ON WEYL'S CRITERION FOR UNIFORM DISTRIBUTION

H. Davenport, P. Erdös and W. J. LeVeque

1. In his famous memoir [1] of 1916, Weyl gave a necessary and sufficient condition for a sequence s_1 , s_2 , \cdots of real numbers to be uniformly distributed modulo 1, namely that for each integer $m \neq 0$,

$$S(N) = \frac{1}{N} \sum_{n=1}^{N} e(ms_n) \rightarrow 0$$

as $N \to \infty$. (Here $e(\alpha) = e^{2\pi i \alpha}$.) This criterion has been fundamental for much subsequent work on Diophantine approximation.

Now suppose that the sequence s_n is replaced by a sequence $s_n(x)$ depending on a real parameter x, each $s_n(x)$ being bounded and integrable for $a \le x \le b$. Let

$$S(N, x) = \frac{1}{N} \sum_{n=1}^{N} e(ms_n(x)).$$

It is natural to ask: what condition on

$$I(N) = \int_{a}^{b} |S(N, x)|^{2} dx$$

will ensure that the sequence $s_n(x)$ is uniformly distributed modulo 1 for almost all x, in the sense of Lebesgue measure? We answer this question in the following theorem.

THEOREM. If the series

$$\sum N^{-1}I(N)$$

converges for each integer $m\neq 0$, then the sequence $s_n(x)$ is uniformly distributed modulo 1 for almost all x in a $\leq x \leq b$. On the other hand, given any increasing function $\Phi(M)$ which tends to infinity with M (however slowly), there exists a sequence $s_n(x)$ which is not uniformly distributed modulo 1 for any x, and which satisfies the inequality

$$\sum\limits_{N=1}^{M}N^{-1}\,I(N)<\Phi(M)$$
 .

2. The proof of the first half of the theorem is based on a principle of interpolation which was used in a particular case by Weyl himself [1; Section 7].

Since Σ N⁻¹ I(N) converges, there exists an increasing sequence λ (N), with λ (N) $\to \infty$, such that

Received March 14, 1963.

The third author was partially supported by the National Science Foundation, grant GP-88.

$$\sum N^{-1} I(N) \lambda(N)$$

converges. (If $r(N) = \sum_{N_1 \ge N} N_1^{-1} I(N_1)$, we can take

$$\lambda(n) = \{r^{1/2}(N) + r^{1/2}(N+1)\}^{-1}.$$

Let $M_1 < M_2 < \cdots$ be positive integers such that

$${\rm M}_{\rm r+1} = \left[\, \frac{\lambda({\rm M}_{\rm r})}{\lambda({\rm M}_{\rm r}) \, - \, 1} \, {\rm M}_{\rm r} \, \right] \, + \, 1 \, . \label{eq:mr}$$

Let $N_{\tt r}$ be an integer in the range $\,M_{\tt r} < N \leq M_{\tt r+1}\,$ for which I(N) attains its least value. Then

$$I(N_r) \leq \frac{1}{M_{r+1} - M_r} \sum_{N=M_r+1}^{M_{r+1}} I(N) \leq \frac{M_{r+1}}{M_{r+1} - M_r} \sum_{N=M_r+1}^{M_{r+1}} N^{-1} I(N) .$$

Since

$$\frac{M_{r+1}}{M_{r+1}$$
 - M_{r} $< \lambda(M_{r})$,

we see that

$$I(N_r) \leq \frac{\sum\limits_{N=M_r+1}^{M_{r+1}} N^{-1} \, I(N) \lambda(N) \, . \label{eq:interpolation}$$

It follows that

$$\sum_{\mathbf{r}} I(N_{\mathbf{r}})$$

converges. Since $M_{r+1}/M_r \to 1$, it is also true that $N_{r+1}/N_r \to 1$.

By a well known principle (see, for example, [1; Section 7]), it follows that

$$\sum_{\mathbf{r}} |S(N_{\mathbf{r}}, x)|^2$$

converges for almost all x, and a fortiori that

$$S(N_{xx} x) \rightarrow 0$$

as $r \to \infty,$ for almost all x. Now, if $N_r < N \le N_{r+1}\,,$ then

$$\left| \text{NS(N, x) - N_r S(N_r, x)} \right| \leq \sum_{N=N_r+1}^{N_{r+1}} 1 = N_{r+1} - N_r,$$

whence

$$S(N, x) \rightarrow 0$$

as $N \to \infty$, for almost all x.

The above argument relates to a single value of m. But since the union of an enumerable infinity of sets of measure 0 is itself of measure 0, it follows that the result holds for all $m \neq 0$ except in a set of measure 0. Hence, by Weyl's criterion, $s_n(x)$ is uniformly distributed modulo 1 for almost all x.

3. For the second half of the theorem, an example suffices. Let F(x) be a rapidly increasing function, defined for x>0, and let G be the function inverse to F. Define a sequence $s_n(x)$ by

$$s_n(x) = \left\{ \begin{array}{ll} 0 & \text{ if } F(kx) < n < 2F(kx) \text{ for some } k \\ nx & \text{ otherwise.} \end{array} \right.$$

Then the sequence $s_n(x)$ is not uniformly distributed modulo 1 for any x in 0 < a < x < b if F(x) grows at least exponentially; for if N = [2F(kx)], then $s_n(x) = 0$ for roughly half the values of n < N.

Now.

$$S(N, x) = \frac{1}{N} \sum_{n=1}^{N} e(mnx) + \frac{1}{N} \sum_{n=1}^{N} \sum_{k} \{1 - e(mnx)\}.$$

The absolute value of the second sum is not greater than

$$2 \sum_{k} \mathbf{F}(k\mathbf{x}) << \mathbf{F}(k_1 \, \mathbf{x}) \, ,$$

$$\mathbf{F}(k\mathbf{x}) < \mathbf{N}$$

where $k_1 = k_1(x, N)$ is defined by the condition

$$F(\textbf{k}_1 \; \textbf{x}) < N \leq F((\textbf{k}_1 \; + \; 1)\textbf{x})$$
 .

(The notation $A(N) \ll B(N)$ means that there is a constant c, independent of N, such that $A(N) \ll cB(N)$ for all relevant N.) Hence, for b>a>0 and m a nonzero integer,

$$I(N) = \int_a^b |S(N, x)|^2 dx << N^{-1} + N^{-2} \int_a^b (F(k_1 x))^2 dx.$$

All values of k1 that occur satisfy the inequalities

$$\boldsymbol{k}_1 \; \boldsymbol{a} < G(N) \; \text{,} \quad (\boldsymbol{k}_1 \; + \; 1) \boldsymbol{b} \geq G(N) \; \text{.}$$

A particular value k of k_1 in this range occurs if x has the property that

$$\frac{G(N)}{k+1} \le x < \frac{G(N)}{k}.$$

Hence

$$\begin{split} \int_{a}^{b} (F(k_1 x))^2 dx &= \sum_{\substack{G(N) \\ b} - 1 \le k < \frac{G(N)}{a}} \int_{\frac{G(N)}{k+1}}^{\frac{G(N)}{k}} (F(kx))^2 dx \\ &= \sum_{\substack{G(N) \\ b} - 1 \le k < \frac{G(N)}{a}} \frac{1}{k} \int_{N_1}^{N} u^2 G'(u) du \,, \end{split}$$

on putting kx = G(u). Here

$$N_1 = F\left(\frac{k}{k+1} G(N)\right)$$
.

Thus

$$\int_a^b (F(k_1|x))^2 \, dx << \int_0^N \, u^2 \, G'(u) du \, .$$

It follows that

(1)
$$I(N) << N^{-1} + N^{-2} \int_{0}^{N} u^{2} G'(u) du.$$

We now conclude that

$$\sum_{N=1}^{M} N^{-1} \; I(N) << 1 \; + \; \int_{0}^{M} \! u^2 \, G'(u) \sum_{N \, \geq \, u} \frac{1}{N^3} \, du << G(M) \; .$$

Thus, by suitable choice of the function G, we can ensure that $\Sigma \, N^{-1} I(N)$ diverges arbitrarily slowly.

It may be remarked that if we choose G to be a 'smooth' slowly increasing function, it will follow from (1) that $I(N) \to 0$ as $N \to \infty$. For example, if $G(u) = \log \log \log u$, we find that

$$I(N) << \frac{1}{(\log N)(\log \log N)}.$$

In particular, therefore, a condition of this type is compatible with $s_n(x)$ being not uniformly distributed for any x in (a, b).

REFERENCES

 H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Trinity College, Cambridge University College, London The University of Michigan