@) |+ | al2) | - | Prt1(2) Pego(a) -+ |
= Mk'%' | Pes1 (@) | | Prgal@) |- -

<g (M+eg,) A+,
and the last expression tends to 0 as £-> co . Bearing in mind the definition of ¥V , we
n

see that this implies that 0 € @(f, {) for every { € K.

The problem formulated in this paper is unsolved, and we hope that what we have
said about it will tempt the reader to try to find a solution.
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