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THE HAUSDORFF MEASURE OF THE INTERSECTION OF SETS
OF POSITIVE LEBESGUE MEASURE

P. Ern6s and S. J. TAYLOR

Frdés, Kestelman and Rogers [1] showed that, if 4., 4,, ... is any
sequence of Lebesgue measurable subsets of the unit interval [0, 1] each
of Lebesguo measure at least % > 0, then there is a subsequence {4,}
(=1, 2,...) such that the intersection M A4,, contains a perfect subsct

i=1
(and is therefore of power 2%). They asked for what Hausdorff measure
funetions é(t) is it possible to choose the subsequence to make the inter-
section set M .A4,, of positive ¢-measure. In the present note we show that
the strongest possible result in this direction is true. This is given by
the following theorem.

TunoreM. Suppose b(t) is continuous, monolonic increasing in t and

such that lim $(t) =0, lim £1$(f) = oo,  Given any sequence A, Ay, ...
=04+ =0+

of Lebesgue measurable subsets of [0, 1] salisfying limsup| 4, | = 0, there
Nt

is @ subsequence A, )} such that

qﬂ—ru( N Aﬂ,) = +-00.

i=1

1t is easy to show that the conclusion of the theorem is valid for the

special sequence {K,} of Rademacher sets, where K, is the set of real
numbers of the form

27 L@, 272, 2

with @, =0 and ;=0 or 1 for i % ¢q. The reason why this particular

sequence of sets easily yields a subsequence with the required property is

that, in a cortain obvious senso, the sequence [A"} is “asymptotically
[MarnevarTea 10 (1863), 1-9]
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uniformly spread " in [0, 1]. We cannot assume this property of a general
sequence {A,}, but the first and vital step of the proof consists in showing
that there must be a subset @ < [0, 1] and a subsequence {4, } which is
asymptotically spread with positive minimum density throughout .
This result is formalised in the following lemma, for which we need a
definition.

DeriNITION. Ift, ¢ are positive integers with ¢ < 2t, the closed interval
[(g—1) 27, g2 is called a dyadic interval of order t.  Any subset E<[0, 1]
which can be expressed as a finite union of dyadic intervals of order t is called
a subset of order t.

Levma.  Given a sequence {A,} of measwrable subsets of 1,= 10, 1]
such that | A;.| == > 0 for all k, there exists a sequence [,>1,>...21,>...
such that 1, is a dyadic subset of order n, and a subsequence {4} such that
Jor all integers r =mn,

() [de,n(Lo—1,) | <9 Li—1,], (1)
(i) If J is a dyadic interval of order n contained in 1,
|4, d | =] @)
(iii) |1, ~Ay| > (3n)* (3)
Further, if Q =nﬁo 1., then
Q| =49. (4)

Proof. 1t is clear that | 4, ~1,| = 7| 1,| for all %, so that (2) and (3)
will be satisfied with » =0 whatever subsequence we choose. Bisect I,
into two dyadic intervals of order 1. Then there are two possibilities :

(i) There may be an infinite sequence of integers such that
| dend | Zdm|J | (5)
for both the dyadic intervals J of order 1. In this case we put I, =1,
and denote by A; the set of integers k satisfying (5).

(ii) If such a sequence cannot be found, then for (at least) one of the
subintervals J, < [, there must be an infinite set of integers for which

PP AR SIFAN (6)

In this case we put 7, =., (the other dyadic interval of order 1) and
denote by A, the set of integers k satisfying (6). Since|A,| = for all £,
we must have | A, nJ,| = 8| J,y| >1n|J 4 for keA,.

Thus in either case we obtain a set /, and a sequence A, such that
(5) is satisfied for all the dyadic intervals J </, of order 1. We proceed
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by induction. Suppose we have already defined a dyadic set 7, of order n
and a subsequence A, such that, for keA,,

|Akn(10_1n)ig%’?ljﬂ_'-[n.i: {7)

and (5) is satisfied for all the dyadic intervals J</, of order n. By
bisecting each of these intervals we can express I, as a union of dyadic
intervals of order (n+41). Then there may be a subsequence A, <A,
such that (5) is satisfied for all dyadic intervals J =1, of order (n--1).
In this case define /, ;= 1,. If this is not true, then by repeating the
operation of taking a subsequence a finite number of times we can obtain
a subsequence A, ., <A, and a dyadic subset [, ,,</,. such that (5) is
satisfied for all the dyadic intervals, /<[, ., of order (n-1), while the
other dyadic intervals ./ satisfy

|Apnd | <iq

J|

for all k€A, ;. In either case we have obtained a dyadic subset 1, <1,
and a subsequence A, ; <A, with the desired properties.

By induction we may suppose that I,, A, have been obtained for all
positive integers n. Now let A = {&,} be defined by taking, for %, the
first integer in A, and for &, ., the first integer in A, ; which is greater than
k, (m=1,2, ...). It is clear that this sequence A satisfies conditions
(1) and (2).

Tt follows from (7) that, for keA,,

|Iﬂ.| EIIﬂnAkl 2’]‘%‘“ IG_Iui Z%n_{_%’ﬂjn:
Hence

1
|17,,,|>lj’?1 >y, m=1,2, .., (8)
21

and this immediately implies (4). We can obtain (3) by applying (2)
to (8), since k€A, for all » ==n. This completes the proof of the lemma.
We are now in a position to tackle the measure properties of the inter-

section sets. We will obtain a subsequence A’ <A such thatif £ = N 4,,
ke’

then the set £~ () has infinite ¢-measure. The essential idea of the proof
is to define a set function F which is determined for all Borel subsets of
[0, 1] and which is concentrated on En@), that is

F(B)=F(BAEnQ) for all Borel B<[0,1];
F(l))=F(EnQ)>0;

but such that max {27. F(J)} over all dyadic intervals of order n grows
slowly as n increases. We are here really using the concept of local
¢-density of F at points of I, studied extensively in [3], but it turns out
to be easier to formulate our proot independently of [3]. The set function
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F will be obtained as a limit of a sequence of set functions defined
inductively.

Proof of main theorem. There is no loss in generality in assuming that
| A, | =7 = 0. for all integers k, and that the sets 4, are all closed. Weo
first apply the lemma to obtain a sequence {I,} of dyadic sets and a sub-
sequence A = {k,} satisfying all the conditions (1), (2), (3). Sinee we

can define a continuous (f) such that lim () =0, lim (¢)/é(t) =0,
-0+ =0+

lim ¢-14(f) = 4-00 and ¢14(t) is monotonic for small ¢ (an equivalent
t—>0-+

result was proved in [2]), there is also no loss in generality in assuming
that {1 (t) is monotonic for small positive £. Under these conditions it
follows from the method of Besicovitch [4] that it is sufficient to show that
the dyadic restricted ¢-measure of the intersection set is infinite. Thus it
will be enough to show that if

0J,,5E= N 4,
=1

ke A’

where each J, ; is a dyadic interval of order at least r, then
o0
Y (i) =A, A= as r—ow. (9)
i=1

Our aim is to choose A’ so that (9) is established.
Suppose 0 <Z € << ;. Since {7, }is monotonic we can choose a sequence
it,} of integers such that

1~ Q| < 5 (hayr+ (10)

for all ¢t =1,. Because {'¢(t)—> 4o as -0+, we may assume that
{t,} also increases fast enough to ensure

$(2) > 2t} (11
for all t =t,.
Now put 7y =t, and n; =k, so that n,eA, ; and let
El == .Aﬂl!“\ IFI

By (3) we know that | By| = (44)% Define a set function ¥, which is
concentrated on K, by

Fy(B) = FyBnEy) =555 (12)

for all Borel sets B<[0, 1].
For each integer I, each point xe [0, 1] define

d;{x, El} = 1 Jl(x)nE]_: . 23
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whero .J,(¢) is the dyadic interval of order I which contains  [if 2 is a point
of the form £.2-7 then take the dyadic interval which has @ as its left-hand
end point for J,(z)]. By the Lebesgue density theorem it follows that,
for almost all ze I,

dy(x, £)—>1 as {—o0.

If we now apply Hgoroff’s theorem (a similar argument was used in [5])
to the sequence {d;(x, I;)} of measurable functions we can obtain a set
B,< E, and a positive integer I, such that

dl(x! El) ;’ l_h
for e B, and all [ > [;, and in addition
!E1_81|<'%€{%’?}2;E1|- (13)

This implies that, if J is any dyadic interval of order at least I, which con-
tains a point of B, then

[TAE| = (1) . (14)

Now choose r, = max (t, ), n,=k,,, and let €, be the union of all
the dyadic intervals J of order r, whose intersection with B is not void.

Let
Dy=0nAd, nl,

Since I, — I, <1, —@ and ;> By, it follows from (10) and (13) that
| By—Dy| <| By—By| +|1,—Q| < ¢ By},
so that, by (12),
FuD) > (1—e) Fy(B)=1—c.
Notice further that for any dyadic interval J, (12) and (3) imply that
Fy() = Fy(J By < (o) ¥ T < ()2 .

We now proceed by induction. Suppose ny, n,, ..., n, have been
chosen with n; =k, r; >=1;, and dyadic sets C,, C,, ..., /_, where ( is

3 Q}
of order r;.,, have been obtained such that
q q g-1
(i) if E,=NA4,,nN I,~n N C,; then
i=1 i=1 i=1
JAB, > (1—4n)|J| (15)
for every dyadic interval J of order r,,, in C;
(i) | B,—Col < 57 )| Byl; (16)

(iii) there is a set function F, concentrated on K, such that

Fl)=F (B)>1—2—ec—}e...—e2 072>, (17)
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and
Fo(E,nd)=Fy(J) < (§)4 1| J| (18)

for every dyadic interval J;

(iv) if J is any dyadic interval of order r,, then, inside J, F, is distri-
buted according to the Lebesgue measure of the intersection with J~ &,
1.e.
|TanE|F

Fo(T ) =577 =5

o), (19)
for any Borel set 7.

Notice that we have already shown that the conditions (i)-(iv) are
satisfied for ¢ = 1.

Now put n,., =k, , and define

B ,=C,nI, nA

,
nE,

Tg+l Mg+l

By (15) and (2) it follows that

| I By = 4|

(20)

for each dyadic interval J of order r ., in C,n1I, ..
We first define the set function F,,, for the dyadic intervals of orders
re eS| b.\."'

.Fqll(’]) = Fr;(‘jnc'?n!r’l"l).

Inside each dyadic interval ./ of order r,., we redistribute the mass
F, 1(J) on the set £, ,~.J according to the Lebesgue measure. This is
possible because, by (20), £ _,~.J has positive Lebesgue measure I, .,

foreach Jin C,~ 1, .. Thus, for any Borel set 7', and any dyadic interval
J of order r,, in O~ 1

Tgel?

'TAJAE

FoalTnd)= TE;LF Foin (J).
.. g+

Since both sides of this equation are zero if J is not in C',~ 1, , we see
that (19) is satisfied with ¢ replaced by (7—1).

Using (18), (16) and (10), and noting that I, —1I
obtain

rai1 <Ly — @, We
Foaallo) = F (E,nCyn I, )
> Fy(By)— Fo(Bp—C)— F (L, —Q)

— _ PN, /i, |
= Eq( "q) €274 ]

so that (17) is also satisfied with ¢ replaced by (g4-1).
Now if J' is a dyadic interval contained in a dyadic interval J of order
pin O~ T, | we have

Pt
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. J nE
F9+1(Eq+1ﬁ‘] ):Fﬁ'—i-l(} ]_‘|J!'\Eq+l|lF [jncqﬁlfﬁl)
J'! F: ’
]LL! ;.1 = (%Ti)_qmg"f |’
q

on applying (18) and (20). On the other hand if J' is a dyvadic interval
of order not more than 7,,; we have

Foatly < F AP,

Tt follows that (18) is satisfied with ¢ replaced by (¢4 1).

Since the set K, , still has positive measure [one can actually prove
that | B, ;| =1(§7)**?], we can again apply the Lebesgue density theorem,
and Egoroff’s theorem to obtain a subsot B, ,cE, , and an integer I,

such that if J is any dyadic interval of order at least [, which contains
a point of B__,, then

JAE, | = (1—%)|J]

and "

| E,i— B, < 97+ (37)772 B, |
Put r, ,=max ({,,. I, ). and let (', be the union of those dyadic
intervals of order »,., which have a non-void intersection with B ;.
Thus we have succeeded in extending all our conditiom from ¢ to (g-}-1)
and, by induction, we obtain the sequence A’ = {n <4 satisfying the
conditions (15)-(20).

Now put ¥ :kﬂvAk. By our construction

R=Q B,cEnQ<E,

g=1
so that it is sufficient to show that ¢—m(R)= +oo. It can be shown
that F(B)=1Ilim F,(B) exists for each Borel set B<[0, 1] and defines

H—s0

a measure concentrated on K. Further, (17) will imply that #(1,) >,
and it can be shown that the upper ¢-density of F' is zero at each point
of I,. From this our conclusion would follow by [3]. However, we do
not prove these statements as the details are somewhat complicated, and
it is possible to complete our proof using the set functions F.

Suppose then that (9) is false, and there is a constant A such that
for every integer s there is a covering U J, ;2 R by dyadic intervals

i=1

J, ; of orders u; =r, such that

¥ (2% < K. (21)
i=1
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Let {v,} be a sequence of positive integers with », >, such that
o
X p(27) < 1. (22)
i=1

For each integer 1, let J_ ,, J.', by dyadic intervals of order », contiguous
to J; (one at each end). If L, ; denotes the interior of J, ;v J; ;v J ",
it is clear that the open intervals L ; (i=1, 2, ...) cover tha compaact
set. /2. Hence there is a finite set .# of integers such that Rc _UJLM-.
1€
Lot H,, H,, ..., H, denote the dyadic intervals J, ;. J, ;. J.; for ic.7,
For each @ with 1 <{i <<I choose g; so that the order w; of the dyadic
interval I7; satisfies
o < Wi <71

Then provided wm = m, is sufficiently large
e e sw; < P S I<igl (23)

Then by (21) and (22) we have
!
3 42 <K+2, (24)

and, by (11) sinece w; >r, =1, it follows that

(a2 < L @) <5 $2), (25)

Since R is contained in the open set U L, ; and R is the intersection
ieSf
of the decreasing sequence £, E,, ... of compact sets, we have B, <U L, ;
for all sufficiently large m. We now suppose that m is large enough to
satisfy this condition as well as (25).

For any dyadic interval .J of order %, F, (J) is monotone decreasing
in ¢ provided r, = u since F,, is obtained from F, by first concentrating
it on a subset and then redistributing the result inside .J. Henco for
any dyadic interval J of order » we have, by (18)

Fpu()) < Fo(J) < () J |,

provided u <r,<r,. It follows now from (24) and (25) that

Fm(fu) = Frn(Em) e m(U II) S_ z;‘l Fm(‘[{z)

de=1

é{ et < (3L 3 g(2-m)

8 i=1

< () (K+2). .
Since s is an arbitrary integer this contradicts I, (I,) > %, when s is large

enough. This contradiction establishes our theorem.
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Remark. We have made no attempt to choose best possible constants
at any point of the proof. If one takes care with these and adapts the
ideas used in [1], the following apparently stronger version of our theorem
can be proved.

TarEorEM. Suppose $(t) satisfies the conditions of the previous theorem
and Ay, Ay, ... is a sequence of Lebesgue measurable subsets of [0, 1] with
limsup|A,[|>%>0. Then there is a Borel set S with |S|>=7 and a
sequence ¢y < ¢, <<... such that if

E = U n Aﬂ'r
izl r=i
and I is any interval for which IS is not void, then the ¢-measure of INE
18 non-o-finite.

We would like to express our thanks to a referee who suggested some
improvements in our original argument.
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