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1 . Introduction

In a recent paper [l] K . CORRÁDI and A. HAJNAL proved that if a finite graph
without multiple edges contains at least 3k vertices and the valency of every vertex
is at least 2k, where k is a positive integer, then the graph contains k independent
circuits, i . e . the graph contains as a subgraph a set of k circuits no two of which have
a vertex in common . The present paper contains extensions of this theorem. In a
recent paper [2] P . ERDŐS and L. PÓSA proved, among other things, that if a finite
graph with or without loops and multiple edges contains n vertices and at least
n + 4 edges, then the graph contains two circuits without an edge in common . The
present paper contains analogous results for planar graphs .

We adopt the following notation : O k denotes a graph consisting of k independent
circuits, kO denotes a graph consisting of k or more circuits no two of which have
an edge in common . If q is a graph then 'V (q) denotes the set of vertices of q, `V i(q )
denotes the set of vertices of q having valency i in q (i being a non-negative integer),
T 5 i (q), Ty i (q) denote the set of vertices of 4 having valency - i and ' i, respectiv-
ely, and &(q) denotes the set of edges of c~ . The valency of the vertex x in the graph

will be denoted by v (x, C~) . I ? (() I will be denoted by V (q), J & (q) I by E(q) etc.
In this notation the theorem Of CORRÁDI and HAJNAL quoted above states

that if q is a finite graph without multiple edges and if V(q) 3k and T ---- 2k_ 1 (4) =0,
then q Ok ; and the theorem of ERDÖS and PÓSA quoted above states that if
is a finite graph and E(C) _- V(q) + 4, then qD 2 O .

2. Concerning the existence of two independent circuits
in finite graphs without. multiple edges

THEOREM l . Let q denote a finite graph without loops or multiple edges .
I. If V(q) y 6, V52(q) = 0, and Vz4(q) 4, then q 7) O 2 .
II. If V(q) =7 and V14(q) y6, then qD O 2.

III. If V(q) = 8, V14(C) :6, and if q does not contain a vertex having valency
4 joined to two vertices having valency 1 then q. D O 2 .

IV. If V(q) ' 9 and Vz4(()' i V(C) + 2, then 4 D O 2.
V. If V(10 '9 and V-14(q) - V~2(~) -4, then 4 D 0 2 .
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VI. If V(q) =7, V-~ 4(C) = 5, and V2(q) = V3(C) =l, then q D
02 .

VII. If V14(C) = 5, V3 ((á) = 2, and V-,((`) = l, then q D O 2 .

DEFINITION . A graph barely satisfies the conditions of 1, III, IV, or Theorem 3,
if it satisfies the conditions of I, III, IV, or Theorem 3, respectively, but when any
one of its edges is deleted the remaining graph no longer does so .

It is easy to see that

(l) If a graph satisfies the conditions of I or III or IV then it contains a subgraph
having the same vertices which barely satisfies them .

PROOF OF I . Suppose first that V(() = 6. Let the vertices of
q

be denoted by
%I , 92, . . ., 96 . The following two alternatives will be considered separately : (i) (~
contains two vertices of valency -4 not joined by an edge . (ü) Each pair of vertices
of valency - 4 are joined by an edge .

Assuming that (i) holds, it may be supposed that v (g, , q) ~--- 4, v (92, q) ~-- 4
and (g1, 92) J C . Then g I and 92 are both joined to each of 93, 94, 95, g6
VO(C -gl -g2) = 0 because V-A) =0, and Vz 2(q-g1 - g2) ~--- 2 because
V_ 4 ((á) 2--- 4 ; it follows that q-g 1 -g2 contains two edges without a common vertex,
and hence

q
D cD 2 .

Assuming that (ü) holds, it may be supposed that g, , 92 , 93, 94 each have
valency -;~--4 . Each of them is joined to at least one of gs and 96 and g5 and 96 are
each joined to at least two of gi , 92, 93, g, . The three alternatives that g5 is joined
to exactly two, three or four of g i , 92 , 93, 94 will be considered in turn : If (95, g,) E q,
'(gs , 92) E q, (95, 93) J q and (95, 94) q q then (96, 93) E q and (96, 94) E q, so in
this case

q
contains the two independent circuits [g1, g2, gs] and [g3, 94, g6] • If

(95, 91) E q, (95 , 92) E q, (95, 93) E q and (95, 94) 1 q, then (96, 94) E q, and it may
be supposed that (96, g,) E q (for v (g,, ) 3), in this case j contains the two
independent circuits 192, 93, gs] and 191, 94, g6 ] . If (95, g i) E q. for i =l, 2, 3, 4,
then it may be supposed that (96, g,) E q and (96 , 92) E

qJ
(for V (96, q) 3) and in

this case
q

contains the two independent circuits 193, 94, 95] and [g1, 92, gJ Hence
,q D 02 if (ü) holds . So I is true in the case V(q) = 6.

The proof of I will now be completed by reductio ad absurdum . Assume that I
is untrue. Then by (l) there exists a graph q, with the following properties : o
barely satisfies the conditions of I and Coo 02, and all graphs which satisfy the
conditions of I and contain fewer vertices then coo contain two independent circuits .
V(qo ) ~--- 7 because I is true for graphs with six vertices .

It is easy to see that

(2) If a graph barely satisfies the conditions of I then at least one of the end-
vertices of every edge has valency 3 or 4, and at least one vertex has valency 3 .
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Let d denote a vertex of qo having valency 3, and let d,, d,, d3 denote the
three vertices of qo to which d is joined . The three alternatives E(Cr0(dl , d2 , d3)) - l,
E(q o (dl , d2 , d3 )) = 2, E(C, o(d l , d2 , d3 )) = 3 will be considered separately .

Assuming that E(C,(dl , d, , d3 )) -l, it may be supposed that (dl , d3 ) J qo and
(d2 , d3 ) J qo . Let q' _ (q o - d) U (dl , d3 ) U (d2 , d3). ' satisfies the conditions of I .
Hence ' 02 because of the minimal nature of o . It follows that qo D O 2 .
((d l , d3 ) can be replaced by d U (d, d i ) U (d, d3 ) if necessary, alternatively d3 U
U (d, , d3) U (d2 , d3 ) can be replaced by d U (d, dl ) U (d, d2 ) if necessary. This argument
is used in [2] .) This contradicts qo 02 .

Assuming that E(q o(d l , d2 , d3 )) = 2, it may be supposed that (d,, d2 ) E Co o ,
(d, , d 3 ) E q o and (d2 , d 3 ) J q o . There are two alternatives : v (d l , ` o) ~_-- 5 and
v (dl , ' o) { 4. If v (d, , `3O) 5 then (q - d) U (d2 , d3 ) satisfies the conditions of 1,
and therefore contains two independent circuits because of the minimal nature of

qo ; it follows that qáoD 0 2 (replacing (d2 , d3 ) by d U (d, d2) U (d, d3 ) if necessary ;
this argument is used in [2]), in contradiction to q'o I D D 2 . If v (d, , q0) :-!5;; 4 then a
contradiction is arrived at as follows : q O - d - dI - d2 - d3 -V O , so if it has v connec-
ted components then it contains at most V(qo) - 4 - v edges. Hence E(q,)

V(q o) - 4 - v + v (d2, áo) + v(d,, qo) + 2 (since v (dl , qO) 4). On the other hand,
summing the valencies of all the vertices of q0 , 2E(C o ) v (d2 , Cf o) + v (d3 , `XO) +
+ 8 + 3 ( V (q o) - 4) . From the two inequalities it follows that V(qo) -- v (d2, áo) +
+ v (d3 , qO) - 2v . But d2 and d3 are each joined to at most one vertex of each con-
nected component of qO - d - d, - d2 - d3 because qo 0 2 , so v (d2, `xo)

: v + 2
and v (d3, `10)

- v + 2. Hence V (qo) - 4 which is a contradiction .
The only remaining alternative is that E(go(dl , d2 , d3 )) = 3 . By (2) it may be

assumed that v (d i , qo) { 4 and v(d2 , q0) -- 4 . qo -d- dI - d2 - d3 ID 0 so
E(q, o - d - d l - d2 - d3) { V(q,0) - 5 . Consequently E((0) - V (qo) + v (d3 , qo ) . On
the other hand, summing the valencies of all the vertices of , 2E(( o) ~ v (d3 , qO) +
+ 12 + 3 (V(C~ O) - 4) = 3 V((~,~ o ) + v (d3 , qo) . From the twos inequalities it follows
that v(d3 , V(qo ), which is absurd because qo contains no loops or multiple
edges .

The hypothesis that I is untrue leads to a contradiction, therefore I is true .

PROOF Of IL If V- 2(q) =0 then q, D O
2 by 1 . If V-- 2(q) 0 then V~2 (C) =l .

Suppose that V. 2(q) =l and let v denote a vertex having valency --!52 . Then
V (q, - v) = 6, Vt 2 (q - v) = 0 and V,,((- v) ~_-- 4. Therefore C -V D 0 2 by I .

PROOF Of 111. By (l) in order to prove III it is sufficient to prove it for graphs
which barely satisfy its conditions . Let C~. denote a graph which barely satisfies the
conditions of III .

(3) V--3(q) -l.

6 Acta Mathematics XIV/1 -2
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For if V= 3 ((á) =0 then the graph obtained by deleting any one edge from
satisfies the conditions of 111 .

If V0(í'0) =l then 4 D 02 .
For if a is a vertex of having valency 0 then V(q - a) = 7 and V-_ 4(q - a) 6,

so C -aD 02 by II . In the remainder of the proof of III suppose that VO(()=0.
If V2(C) ? 1 then it follows that q D O 2 .
For suppose that c is a vertex of having valency 2 and is joined to the vertices

c I and C2 . Either (Cl, c2 ) ~q or (c,, c2 ) E q . If (Cl, c 2 ) ~ q then let q'= (q - c) U
U (Cl , c2) . V(q') = 7 and V=4(q) i 6, consequently i ' D O 2 by II. It follows
that q D 02.

((CI, c2 ) can be replaced by c U (c, c l ) U (c, c 2 ) if necessary . This
argument is used in [2] .)

Suppose that (C,, c 2 ) E q . If v(c l , C )' 5 and v (c2 , 5, then V'4(q - c) _
= V, 4(C) > 6 and V(q - c) = 7, so q - cD 02 by II . There remains the alternative
that v (c l , q) 4 or v(C2, c) 4, let it be assumed that v(c l , 4) - 4 . It follows that

q
D 02

. For suppose on the contrary that q
02

. Then E(q - c - cl _C2) - 4
because

	

c ) -2 + 3C - c - c I - c2 O . Hence E(q) 4 +v (c l , q) -2 +v (c2 ,
7 + v(C2, q)- On the other hand, summing the valencies of all the vertices of q,

2E(q~.) ~--- 5 .4 + v (c 2 , q) + 2 = 22 + v (c2 , 4) since v (c, q) = 2 and Vo(q) = 0 . From
the two inequalities it follows that v (C2, () ~_-- 8 which is absurd because 4 contains
no loops or multiple edges . Hence O 2 if V2(~) ? 1 . In the remainder of the
proof of III suppose that V2(C) =0 .

If V3(4) 1 then it follows that q D 02 .
For suppose that d is a vertex of 4 having valency 3 and is joined to the vertices

dl , d2 and d3 . The two alternatives E(q (d l , d2 , d3 )) :-:-- 1 and E(C (d, , d2 , d3 )) --2
will be considered separately .

Assuming that E(q (dI , d2 , d3 )) :-!-- l, it may be supposed that (d,, d3) J q and
(d2 , d3 ) ~ G . Let q'= (q - d) U (dl , d3 ) U (d2 , d3 ) . Clearly V (q") = 7 and V,,(q")
Vz 4(4) ~_-- 6, so q1 D 02 by II . It follows as in the proof of I that q D O 2 .

Assuming that E(q (d,, d2 , d3)) ; 2, it may be supposed that (d l , d2 ) E 4 and
(d,, d3 ) E C . If any edge incident with d is deleted from 4 then the remaining graph
does not contain two vertices of valency 1, therefore the remaining graph contains
only five vertices of valency 4, since q barely satisfies the conditions of III . Con-
sequently v (d, , q) = v (d2 , q) = v (d3 , 4) = 4 . It follows that q D 02. For suppose
on the contrary that ( 02. Then E(( - d - di - d2 - d3 ) :-:-- 3 because q - d - d l -
- d2 - d31) O . Hence E(q) 3 + 5 + 5 = 13 . On the other hand, summing the
valencies of all the vertices of q, 2E((á) ~-- 6 .4 + 3 = 27, since v (d, 4) = 3 . This
contradiction proves that q D

02 if V3(q) 1 .
It thus remains only to consider the case in which Vi ((`) = 0 for i = 0, 2 and 3 .

By (3) there are then two alternatives : V-- 4(4) = 7 and VI(4) =l, or else Vz 4(q) = 6
and VI(q)=2.



Assume first that Vz4(c') - 7 and Vl(q) =l . Let b denote the vertex of 4 having
valency 1. Then V(c - b) -- 7 and Vz4(q - b)' 6 . Therefore by II - bD O 2 .

Assume next that V 4(q) = 6 and V, (C) = 2. Let b and Y denote the vertices
of q having valency 1 . Either b and Y are both joined to the same vertex, or they
are not . If b and Y are both joined to the same vertex b I say, then it follows from
the conditions of III that v(b, , 4) - 5 . Therefore q. - (b, b l) satisfies the conditions
of III, in contradiction to the definition of q. Hence b and Y are not both joined
to the same vertex . Therefore V(q - b - b') = 6, V-2(4' - b - b') = 0 and
Vz4(0 - b - b') ~ 4 . Consequently by I '0 - b - b' D 02 . III is now proved .

PROOF OF IV by reductio ad absurdum . Assume that IV is untrue . Then by (l)
there exists a graph o with the following properties : q0 barely satisfies the conditions
of IV and q o 0 2 , and all graphs which satisfy the conditions of IV and have fewer
vertices than Co o contain two independent circuits.

(4) At least one end-vertex of every edge contained in qo has valency 4, and
Y- )~l .
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For, since qo barely satisfies the conditions of IV, if any edge is deleted from
qo the number of vertices of valency -4 is decreased ; and ifV.53(q0)=0 then if
any edge is deleted from qo , the remaining graph satisfies the conditions of IV,
which contradicts the hypothesis that qo barely satisfies the conditions of IV .

By summing the valencies of all the vertices of q0 we have that

(5) If Vo(qo) = 0 then E(Co) _' 14 V((,) + 3, if VO(( o) = 0 and V2(go) 1, then

E(qo)' H- V(qo) + 3z , and if Vo( o) =0 and V3(qo)' 1, then E(~`jo)'=14 V(q 0) -1-4 .

It will now be proved that Vi(Co) =0 for i =0, 2, 3 .

(6) V0(go) = 0 .

For suppose on the contrary that the vertex a of qo has valency 0 . If V(qo) = 9
then V(q- - a) = 8 and V~,4(q0 - a) ~--- 7, so by III qo - a D 02, contrary to qo 0 2

If V(qo) 10, then qo - a satisfies the conditions of IV, and so qo - a D 0 2 because
of the minimal property of qo whereas qo 1) 0 2 . Hence VO (C` o ) = 0 .

(7) V2(go) =0.

For suppose on the contrary that the vertex c of q0 has valency 2 and is joined
to the vertices c l and C2 . The two alternatives (Cl , c2) ~ q0 and (Cl , c2 ) E Co o will
be considered in turn and a contradiction will be derived in each case . If (c l , c2) i qo
then let q' _ (q0 - c) U (c l , c 2 ). Clearly Vz4(cá.') -- V--4(C o) . If V(qo) = 9 then
V(C') = 8 and Vz4(C ') 7, consequently q1 D 0 2 by III, if V(( o ) 10 then q'

satisfies the conditions of IV, so 41D 0 2 because of the minimal property of q 0 .
From q 1 D 0 2 it follows as in the proof of III that qo D 02, whereas qo 02 .

Suppose next that (c,,, c2 ) E qo . By (4) v (cl , á0) = v(c2 , q0)=4. E(C o - c - cl - C2)':-:5

6*



84 G. DIRAC AND P . ERDŐS

V(q o) - 4 because gO - c - cl - c2 ID O . It follows that E(q) V(g o ) + 3, which
contradicts (5) . Hence V2(go ) =0.

(8) V3(go) =0.
For suppose on the contrary that the vertex d of g0 has valency 3 and is joined

to the vertices dl , d2 and d, . The two alternatives E(g o(d,, d2 , d3)) -1 and
E(g o (d, , d2 , d 3 )) --2 will be considered in turn and a contradiction derived in each
case .

Assuming that E(Co(d 1 , d2 , d3 )) :l, it may be supposed that (d 1 , d3) ~ go
and (d2, d3) J q 0 . Let q' _ (q o - d) U (d1, d3) U (d2 , d3 ) . Clearly V-4(g')~ Vz4(go)-
If V(q o ) = 9 then V(q') = 8 and Vz4(q') 7, and consequently q' D 02 by III ;
if V(q o ) ~-- 10 then q' satisfies the conditions of IV, and consequently g' D 02

because of the minimal property of q 0 . From q' O 2 it follows as in the proof
of I that g0 D O 2 , whereas g0 O 2 . There remains the alternative that
E(go(d, , d2, d3)) 2 . By (4) v (d1, g0) = v(d2, go) = v (d3, go) = 4. E(q0 - d - dl -
- d2 - d3) - V(qo) - 5 because q o - d - dl - d2 - d3 O . It follows that E(q o )
V(qo) + 5, which contradicts (5) . Hence V3 (qo ) = 0.
From the conditions of IV it follows that V z4(q o) ~--- 7 and V_ 4(qo) - V_3(qO)

z4. By (6), (7) and (8) V(qo) = VI(go) + V-4(go) and by (4) each vertex of valency
1 is joined to a vertex of valency 4 . Let q' denote the graph obtained by deleting
all vertices of valency 1 from g . Clearly V(g") = Vz 4(go) ~--- 7, V--4(q") = V=-4(qo) -
- V1(go) ~---4 and V52(q") =0. Therefore by I q" D O 2 , whereas g0 ,O 2 . This
contradiction proves IV.

PROOF OF V. If V3(q)=O then V(q.) = V52(q) + Vz4(q) and so V- 4(q)
-? V(q) + 2 ; hence by IV C 02. Suppose that V3(q) ;l, and let x1 , . . ., x u
denote the vertices having valency 3 in q . Let y1 , . . ., y,, be u distinct vertices none
of which belong to g, and let q* = gU {y1 , . . ., yu} U (x 1 , y1 ) U . . . U (x., yJ . Clearly
V(q*) = V(q) + U :-- V(q) + V3(q), V:2(q*) = V=-2(g) + V3(q), V-4(q *) = V--4(q) +
+ V3(g) . Hence V} 4(C*) V- 2(q*) +4, since V--4(q)5V--2(q) + 4 . Also V3(q*) =0.
It follows that Vz4(q*) i V(q*) + 2 . Hence by IV q* D 02, consequently CD 02.

This proves V .
PROOF OF VI . Let the vertices of q be 91, 92 , . . ., 97, where v (g 1 , q) = 2 and

v (92, q) = 3 . Let 98, g,, g,, be three distinct vertices not belonging to q and let

go =q U {9899910} U (91, 98)U (92,99) U (91, g1o) . Then V(q°)=10 and Vz 4(q°)=7,
So g ° D 02 by IV, and consequently q D 02 .

PROOF OF VII . Construct q+ from q by adding a new vertex not in q and
joining it by an edge to a vertex of V3(q) . Then V-4(q+) = 6, V3(q+) =l, and
V5 2(q+ ) =2. Hence by V q+ 02, consequently q o2.

REMARKS concerning Theorem L 1 . IV and V are equivalent. For V has been
deduced from IV, and IV clearly follows from V.
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2. If V(q) ~ 9 then I is a consequence of V .
3 . 1, . . ., VII are best possible. In order to demonstrate this we define the graphs

s4, ol', -4, Co and (f) as follows : 1(14) _ {x I , X2, X31 YI, . . ., Yu} (u 3), & (34) _
= 1( •X 1 , x2) (x2, X3) (X3, xl)(xi, Yj)} (1 =l, 2, 3 ; j =l, . . ., u) • (-4")=T (-4) U
U1ZI . . .Zu},

	

UI(YI,Z1) . . . (Yu,Zu)J •

	

(4)=1í1f2 • • :/6 ,

	

e(4) -
={(fi,fj)}U(,f6,f,)U(f6,fs)-(fl,fs) (i=1,...,5;l,. . ., 5). T (0) - (M) +
+f7, 0 (0) _ ~ 0) + (A, f0 • (?) _ (L) +f81 &W) = ~ (~) )+(f6,í8)- V ( ~) }

6, Vs2(-4) = 0, and V- 4(-l) = 3 but '4 1D 02 . VW') > 9, V-4(4')=! VG4') + 1 i
but s4' ID O 2 . V(-4) = 6, V4(-4) = 5 and V2(-4) =l, but M ID O 2 . V((P) = 7, V4(e) = 5,
V3((2) =l and VI(L) =l but L 02. V (f)) = 8, V4(á) = 6, VI(D) = 2 but

	

O 2 .
,l, M, L and LT show that the conditions of I cannot be relaxed. (2, ~) and

s4', respectively, show that the conditions of II, III and IV cannot be relaxed . 'd
and sl' show that the conditions of V cannot be relaxed . Co and , respectively,
show that the conditions of VI and VII cannot be relaxed .

For finite graphs without multiple edges which contain at least one loop a much
weaker condition ensures the existence of two independent circuits .

THEOREM 2 . If q is a finite graph containing at least one loop but no multiple
edges, and if V(C) -3 and V--4(q) - V_ 2(q), then q D O ~ .

PROOF. Let m denote a vertex of q which is incident with one or more loops .
If í . - m contains a loop, then qD

02 . In what follows suppose that q - m contains
no loop. Clearly V-3(q - m) - V--4(q) -l, and VsI(q - m) V- 2(q). Therefore
V-3(q -m) + 1 V1-4(q) } V_ 2(C) V I(q -m) . Also V(G-m)-2. It follows that
- m D O , for if is a finite graph without circuits and with at least two vertices,

then V- I () - V} 3 (` C) + 2 as may easily be verified . Hence qD O 2 .

REMARKS . 1 . The conditions of Theorem 2 cannot be relaxed . The example of a
graph consisting of a vertex incident with four loops joined to a vertex of valency 1
shows that the condition V(q) = 3 is essential . The example of a graph consisting
of a vertex incident with at least two loops joined to every vertex of a path shows
that the condition V- 4(q) ? V--2(C) is essential .

2. No result analogous to Theorems 1 and 2 can be obtained for graphs which
may contain multiple edges . This is shown by the example of a graph consisting of a
vertex incident with any number of loops joined to the vertices of a path by any
number of edges .

3. Concerning the existence of three or more independent
circuits in finite graphs without multiple edges

THEOREM 3. If q, is a finite graph without loops or multiple edges and k is a
natural number --3, and if Vy2k(í0 - V--2k-2(q)

	

.--k2 + 2k - 4, then qD
0k .

N. B . Theorem 1 . V states that this is true for k = 2 if V(íá) -- 9 .
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PROOF OF THEOREM 3 by reductio ad absurdum . Assume that Theorem 3 is
untrue . Let x denote the least value of k for which the assertion of Theorem 3 is
false, and among the graphs q such that V-2.(q) - V-2-2(q) ;i-X2 +2%-4 and

q O x let qo be one with the least possible number of vertices and barely satisfy-
ing the conditions of Theorem 3 with k = x . This will be shown to lead to a contra-
diction by a method amounting to an induction process starting from the particular
case of the theorem of CORRÁDI and HAJNAL with x 2 + 2x - 4 - V(q) x2 + 2x - 3
(note that x 2 + 2x - 4 _- 3x + 2 if x _- 3) .

(l) At least one of the end-vertices of every edge of qo has valency 2x or 2x -l .
For, since o barely satisfies the conditions of Theorem 3 with k = x, by deleting

any edge from 'o either Vz2 ,,(C o) is decreased or V=2x-2(qo) is increased .

(2) V- 2-I(q0)_l-
If V(q o) x 2 +2x-2 then V52-1( 0)' 1 because o barely satisfies the

conditions of Theorem 3 . If x 2 + 2x - 4 - V(q,) -_!5x 2 + 2x - 3 then V- 2x-1(qo) 1
can be deduced with the help of the theorem of CORRáDI and HAJNAL : if V5 2,,-1(q'O)=0
then, since x 2 + 2x - 4 3x + 2 because x ~_!: 3, qo O', which contradicts qo : O ;.

(3) Vo(go) =0.

:
For if a is an isolated vertex of qo then V.- 2x( o - a) - V-2x-2(

:_% 2 +2;-4 and qo - a 0", which contradicts the minimal property of q o .
(4) V,(qo) =0 .

For if b is a vertex of q o having valency 1 then VV.-_y 2,,(qO - b) - V- 2r- 2(qo - b) 7
x2+2;,.-4 and o - b O 11 , which contradicts the minimal property of o .

(5) qo contains at least one triangle.

For suppose on the contrary that C`fo contains no triangle . By (2) qo contains
a vertex of valency -2x -l, let e denote such a vertex and let v(e, o) = v ; by (3)
and (4) 2-v - 2x -l ; let e l , . . ., e„ denote the vertices of q, to which e is joined .
No two of e,, . . ., e„ are joined by an edge because o contains no triangle by hypo-
thesis . Let ' _ (q o - e) + (ev , e„ _ 1) + . . . + (e„, e l ) . Clearly V 2i (q

	

V~ 2,(q.,) and
V-2x-2( ' )C V-2x-2(qo), SO V-2Jq') V-2x-2(q') jx 2 +2x - 4, hence q ' D Ox
by the minimal property of q 0 . It follows as in the proof of Theorem 1 . l, that qoD O x,
whereas qo

	

This contradiction proves (5) .
Let x l , X2, x, be the vertices of a triangle contained in qo and let q, _ q - xl -

- X2 - X3-
(6)
Because ~o O Y

Let s denote the set of those vertices of q" which are in 40 joined to all three
vertices x l , X2, x3 .



and
-(9)

	

QO) --

	

2x-4(4 ) - (S 1 1 ac(~2x-4(q„) .
From (7), (8) and (9) and the conditions of Theorem 3 it follows that

(10) V?2x-2(q")-V_=2x-4(q")á
'Vz2x( )-V-=2,--2( )-2x-l- (x-l)2+2(x-l)-4 .

It follows from (10) that x = 3, because if x i 4 then by (10) and by the minimal
property of x, q" D ,J r- I contrary to (6) . If x = 3 then V(q o ) ~--- 11 from the conditions
of Theorem 3 with k = 3 . The two alternatives V(q o ) =11 and V(qo)' 12 will be
considered in turn : If V(qo) =11 then V= 5(q 0) = 0 from the conditions of Theorem 3
with k = 3, hence in this case, by the theorem of HAJNAL and CORRÁDI [l], q,o 7) O 3
contrary to hypothesis . If V(C o) ~-- 12 then V(q") -9, and by (10) Vz4(q") -
- V 2(q") ~-- 4, so in this case, by Theorem 1 . V, q" D O 2 , which contradicts (6) .
The assumption that Theorem 3 is false therefore leads to a contradiction .

REMARKS . 1 . Theorem 3 is probably not best possible . On the other hand if
V- 2k( 40

	

:1)
) - V-2k- 2(q) = 2k -l then it is possible that q o k whatever the values

of k( -3) and of V(C). For example let

	

{x1, . . ., X2k_ I , Y1, . . .Yu, z l . . .zu }
(u z (k+ l)) and 60 (q) == {(x1 , x;), (xi, Y,,), (yn z,,)} (i= l, . . ., 2k- l ; j= 1, . . .,
2k-l ; i j; h=1, . . ., u) . V?2k( )=2V(q)+2(2k-l) .

2 . It is worth noting, that in the proof of Theorem 3 only the particular case
of the theorem of CORRÁDI and HAJNAL in which k2 + 2k - 4 { V(q.) - k 2 + 2k - 3
was used. By a simpler method not using the theorem Of CORRÁDI and HAJNAL
at all the weaker result can be proved that corresponding to any integers k --2 and
c-- 1 there exists a number n(k, c) such that if the graph 4 satisfies the conditions
V-:2k-I(q)7c and V(C) -~-n(k, c), then

	

Ok .
In the case of finite graphs without multiple edges which contain loops much

weaker conditions than those of Theorem 3 ensure the existence of k independent
circuits, as Theorem 4 shows . In any concrete case it is best to delete all vertices
incident with loops (together with all edges incident with at least one of them) and
apply Theorem 2 or Theorem 3 to the remaining graph however, because Theorem 4
takes into account all the most unfavourable situations .

THEOREM 4. Let q. be a finite graph without multiple edges and k a natural
number ; 3. If exactly k --l vertices of q are incident with loops, and V(C) 3 k + 1
and V-k+2(q,)-V=k( )'k-2, then 4D O k. If exactly l vertices of q are incidentincident
with loops, where 1-k-2, and V(q.) 3l + 9 and Vy_ 2k - 1(q) - V--_2k-1-2(C) 7
~(k-1)2+2k-1-4, then qD Ok.
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(7) Isl = 2x - 2 .
Because by (l) at least two of x 1 , x2 , x3 have valency -2x in q 0 .
It is easy to see that

(8 ) ~' 2x009 C ? 2x-2(~ ") U (s n o, 2x- 3(q')) U {X 1 X2 X3 }
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PROOF . Let L denote the set of those vertices of q which are indicent with loops .
Suppose first that ILI = k -l, V(q) --k + 1 and V---k+2(q) - V5 k (q) ~-<- k -2. Then

clearly V-13(q - L) ~-- V--k+2(q) - k + 1 and V, 1 (q - L) :-:5 Vs k (C ) . Hence V---3(q - L) -
- V 1(q - L) 7 + l, consequently, since V-, 1 (~ - L) 2, -L O . Therefore

~ D O k .
Suppose secondly that JLI = l - k-2, V(q) ?1 + 9 and Vz2k-

- Vs2k_1_2(q)i-- (k-2)2 +2k l-4 . Clearly
V-.2k-21-2(q-L)-V52k-I-2(q) . Hence Vz2(k-I)(q - L) - Vm52(k-c)-2(q L) ;i-_

(k - l) 2 + 2 (k - Z) - 4 . It follows by Theorem 1 . V (V(( - L) 9) or Theorem 3
that q- L D O k-I. Therefore g D O k

4. Concerning the existence of independent circuits in
finite planar graphs without multiple edges

THEOREM 5 . Let 4 denote a finite planar graph without loops or multiple edges .

I. If V(q) 6, V 2(q) = 0 and V=4(q) 2, then q D O 2 .
II. If V(q) 8 and V---4(q) ?2 V (q) + 12 , then

	

O 2 .
III. If V(Ca) 8 and VII(q) - V- 2(q) 3 then

	

02 .

If V--2k( 0f)- V~-2k_ 2(q) ; 5k - 7 where k is an integer 2 3, then q D _~ k .

PROOF OF I . Suppose first that V(q) = 6 and that 4 barely satisfies the conditions
of I. Then clearly V3 (CL) 1.Let ~T (q) _ {gI 92 . . .961 and suppose that v (g i , q) = 3
and that gi is joined to g2, 93 and g4 in q .

(l) (g5, 96) Eq.

(2) v (g ., q) = 3 or v (96, q) = 3 .

(3) E(q (92 , 93, g4)) - l .

For if (l) or (2) or (3) were untrue then (g i , g) E q for i = 2, 3, 4 and j =l, 5, 6
and so q would not be planar .

The three alternatives E(C (g2 , 93, g4)) =l, 2, 3 will now be considered in turn .
Assuming that E(C (92, 93!, g4)) =l it will be supposed that (92, 93) E q. Then

(g4, 95) E q and (g4, 96) E q. In this case by (l) q [g1, g2, 931 U [g4, 95, 961-
Assuming that E(C (92, 93 , g4)) = 2 it will be supposed that (92 , 93) E 4 and

(g2 , 94) E q. Then either v (93, q) ? 4 or v (g4 , q) 2 4, because if V(93, ) = v (94, l) = 3
then v(g., q) ?4 or v(96, q) '4 since V=-4(q); 2; and if e . g . v (g,, q) -- 4 then
(g3 , 95), (g4 , g.) E q SO (93,96), (94,96)(q, therefore v (g6 , q) - 2 whereas
V5 2(q)=0 . If e . g . v(g4, q) ~--4 then á [gl, g2, 931U[94,95,961-

Assume finally that E(( (92, 93, g4)) = 3 . At least one of 92, 93, 94 is joined
to both of 95, 96 because v (g,, q) ~--- 3 and v(96, c) ? 3 ; suppose that (94, g5 ) E q
and (g4 , g6) E q, then C [g1 , 92, 931U[94,95,961- I is thus true if V(q)=6 .
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The proof of I will now be completed by reductio ad absurdum . Assume that I
is untrue. Then there exists a planar graph 40 with the following properties : ,
barely satisfies the conditions of I and ő0 1)

02, and all graphs which satisfy the
conditions of I and have fewer vertices than q 0 contain two independent circuits .
V(10) -- 7 because I is true for planar graphs with six vertices .

(4) At least one of the end-vertices of each edge of q, has valency 3 or 4, and
at least one vertex of q o has valency 3 .

Because q o basely satisfies the conditions of I and V(q o ) ?7.

Let d denote a vertex of q o having valency 3 and let d,, d2 , d3 be the three
vertices of 'o to which d is joined . The three alternatives E( 0(d,, d2 , d3 )) l,
E(c10(dl , d2 , d3 )) = 2, E(c~,(dl , d2 , d3 )) = 3 will be considered separately .

E(c o(d, , d2 , d3 )) 1 leads to a contradiction exactly as in the proof of Theorem
1 1 .

E(io(d, , d2 , d3 )) = 2 and (d,, d2), (d,, d3) E co o and v (d, , q,) ~--- 5 leads to a
contradiction exactly as in the proof of Theorem 1 . I . If v (d, , q o) { 4 then a contra-
diction is arrived at as follows : If q - d - d l - d2 - d3 has v connected components, then
E( o) V(c o) - 2 - v + v (d2 , coo ) + v (d3 , qo) as before . On the other hand, summing
the valencies of all the vertices of q0 , 2E(go) v(d2 , q o) + v (d3 , qo ) + 3 (V(q o) - 2).
From the two inequalities it follows that V(C o) : v (d2 , qo) +v (d3 ,Co o ) + 2 - 2v.
v (d2 , qo) ~ v + 2 and v (d3 , qo) - v + 2, since d2 and d3 are each joined to at most
one vertex of each connected component of q 0 - d - dI - d2 - d3 because Clo 1) O 2 .
Hence V(co) -- 6 which contradicts V( o ) 7 .

The only remaining alternative is that E(q,(d,, d2 , d3 )) = 3 . By (4) it may be
assumed that v (d, , Cl̀ o) : 4 and v (d2 , c o)f 4. q0 - d - dl - d2 - d3 J) O so
E(~o - d - dI - d2 - d3) - V(qo) - 4 - v where v is the number of connected compo-
nents of qo - d - dl - d2 - d, . Consequently E(co) - V(qo) + v (d3 , o) + 1- v . On
the other hand, summing the valencies of all the vertices of q o , 2E(qo ) v (d3 , qo) +
+ 4 + 3 (V (qo) - 2) . From the two inequalities it follows that V(Co) v(d3 , q0) +
+ 4 - 2v . But d3 is joined to at most one vertex of each connected component of

qo - d - dl - d2 - d3 because 0 O 2 , so v (d3 , q o) v + 3 . Hence V(co) 7 - v - 6 .
But V( o ) 7. With this contradiction the proof of I is complete .

PROOF OF 11 .

(5) If is a graph without loops or multiple edges and V(%) = 6, Vy, (w) = 5 .

and V2(%) =l, then X is not planar .

For suppose on the contrary that C is planar. Let b denote the vertex of
having valency 2 and let b,, b2 denote the two vertices of H to which b is joined .
In C - b every vertex other than b I and b2 has valency 4 . Consequently (b,, b2) ~ X
since N is planar . Therefore (C - b) U (b, , b 2 ) is a planar graph without loops or
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multiple edges containing five vertices each having valency 4. This contradiction
proves (5) .

Now suppose first that V(Cl ) = 8 . Then V--,(q) ~--- 6 . does not contain a vertex
of valency 4 joined to two vertices of valency 1, because if it did then the graph
obtained from q, by deleting the two vertices of valency 1 together with the edges
incident with them would contradict (5). Therefore

	

O2 by Theorem 1 . III .
The proof of II will now be completed by reductio ad absurdum . Assume that

11 is untrue. Then there exists a planar graph qo with the following properties : C o
barely satisfies the conditions of 11 and qo O 2 , and all planar graphs which
satisfy the conditions of II and have fewer vertices than qo contain two indepe-
ndent circuits . It has just been proved that

(6) V(4,) -- 9 .
As in the proof of Theorem 1 . IV

(7) At least one end-vertex of every edge contained in l` 0 has valency 4, and
Y_-: (q0) 1 .

By summing the valencies of all the vertices of Go we have that

(8) .If Vo(go) = 0 then E( 0) ~ 14 V( 0 ) + 24 , if VO(~ o ) = 0 and V2 ( ," 0 ) - 1 then

E(q0) 1 I V(qo) + 24, and if' Vo(q0) = 0 and V3(go) -1 then E(qo) -14 V( o) + 34 .

It will now be proved that V i(( o ) = 0 for i = 0, 2, 3 .

(9) VO(go) =0.
For suppose on the contrary that the vertex a of q o has valency 0 . Then (G0 - a)

satisfies the conditions of 11 (by (6)) and therefore qo -a=) 02 by the minimal
property of C`j o .

(10) V2(go)=O-
For suppose on the contrary that the vertex c of qo has valency 2 and is joined

to the vertices c, and C2 . The two alternatives (c 1 , c 2 ) q qo and (Cl , c 2 ) Eqo will be
considered in turn and a contradiction will be derived in both cases . If (Cl , c 2 ) i q
then (q O - c) U (Cl , c 2 ) satisfies the conditions of II (by (6)) and therefore contains
two independent circuits (because of the minimal property of q o ), it follows as in
the proof of Theorem 1 . III that q0 02, whereas

	

1)02. Suppose next that
(Cl, C2) E qo . By (7 ) *1, qo) = *2, q0) = 4. E(q o - c - c I - c2) ` V(4 0) - 4
because q0 - c - c I - c21) O . It follows that E(qo) -_ V(Co) + 3 . By (8) E(Co) -
-14 V((,) + 23 . From the two inequalities it follows that V(" 0)- l, which con-
tradicts (6) . Hence V2 (q o) = 0 .

( 11 ) V3(g0) =0 .

For suppose on the contrary that the vertex d of 40 has valency 3 and is joined
to the vertices d,, d2 and d, . The two alternatives E(C o(dl , d 2 , d3)) { 1 and
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E(C o(di , d2 , d3 )) 7 2 will be considered in turn and a contradiction derived in
both cases .

Assuming that E(go(di , d2 , d3 )) 1, let it be supposed that (d,, d3 ) J q0 and
(d2 , d3 ) ~ q 0 . Then (q o - d) U (d,, d3) U (d2 , d3 ) satisfies the conditions of II (by (6))
and therefore contains two independent circuits (because of the minimal property
of q o ), it follows as in the proof of Theorem 1 . I that q0 02, whereas q, 1) O 2 .
There remains the alternative that E(c o (d i , d2 , d3 )) i 2 . By (7) v(d, , q o ) = v (d2 , qo) _
=v(d3,go)=4 . E(qo-d- d1 - d2 - d3)`V(go) - 5 because coo - d - di - d2 -
- d3 O . It follows that E(qo) - V(qo) + 5. By (8) E(( o) l :r (V(q0 ) + 31 . From
the two inequalities it follows that V(C o ) 7, which contradicts (6) . Hence V3(g 0 ) = 0 .

From the conditions of II it follows that V-,(q,) ; 6 and Vz 4 (q 0 ) - V_ 3 ( 0 ) ? 3 .
By (9), (10) and (11) v(Co) = Vi(g o ) + V-- 4(q,) and by (7) each vertex of valency I
is joined to a vertex of valency 4 . If qo does not contain a vertex having valency 4
joined to at least two vertices having valency 1, then let q" denote the graph ob-
tained by deleting all vertices of valency 1 from qlo . Clearly V(q") _ 6, V, 4(q") ~_! 3
and V52(C ") =0. Therefore by I q," D O 2 , whereas q0 O 2 . This contradiction
proves II in the case considered .

If q0 contains a vertex, say d, having valency 4 which is joined to two vertices
of valency l, say di and d2 , then let d3 and d4 denote the remaining to vertices of
q0 joined to d. Let q" _ (qo- d) U (d,, d2) U (d,, d3 ) U (d,, d4 ) . q" satisfies the
conditions of II (by (6)) and therefore contains two independent circuits (because
of the minimal property of G o ), it follows as in the proof of Theorem 1 . I that
Go D 02, whereas Go 02 . This contradiction proves II in the remaining case .

PROOF OF III. For k = 2 III follows from II in the same way as Theorem 1 . V
follows from Theorem 1 . IV. For k : 3 III will be proved by reductio ad absurdum .
Assume that III is untrue. Let x denote the least value of k for which the assertion
of III is false, and among the planar graphs to which the assertion of III with k = r
does not apply let q o be one with the least number of vertices and barely satisfying
the conditions of II l with k = x .

(12) At least one of he end-vertices of every edge of Co o has valency 2x or 2X -1 .
For q o barely satisfies the conditions of III with k = x .

(13) V--2x-I(qo)'-1 .
Because x } 3 and qo is planar .
(14) V_I(go)=0 .

For if x is a vertex of valency 1 in t o then V.--2k( o -x) - V-2k-2(q0 -x)
-5x-7 and qo - x O', which contradicts the minimal property of q0 .

(15) qo contains at least one triangle .
Replace x2 + 2x - 4 by 5x - 7 in the proof of (5) in the proof of Theorem 3 .
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Let X1, X2, x3 be the vertices of a triangle contained in q o and let
=~X-x 1 -x2 -x3 .

(16) q
1 Ox _1 .
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Because q o 1) O Y .

Let s denote the set of those vertices of q"' which are in Co o joined to all three
vertices xl , X2, X31

(17) JsJ --2 .

Because o is planar .
From (17) and the conditions of III it follows as in the proof of Theorem 3

that

(18) V.2x-2(

	

V~2x-4(q")' V-2x00) - V_2x-2(qo) - 5 ~ 5(x-l)-7 .

It follows from (18) that x = 3, because if x ? 4 then, by (18) and the minimal
property of x, c " O r-1 contrary to (16) . If x = 3 then Vz 6(qO) - V=4(q0) -_ 8 .
In this case obviously V( o ) -_11 because o is planar. Hence V(q") 8. Therefore,
from the first part of III, " D O 2 , with contradicts (16) . The assumption that III
is false therefore leads to a contradiction . Theorem 5 is now proved .

REMARKS. 1 . The condition of I cannot be relaxed, V(q) } 6, V=2(C) = 0 and
V= 4(q) =1 does not necessarily imply that the planar graph q contains two indepen-
dent circuits . This is illustrated by the planar graphs consisting of a circuit together
with a vertex not b .-longing to the circuit joined to every vertex of the circuit .

2. If ( is planar and V?4( ) 2 V(q) + 12 then V(q) -7, as the reader can
easily verify . If V-4(q) ~2 V(q) + 12 and V(() =7 then the planar graph q does
not necessarily contain two independent circuits . For example if ov(X) _ {x l , . . ., x,{
and &(X) _ {(x,, x2), (XI, x3)á (XI, x4), (X1, x5), (X2, x3)á (X2, x4)5 (X2, x5)5 (X3, x4),

(X3, x5), (X4, x6), (X51 x7 )} then X is planar and contains no loops or multiple
edges, and V4(X) = 5, Vl (X) = 2, but X 1) 02 .

If q is planar and V(q) = 8 and V--4(q) = 2 V(q) + l, then q does not necessarily
contain two independent circuits, as is shown by any graph Y obtained from X by
subdividing an arbitrary edge through inserting a new vertex .

3. X shows that if q is planar, V=- 4 (C) - V-=-5 2(q) = 3 and V(q) =7 then q does
not necessarily contain two independent circuits . X - x 7 shows that if q is planar,
VI4(q) - V-- 2(q) = 3 and V(q) = 6 then q does not necessarily contain two inde-
pendent circuits. Y shows that if q is planar, V- 4(q) - V,5 2(q) =2 and V(q) = 8
then q does not necessarily contain two independent circuits. III is surely not best
possible for k -- 3 .

4. The remarks after Theorem 2 apply equally to planar graphs, because the
counterexamples described there are planar .
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5. Concerning the existence of two circuits without a common
edge in finite planar graphs

THEOREM 6 . If q is a finite planar graph which may contain multiple edges and
loops, and ifE(() ; V(q) + 3, then

	

2 O .

NOTE . If q is finite and contains a loop and if E(C~) V(q) + 2, a loop being
counted as two edges, then q R 2O , whether q is planar or not . For if l is a loop
then E(C~. - l) E V(C), hence q - l O, therefore q jR 2 O . If E(q) = V(q) + 1 then
q need not contain two circuits without a common edge, a simple example is a
path with a loop incident with one of its edges .

PROOF OF THEOREM 6 by reductio ad absurdum . Assume that Theorem 6 is
untrue . Then there exists a finite planar graph qo such that E(Co) = V(( o ) + 3,
and q o 2 O , and Theorem 6 is true for all graphs with fewer vertices than o .
Clearly V(Co) -- 3 .

(l) qo contains no circuit having fewer than four edges .

For if C is a circuit with fewer than four edges contained in qo then
E(( o - E(C)) ~--- V(C o), so qo - off (C) O and consequently o2 2 O contrary to
hypothesis .

(2) V-2(q0) = 0 .

VO(go) = 0 because if a is an isolated vertex of qo then E(q o - a) _
= V(qo - a) + 4, so qo - a 2 O from the minimal property of q 0 , whereas qo 2 O .
V,(q o) = V2 (C'`~ o ) = 0 can be proved by the same argument as is used in the proof
of Theorem 3 in [2] .

It follows from (2) that 2E(Co) -- 3 V(c o) . Consequently, since E(( o ) = V(Co) + 3,
,V(Co)-6. On the other hand it follows easily from (l) and (2) that V(Co) 6 .
Hence V( 0 ) - 6. From this and (l) and (2) it follows easily that qo contains a
circuit having exactly four edges and vertices .

Let the vertices of qo be denoted by gI , 92, . . ., 96 and suppose that qo contains
a circuit whose vertices are gi , 92, 93, 94 in this order. By (l) gs and 96 are each
joined to at most two of g I , . . ., g4 , therefore by (2) (95, 96) E q 0 and by (l) it may
be supposed without loss of generality that (g,, g6), (93, g6), (g2 , gs), (91, gs) E qo
So qo contains the circuit [g 1 , 92, 93, 94, gs , 96] and the edges (g1, g4), (92 , gs),

(g3 , g6) . Therefore qo is not planar. This contradiction proves Theorem 6 .

REMARKS. 1 . If V(() : 3 and E(C) ? V(q) + 2 then q -R 2 O , as the reader
may very easily verify .

2. If V(q) i--- 4 and E(C): V(C) + 2 then the planar graph q need not contain
two circuits without a common edge . This is illustrated by the graph containing
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four vertices, each pair of distinct vertices joined by one edge (this graph is
3-fold connected) and by all graphs obtained from this graph through subdividing
edges by the insertion of new vertices (these graphs are all 2-fold connected) - in
other words by the complete 4-graph and the topological complete 4-graphs .
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