SUMS OF DISTINCT UNIT FRACTIONS
PAUL ERDOS AND SHERMAN STEIN

We shall consider the representation of numbers as the sum of dis-
tinct unit fractions; in particular we will answer two questions recently
raised by Herbert 5. Wilf.

A sequence of positive integers S= [m, g, + - - ] withmy <me < + -+
is an R-basis if every positive integer is the sum of distinct reciprocals
of finitely many integers of S. In Research Problem 6 [1, p. 457],
Herbert S. Wil raises several questions about R-bases, including:
Does an R-basis necessarily have a positive density? If S consists of
all positive integers and f(z) is the least number required to represent
n, what, in some average sense, is the growth of f(#)? These two
questions are answered by Theorems 1 and 5 below. Theorem 4 is a
“best-possible” strengthening of Theorem 1.

THEOREM 1. There exists a sequence S of density zero such that every
positive rational is the sum of a finite number of reciprocals of distinct
terms of S.

The proof depends on two lemmas.

LeEMMmA 1. Let r be real, 0 <r <1 and ay, as, + - - integers defined in-
ductively by
. 1
a, = smallest integer n, r — — = 0,
%
. 1
ay = smallest integer n,yr — — — — = 0,
. . al n
. 1 1 1 1
a = smallest integer n,r — —— — — - -+ — — — — 20,
a1 asz ap—1 n

Then @ >aia;—1) for each i. Also if r is rational the sequence termi-
nates at some k, that is r= D _t., 1/a;.

Lemma 1 is due to Sylvester [2]. It provides a canonical represen-
tation for each positive real less than 1 which we will call the
Sylvester representation.
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LEMMA 2. If r is a positive rational and A a positive integer then there

exists a finite set of integers S(r, A)= {m, Mg, v v o, n;,], ny<ng< -
<y such that
k1
r= —,
i=1 Wi
n; _2.. A;
n,-.,.;—n.-éA 1§i§k—1.

ProorF. Since the harmonic series diverges, there is an integer m
such that

{ i i 1
== . T . — e — <——-—,
’ ( G Vil T +mA) m+ )4

Now applying Lemma 1 to

(1+1+1+ +1)
4 24 34

mA
we conclude that there are integers m; <ma< -+« + <m, such that
1 1
PO RO T
(A 24 mA .‘...\?; m.

By our choice of m we see that #;>(m+1)4. Moreover Lemma 1
assures us that m; 1 —m;>A. Then

(4,24, mA, my,mg, - - -, m,}

serves as S(r, A).

Now the proof of Theorem 1 is immediate. Order the rationals
ry, 13, 13, © - + . Let §; be an S(ry, 1). Let b, be the largest element of
S(r1, 1). Let S; be an S(ry, 2y). Having defined Sy, Sz, - - -, Sk de-
fines Sp41 as follows. Let by be the largest element of S;. Let S;4q be
an S(fk.;.l. 2!9;;).

Then since Si's are disjoint, there is a monotonically increasing bi-
jection S: (1, 2, 3, -« - )—U;.; S which satisfies the demands of
Theorem 1.

In fact S does more than Theorem 1 asserted. It is possible to repre-
sent all the positive rationals by sums of reciprocals of terms in the
S constructed so that each such reciprocal appears in the representa-
tion of precisely one rational. Similar reasoning proves

TreorEM 2. The set of unit fraciions +, %, 3, + - + can be partitioned
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into disjoint finite subsets Sy, Se, - -+ such that each positive rational is
the sum of the elemenis of precisely one S..

Theorem 2 remains true if the phrase “each positive rational,” is
replaced by “each positive integer.” It would be interesting to know
the necessary and sufficient condition that a sequence of rationals
ry, ra, 73, - + + corresponds to the sums of a partition of the set of
unit fractions into disjoint finite subsets,

THEOREM 3. If #1, na, g, - * + , 15 @ Sequence of posilive integers with
(1) mepzne(n—1)+1, for k=1,2, 3, - - - and (2) for an infinity of
kB, s> ne(m—1)+1 then Y o, 1/n: is irraiional.t

Proor. Observe first that if a1, @2, - - + is a sequence of positive
integers with a1 =ai(ae—1)+1for k=1,2,3, - - -, and a;>1, then
> e 1/az=1/(a;—1). By assumption (2) there is k such that 7,> 1.
From the observation we see that for any integer 1,

i 1

<Z-—E—<

Mit1 k=h M n=h Mk it 1

Thus the Sylvester representation of za=n lfnk is 1/ms+1/n4a
+1/np2+ - - - . Since the Sylvester representation of ., 1/7; has
an infinite number of terms, we see by Theorem 1 that > ., 1/m
is irrational. Hence so is Y .., 1/n irrational.

We will soon strengthen Theerem 1 by Theorem 4 for which we will
need

LeMMA 3. The number of integers in (x, 2x) all of whose prime factors
are=x? is greater than x/10 for x> xe.

Proor. The number of these integers is at least x— 2 5. (x/5:),
where the summation extends over the primes x'/? < p; <2x. From the
fact that D ,<, 1/p=1log log y+c+o(1) Lemma 3 easily follows.

TureoreEM 4. Let 0<a,<a2< + - + be a sequence A of integers with
Yoo 1/a,=w. Then there exists a sequence B:by<b,< -+ - of
integers satisfying a, <b,, 1 Sn< =, such that every positive rational 1s
the sum of the reciprocals of finitely many distinct b's.

PROOF. Set A(x)= 2 o<z 1. We omit from A4 all the a;, 2*=Za;
< 28 for which
(1) A1) — A(2F) < 2F/k2.

Thus we obtain a subsequence A’ of 4, af <af < - - - . Clearly
> 2 1/a) = o, since, by (1), the reciprocals of the omitted a’s con-

1 Added in proof. A similar result is to be found in [2].
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verges.
Set A'(x)= 2 s<: 1. Denote by ki <k;< --- the integers for
which

@) = 4'@" — 472" = 2.

By (2), if m#k; then A'(2mH1) =A4'(2m),

By Lemma 3 there are at least (£,)/10 integers in (2%+1, 2ki42) a]]
of whose prime factors are less than 2%¢+%/2 Denote such a set of
integers by b <P < - - - <bY where g¢; is, say, the first integer
larger than #,/10. Clearly

i - il
31/ > (1/40) X 1/af @Y < af < 2¥+1).

re=l

Thus from ».1/a! = = we have

3) P ITT T

=] pe=l

Clearly bY) <b{*Y; thus all the b's can be written in an increasing
sequence D:dy<d;< + + -,

Now let u;/21, us/va, - + + be a well-ordering of the positive ra-
tionals. Suppose we have already constructed b, <b:< + « + <bn, so
that a/ <b;, 1=1=m, and that u,/2,, 1=<r<n, are the sums of re-
ciprocals of distinct &'s. Choose

(4) 24 > max{ s, bn,, @'m, + 1}

and let dj;11 <dj+2< -+ - be the d's greater than 2%+, By (3) and
(4) there is an s;>7; such that

s) 3 Vh<wims S 14,
=i+l r=iit+1
By (5)
(6) 0 < #./va — 2, 1/d, = Co/ Dy < 1/d,,.
fitl

Let x be the integer such that 22 <d,, £2*!; then x=£,;, for some
s=1 (by definition of the d's). Since, by definition, all the prime fac-
tors of d;, j; <r=<g; are less than 2(=t1/2 we have

(1) Da £ taldpar, s, - + -, di] < 0,254 2222412 ¢ ol

for x> x,.
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Now
Gy 1 1
(8) =—F o fb—a < C*log Dy < G2=0
Dn. 3’1 yf
with, clearly, d,,<nh < - - - <y (by [3]).
Define
bmtt = Gjipe fori =1, , 85 —jy
bmtaimiihtr = Yo for 1 =¥ £ £,
By (8) the b’s are distinct, Clearly b, 4¢> @m e for =1, « -+, si—j;

since by 4:=d;j. 4, and the d's are greater than the corresponding
a''s, which in turn are greater than the ¢’s. By (8) the 3's do not
change the situation. Their number is at most C2?#%, But by (2)
there are at least

zka/kf > 22-—1/(x2’ © = ka + 1

al's in (2%, 2%t1) and by definition to more than half of them there
does not correspond any d;; thus to those a¢{’s to which no d corre-
sponds we can make correspond the f<C22%% 4's since clearly
C2e=l8 L 2o w2 if %>,

The proof is then completed as for Theorem 1, Note that each b, is
used in the representation of only one rational number,

Theorem 4 is a best possible result since if ) ,2, 1/ay< » the con-
clusion could not possibly hold.

In the next theorem 7 is Euler’s constant,

THEOREM 5. lim, .. f(n)em=e".

Proor. Define g(n) by

_1_+i+...+ 1 <n<i+i+...+ ! 4 1 .
12 g(n) 12 gln)  gln) +1
Then n— » ¢% 1/4 is a rational number less than 1 which we de-

note a, and which can be expressed in the form
_ A
Tz, gl

for some integer 4.
Now, 0<u/v<1 can be represented as the sum of less than

clogv
log log v
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distinct unit fractions [3].
Thus a, is the sum of fewer than

¢ log [1: 2, !g(”)]
lOg lOg [1: 2,- AR )g(n)]

unit fractions (each less than 1/g(#)). The expression
log [1, 2, -+, g(n)] is asymptotic to g(n) [4, p. 362]. Thus for
large 7, ¢, is the sum of fewer than

cg(n)
log g(n)
distinct unit fractions.
Hence
cg(n)
gln) < f(n) < gn) +——F—-
log g(n)
Thus
lim f(n)/g(n) = 1.
From the equation
1 1 1
=it v oo o= logatn) et mety
12 g(n)

with lim, .., €,=0and lim,.,, ¢, =0, it follows that g(#) is asymptotic
to er/ev.
This proves Theorem 5.
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