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1. Introduction

In a recent paper [I] K. CorrADI and A, HAINAL proved that if a finite graph
without multiple edges contains at least 3k vertices and the valency of every vertex
is at least 2k, where k is a positive integer, then the graph contains k independent
circuits, i. e. the graph contains as a subgraph a set of k circuits no two of which have
a vertex in common. The present paper contains extensions of this theorem. In a
recent paper [2] P. ERDGs and L. Pdsa proved, among other things, that if a finite
graph with or without loops and multiple edges contains n vertices and at least
n+4 edges, then the graph contains two circuits without an edge in common. The
present paper contains analogous results for planar graphs.

We adopt the following notation: O denotes a graph consisting of k independent
circuits, k) denotes a graph consisting of k or more circuits no two of which have
an edgein common. If § is a graph then V() denotes the set of vertices of §, V,(§)
denotes the set of vertices of @ having valency i in Ej (i being a non-negative integer),
%95,-(@), Py (Gj‘) denote the set of vertices of é} having valency =i and =i, respectiv-
ely, and J{{*’J) denotes the set of edges of ("; The valency of the vertex x in the graph
§ will be denoted by v(x, &). 'P(§)| will be denoted by V(Cj'), 16 (&) by E(G) etc.

In this notation the theorem of CorrADI and HAINAL quoted above states
that if § is a finite graph without multiple edges and if V(§) =3k and ¥ -,,,(§) =0,
then §> O*; and the theorem of ERDSs and Pésa quoted above states that if §
is a finite graph and E(C‘;’);— V(Cj}+4, then @:)20.

2. Concerning the existence of two independent circuits
in finite graphs without multiple edges

THEOREM 1. Let C‘}’ denote a finite graph without loops or multiple edges.
L If V() =6, V=3(§)=0, and V-,(§) =4, then §> O.
IL If V(§)=7 and V. (§) =6, then > O2.
L If V(§) =8, V24(§)=6, and if § does not contain a vertex having valency
4 joined to two vertices having valency 1 then C‘}:J o2
IV. If V(§)=9 and V=4(§) =1V(§) +2, then § > O2.
V. I V(§)=9 and V=4(§) — V=,(§) =4, then 5 O
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VL If V(§) =T, Vel Q=5 and V(§)=VyQ) =1, then §> O
VIL If Vi.\d(@}zs. Vi(§) =2, and P’,_;z(q"}: 1, then G2 O

DeriNITION. A graph barely satisfies the conditions of I, III, IV, or Theorem 3,
if it satisfies the conditions of I, IlI, IV, or Theorem 3, respectively, but when any
one of its edges is deleted the remaining graph no longer does so.

It is easy to see that

(1) If a graph satisfies the conditions of I or III or IV then it contains a subgraph
having the same vertices which barely satisfies them.

PrOOF OF I. Suppose first that V(§)=6. Let the vertices of & be denoted by
81,83, --» 86~ The following two alternatives will be considered separately: (i) §
contains two vertices of valency =4 not joined by an edge. (ii) Each pair of vertices
of valency =4 are joined by an edge.

Assuming that (i) holds, it may be supposed that v(g,,§)=4, v(g;.§)=4
and (g, ,gz)qi‘;_ Then g, and g, are both joined to each of g;,g.,2:,86.
I«’D({'f}’—g1 —g2)=0 because V=x(§)=0, and V.,(§—g, —g;)=2 because
V. 4{C§’J =4: it follows that fj'-—g, — g, contains two edges without a common vertex,
and hence § = O2.

Assuming that (ii) holds, it may be supposed that g,, g,, g4, g, each have
valency =4. Each of them is joined to at least one of g5 and g and g5 and g4 are
each joined to at least two of g,, g,, 25, g4. The three alternatives that g5 is joined
to exactly two, three or four of gy. g,, g3, g4 Will be considered in turn: If (g5, g,) € C‘;,
(85.8.)€G, (g5,2:)¢G and (g5,2,)6G then (gg,2:)€G and (ge,24) €. s0 in
this case ( contains the two independent circuits [g,,g,,gs] and [g3, g4, gol- If
(25, 21)€G, (85.22)€G, (85, 82)€G and (g5, 84) G, then (g6.2,)€§, and it may
be supposed that (gﬁ,g,)Ex.ﬂ (for v(g,., = 3), in this case t_, contains the two
independent circuits [g,, g1, gs] and [g,, g4, 86 If (gs,g‘)E[.J for i=1,2,3,4,
then it may be supposed that (g, g,)€§ and (g6, £,) €§ (for v(gs, §)=3) and in
this case § contains the two independent circuits [g5, g4, g5] and [g,, g, g]. Hence
Cﬁ > ©2if (i1) holds. So I is true in the case V(C:,') =6.

The proof of I will now be completed by reductio ad absurdum. Assume that |
is untrue. Then by (1) there exists a graph éj’.o with the following properties: (3,,
barely satisfies the conditions of I and §,p ©O? and all graphs which satisfy the
conditions of I and contain fewer vertices then (, contain two independent circuits.
V{(ﬁ’o)é? because I is true for graphs with six vertices.

It is easy to see that

(2) If a graph barely satisfies the conditions of 1 then at least one of the end-
vertices of every edge has valency 3 or 4, and at least one vertex has valency 3.
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Let d denote a vertex of &, having valency 3, and let &,, d,, dy denote the
three vertices of (; to which d is joined. The three alternatives E (Go(dy, dz, d3)) =1,
E(Goldy, dy, d3)) =2, E(§o(d,, d;, d3))=3 will be considered separately.

Assuming that E(Cﬂ‘”o(a’l, d,,d3))=1, it may be supposed that (d,, d5) ¢ §, and
(dy, d5)4Go. Let § = (§o —d)U(d,, d3)\U(d;, d3). § satisfies the conditions of 1.
Hence @’:}O: because of the minimal nature of C';g. It follows that @03 02
((dy, d5) can be replaced by d'U(d, dy)U(d, d;) if necessary, alternatively d;

U(d,, d3)U(d,, d;) can be replaced by d U (d, d,) | (d, d,) if necessary. This argument
is used in [2].) This contradicts GoD OZ.

Assuming that E(§(d,.d,,d;))=2, it may be supposed that (d,,d;)€G,,
(d,.dy)¢ L%‘U and (d;,ds) é@o. There are two alternatives: o(d,, (‘30}3:*5 and
v(dy, Go)=4. 1f v(dy, §o) =3 then (§o—d)U(d,, dy) satisfies the conditions of I,
and therefore contains two independent circuits because of the minimal nature of
Go: it follows that G2 O2 (replacing (d,, d;) by dU(d, d,)\J(d, d,) if necessary:
this argument is used in [2]), in contradiction to @o:b O 1If v(dy, Go) =4 then a
contradiction is arrived at as follows: (%'u —d—d, —d,—d; D C,soifit has v connec-
ted components then it contains at most V(Gjo) —4—v edges. Hence E((ﬁ"o)é
=V(Go) —4—v+o(dy, Go) +v(dy, Go) +2 (since v(d,. Go)=4). On the other hand,
summing the valencies of all the vertices of Go, 2E(Go) =v(d,, Go) +v(dy, §o) +
+8 +3(V(L%‘0)— 4). From the two inequalities it follows that V(Go)=v(dy, Go)+
+uvl(d;, L"io)— 2v. But d, and d; are each joined to at most one vertex of each con-
nected component of §o—d—d; —d, —d; because §oD O2, s0 v(dy, §p)=v+2
and v(dy, Go)=v+2. Hence V(§o)=4 which is a contradiction.

The only remaining alternative is that E(§o(d,, d,, d3))=3. By (2) it may be
assumed that v(d,,Go)=4 and v(d,,§)=4. §o—d—d,—d,—d; DO 50
E(Go—d—d; —d, —dy) = V(o) —5. Consequently E(§o)=V(Go)+v(ds, §o). On
the other hand, summing the valencies of all the vertices of qo, ZE((%'O) =v(dy, t’%’a) +
+1243(V(Go) —4) = 3V(Go) +v(dy, Go). From the two inequalities it follows
that v(d,, @0) = V{qa), which is absurd because qo contains no loops or multiple
edges.

The hypothesis that I is untrue leads to a contradiction, therefore 1 is true.

PROOF OF IL. If ¥,(§)=0 then §> 02 by L If ¥-5(§) #0 then V_(§)=1.
Suppose that V-,(§)=1 and let v denote a vertex having valency =2. Then
V(§—v)=6, V=3(§—0v)=0 and V_4(§—v)=4. Therefore §—v> O2 by L

Proor oF I1I. By (1) in order to prove III it is sufficient to prove it for graphs
which barely satisfy its conditions. Let C‘j denote a graph which barely satisfies the
conditions of III.

@) V==L

6 Acta Mathematica XIV/1-2
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For if Vﬁ(l};):o then the graph obtained by deleting any one edge from g%,‘
satisfies the conditions of 111

IFVo(§=1then G O2.

For if a is a vertex of § having valency 0 then V(§—a)=7and V_4(§ —a) =6,
so §—a> O? by 1L In the remainder of the proof of 11l suppose that Vo(§) =0.

If V(§) =1 then it follows that §> O 2.

For suppose that ¢ is a vertex of[‘g having valency 2 and is joined to the vertices
¢y and ¢,. Either (¢, ¢2)€§ or (c;, ) €§. If (cy, ;) &§ then let §'=(G—c)U
Uleysea). F(§)=T7 and V.4 (§)=6, consequently §'>O? by IL It follows
that L?:) O ((ey, ¢z) can bz replaced by ¢U(c, ¢;)U(c, ¢;) if necessary. This
argument is used in [2].)

Suppose that (cy, ¢;)€§. If v(cy. §)=5 and v(e,, §) =5, then Voy(§G—c)=
=Vo4(§ =6 and ¥V(§—c)=7, so §—c> O? by IL. There remains the alternative
that v(ey, '\%’-)'54 or v(c;, @) =4, let it be assumed that v(c,, L%)éd. It follows that
61‘3 ©?. For suppose on the contrary that G OZ2. Then E(§—c—¢c, —¢;) =4
because §-—c—c;—c;pO. Hence E(§=4+v(c;,§)—2+40v(c;, §)—2+3=
=T74uv(c,, -:':3}. On the other hand, summing the valencies of all the vertices of q,
2E(§)=5-4+v(cy, §+2 = 22+v(c;, §) since v(c, §)=2 and V,(§)=0. From
the two inequalities it follows that v(c,, ag] =8 which 1s absurd because @ contains
no loops or multiple edges. Hence §> O if Vy(§)=1. In the remainder of the
proof of 111 suppose that V,(§)=0.

If Vs(§)=1 then it follows that §> O2.

For suppose that d is a vertex of § having valency 3 and is joined to the vertices
dy,d, and dy. The two alternatives E(§(d;, d,,dy))=1 and E(G(d,, d,, d;))=2
will be considered separately.

Assuming that E(§(d,, d,, dy))=1, it may be supposed that (dy, d;)¢§ and
(dy, d3)4G. Let § =(§—d)U(dy, d3) U(d,, dy). Clearly V(§)=7 and V. (§)=
=V=4(§) =6, s0 C‘?’: O?2 by IL It follows as in the proof of I that § > O2.

Assuming that E(§(d,, d,, d;)) =2, it may be supposed that (d;, d;)€§ and
(d;, d_,,)ECj’. If any edge incident with d is deleted from C'j then the remaining graph
does not contain two vertices of valency 1, therefore the remaining graph contains
only five vertices of valency =4, since CS} barely satisfies the conditions of III. Con-
sequently v(d,, @)zu{d;,@)zu(a‘;,@}:st. It follows that @ > O2. For suppose
on the contrary that G OZ2 Then E(§ —d—d, —d, —ds) =3 because §—d—d, —
—dy—dy D O. Hence E(§)=3+5+5 = 13. On the other hand, summing the
valencies of all the vertices of Cg, 2E(§)=6-4+3 = 27, since v(d, §)=3. This
contradiction proves that §> 02 if ¥3(§) =1.

It thus remains only to consider the case in which V{(§)=0 for i=0,2 and 3.
By (3) there are then two alternatives: V-,(§)=7 and V,(§) =1, or else Vaal§) =6
and ¥,(§)=2.
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Assume first that V_4(§)=7 and ¥;(§)=1. Let b denote the vertex of § having
valency 1. Then V(@-b)=? and V-4(§ —b)=6. Therefore by II §—b> 02

Assume next that V. 4([:3‘):6 and Vl((‘;):l Let b and b° denote the vertices
of § having valency 1. Either b and b are both joined to the same vertex, or they
are not. If b and »” are both joined to the same vertex b, say, then it follows from
the conditions of 111 that v(b,, L";) =5. Therefore ¢ — (b, b,) satisfies the conditions
of III, in contradiction to the definition of Ej Hence b and b’ are not both joined
to the same wvertex. Therefore V(@—b—b’) =6, V‘.ﬂz{(%‘—-b-b’)=0 and
V=4(§—b—b)=4. Consequently by I §—b—b"> O2 11l is now proved.

Proor oF IV by reductio ad absurdum. Assume that 1V is untrue. Then by (1)
there exists a graph (j, with the following properties: @u barely satisfies the conditions
of IV and §, b O, and all graphs which satisfy the conditions of 1V and have fewer
vertices than §, contain two imdependent circuits.

(4) At least one end-vertex of every edge contained in §, has valency 4, and
V=i(Go)=1.

For, since t%‘., barely satisfies the conditions of 1V, if any edge is deleted from
@g’o the number of vertices of valency =4 is decreased; and if ¥23(§,)=0 then if
any edge is deleted from @;‘0, the remaining graph satisfies the conditions of IV,
which contradicts the hypothesis that qo barely satisfies the conditions of IV.

By summing the valencies of all the vertices of @o we have that

(5) If VolGa) =0 then E(Go)=13¥(Go)+3, if Vo(§o) =0 and V(Go)=1, then
EGo) =13 V(Go) +3%, and if Vo(Go)=0 and V3(Go) =1, then E(Go) =1} ¥(Go) +4.

It will now be proved that Vi((?;.,) =0 for i=0, 2, 3.

(6) Vu((:}‘u) =0.

For suppose on the contrary that the vertex a of afj'o has valency 0. If V(@.,)=9
then ¥(§p —a)=8 and Vm(é;"o —a)=7, 50 by lIl §o—a> O2, contrary to §o D O
If V{@B)Tf:* 10, then (‘30 — g satisfies the conditions of 1V, and so qo —a> O? because
of the minimal property of §, whereas §o > O?. Hence Vo{qo)z(}.

) Vz(@o)zo-

For suppose on the contrary that the vertex ¢ of (o has valency 2 and is joined
to the vertices ¢; and ¢,. The two alternatives (¢, cz)ﬁ(‘;u and (cy, cy) €Go will
be considered in turn and a contradiction will be derived in each case. If (¢, , ¢;,) € Go
then let §'=(§o—c)U(es, c;). Clearly Voy(§) = V=u(Go). If V(§o)=9 then
V(§)=8 and V=4(§)=7, consequently G >0 by III, if ¥(§e)=10 then §
satisfies the conditions of 1V, so C;”:: D2 because of the minimal property of @0,
From §'> O? it follows as in the proof of III that §,> O? whereas Go D O2
Suppose next that (¢;, ¢;) €§o. By () v(ey, Go) =v(cz, Go)=4. E(Go—c—cy—¢))=

G*
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=V(§o) —4 because Go—c—cy—cyp O. It follows that E(§) = V(o) +3, which
contradicts (5). Hence Vz(t%,) =0,

(8) Va(q:l) =0.

For suppose on the contrary that the vertex d of (‘3"0 has valency 3 and is joined
to the vertices dy,d, and dy. The two alternatives E(Go(d,.d,,d;))=1 and
E(§o(dy, d,, dy)) =2 will be considered in turn and a contradiction derived in each
case.

Assuming that E(§o(d,, d,,dy))=1, it may be supposed that (d;,d;)§G,
and (d;, d3) §Go. Let §' = (o —d) U (dy, d3)U(d,, ds). Clearly V=uo(§) = V=4(Go)-
If ¥(§o)=9 then V(§)=8 and V-4(§)=7, and consequently §’'= O? by III;
if ¥(§o)=10 then § satisfies the conditions of IV, and consequently § > O?
because of the minimal property of §,. From § > O? it follows as in the proof
of I that L',j‘o = 02, whereas C}"o o 02, There remains the alternative that
E(Cj‘o(du d,, d3))=2. By (4) v(d, Cio) = v(d;, L?o) = v(ds, f-?o)=4- E({-'I;:]‘D_d_dl -
—d, —d;)=V(§,) —5 because §o—d—dy —dy—dyD O. It follows that E(§,o)=
= V(o) + 5, which contradicts (5). Hence V3((,)=0.

From the conditions of IV it follows that V. 4(§o)=7 and V. 4(§o) — V=3(Go) =
=4. By (6), (7) and (8) V(o) = V1(Go) + ¥V=4(§o) and by (4) each vertex of valency
1 is joined to a vertex of valency 4. Let §” denote the graph obtained by deleting
all vertices of valency 1 from §. Clearly ¥(§") =V=4(Go) =7, V=4(§") = V-4(Go) —
—V1(Go) =4 and V=,(§")=0. Therefore by I §"> O? whereas §op ©2. This
contradiction proves 1V,

ProoF OF V. If V3(§)=0 then ¥(§=V=2(§) + V=4 and so V-u(§=
=1 V(§)+2: hence by IV L‘j‘ 2 O2 Suppose that V3(§)=1, and let x, ..., x,
denote the vertices having valency 3 in Cj' . Let y,, ..., ¥, be u distinct vertices none
of which belong to §, and let §* =G U {y,, ..., »,} U(xy, y)U... U(x,, jo). Clearly
V(Lf}*) = V(L?) TH= V(C}) + Va(’:'j‘); Véz(q*) T Vsz(@) + Va{é}); Vg‘t(q“) = V§4(C:}") +
+ V3(§). Hence Vo o(§¥) = V= ,(§*) +4, since V= 4(§) = V2,o(§) + 4. Also V() =0.
It follows that V= 4(G*) =4 V(§*)+2. Hence by IV §* © O2, consequently § > O2.
This proves V.

Proor ofF VI. Let the vertices of L,; be g8, ..., &7, Where v(g,,§)=2 and
v(gs, [53‘):3. Let g5, g9, 210 be three distinct vertices not belonging to Lj' and let
G°=GU{2s20810} U (81, £5) U (£2:85) U (g1, £10). Then F(§)=10and V. ,(§)=7,
50 Cj“j C? by IV, and consequently C‘g o 02,

Proor oF VII. Construct §* from § by adding a new vertex not in § and
joining it by an edge to a vertex of V;(§). Then V. 4(§*)=6, V3(§*)=1, and
Vs2(§*)=2. Hence by V G* = O?, consequently L%‘ 0%

ReMARKS concerning Theorem 1. 1. IV and V are equivalent. For V has been
deduced from IV, and 1V clearly follows from V.
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2.If V{@)EQ then 1 is a consequence of V.

3. 1, ..., VII are best possible. In order to demonstrate this we define the graphs
oA, ', B,C and D as follows: V() ={x,x;, X3, Y1, ... ¥} (U=3), &(f)=
=1{(x1, x2) 0z, x3) (x5, x 1) (x5, }’j}} (i=1,2,3; j=1,..,u. F()=F()U
U{zioz)s () =) U{(y1, 20 (D0 24.)‘- WQ) ={fifa-- S5}, E@B=
={(fi. /[ Ufe. OU(fs.f5)— (1. 05) (i=1,...,5; j=1,...,5). R(E)="FP(B)+
+f7, E@=EB)+ (fo.[7) T @)=F(O) +fs, E@D=E@)+(fs.fp). V()=
=6, Vap(al)=0,and Vo () =3 but o D O V(') =9, Vo ()=} V(') + 1}
but o H O3 V(#) =06, Vy(B)=5and V,o(Z)=1, but # b 02 V(€)=7, V,(C)=5,
V4@ =1and ¥,(€)=1 but € 02 V(D)=8, Vy(@)=6, V,(D)=2 but DD O2.

of , #, € and @ show that the conditions of I cannot be relaxed. €, @ and
', respectively, show that the conditions of II, III and IV cannot be relaxed. ¢
and " show that the conditions of V cannot be relaxed. € and 9, respectively,
show that the conditions of VI and VII cannot be relaxed.

For finite graphs without multiple edges which contain at least one loop a much
weaker condition ensures the existence of two independent circuits.

THEOREM 2. If § is a finite graph containing at least one loop but no multiple
edges, and if V(§)=3 and V_4(§) = Vﬁz(@) then §> O2.

Proor. Let m denote a vertex of § ¢ which is incident with one or more loops.
H‘q — m contains a loop, then (-;I > O2. In what follows suppose that § —m contains
no loop. Clearly Vz,3{'\fj'~m) = Vm('éj) —1, and Vgl(g —m)= V;,((.?). Therefore

Vos§—m) +1=Vo (G =Vas(§) = V=i (§ —m). Also V(G —m)=2, It follows that
{ —m> D, for if 9 is a finite graph without circuits and with at least two vertices,
then V- (H)= V. 5(H) + 2 as may easily be verified. Hence § o O2.

REMARKS. 1. The conditions of Theorem 2 cannot be relaxed. The example of a
graph consisting of a vertex incident with four loops joined to a vertex of valency 1
shows that the condition V(Lj‘) =3 is essential. The example of a graph consisting
of a vertex incident with at least two loops joined to every vertex of a path shows
that the condition V. ,(§) = V=,(() is essential.

2. No result analogous to Theorems 1 and 2 can be obtained for graphs which
may contain multiple edges. This is shown by the example of a graph consisting of a
vertex incident with any number of loops joined to the vertices of a path by any
number of edges.

3. Concerning the existence of three or more independent
circuits in finite graphs without multiple edges

TueoreM 3. If § is a finite graph without loops or multiple edges and k is a
natural number =3, and if V. ,(§) = V22§ =k* + 2k — 4, then § = O,
N. B. Theorem 1. V' states that this is true for k=2 if V(§)=9.

r
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Proor oF THEOREM 3 by reductio ad absurdum. Assume that Theorem 3 is
untrue. Let % denote the least value of k for which the assertion of Theorem 3 is
false, and among the graphs § such that V., (§)— Vap,2(§)=#*+22—4 and
G O let §, be one with the least possible number of vertices and barely satisfy-
ing the conditions of Theorem 3 with k =z. This will be shown to lead to a contra-
diction by a method amounting to an induction process starting from the particular
case of the theorem of CORRADI and HAINAL with 2 +2x —4= V(L’j‘) =x2+42%—3
(note that »#2 4+ 2x —4=3x+2 if x=13).

(1) At least one of the end-vertices of every edge of @a has valency 2x or 2x — 1.

For, since @u barely satisfies the conditions of Theorem 3 with & = x, by deleting
any edge from (o either V.,,(,) is decreased or V., _»(§o) is increased.

(2) Vzz-1Go) =1

If V(Go)=#>+2x—2 then V=, 4(Go)=1 because §, barely satisfies the
conditions of Theorem 3. If %242z —4=V(§;)=#? +2%—3 then V,,- 1(Go) =1
can be deduced with the help of the theorem of CoRRADI and HAINAL:if ¥ 5,1 (§o)=0
then, since x? +2x —4=3x+2 because x» =3, @0 = %, which contradicts (::,‘0 I O

(3) Vo(@u) =0.
For if a is an isolated vertex of qo then ng,‘(t.f,;o —a)— Vﬁzz_z(qo—-a):-
=#?4+2x—4 and C‘J‘n —a ™D O which contradicts the minimal property of (.

@) V1(Go)=0.

For if b is a vertex of §, having valency 1 then Vo ,(§o —b) — Via,-2(Go —b) =
=x2+2»—4 and L:;p‘o —b 3 O, which contradicts the minimal property of (—pfcr-

(5) Go contains at least one triangle.

For suppose on the contrary that &;D contains no triangle. By (2) GJ'G contains
a vertex of valency =2x — 1, let e denote such a vertex and let v(e, L‘:i;u} =v; by (3)
and (4) 2=v=2x—1; let e,. .... ¢, denote the vertices of (E;Q to which e is joined.
No two of e, ..., ¢, are joined by an edge because C}“O contains no triangle by hypo-
thesis. Let §' =(§o —e) + (e, €,-1) +... +(e,, €;). Clearly Ve d§)=Ve2(Go) and
V-_—’zx—z(g’) = VE‘:—ZZ—Z(GJ‘O}'J 50 ngx(ﬁ”;'} = ngz—z{q’} =x2+2x—4, hence q =1
by the minimal property of (j, . It follows as in the proof of Theorem I. [, that §o2 O%
whereas L:j‘o + O~ This contradiction proves (5).

Let x, , x5, x; be the vertices of a triangle contained in §, and let §"=§ —
— X3 —Xj.

(6) §"» oL

Because @0 021 © b

Let s denote the set of those vertices of C‘;
vertices X, X3, X3.

Xy =

which are in § joined to all three
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(7) |sl=2x-2.
Because by (1) at least two of x;, x,, x have valency =2x in §.
It is casy to see that
(8) V= z;(@o) L=y 2:(—2(@") U(s NP, 3(@”)) U {xyx; 23}
and
9) Va2 —z(é:u} = “%"gz,—.s((‘i"J —(sN rﬁzx—a.(qﬂ))-
From (7), (8) and (9) and the conditions of Theorem 3 it follows that

(10) V. 2x—2(q~} == V;zx-4{€”)§
= VéZx((':faO) -V 2:—1{(%‘0}_ 2u—1=(x—1)*+2(x—1)—4.

It follows from (10) that » =3, because if ¥ =4 then by (10) and by the minimal
property of x, §” > ©*~" contrary to (6). If x =3 then V({,) =11 from the conditions
of Theorem 3 with k =3. The two alternatives V(§,)=11 and V(§o) =12 will be
considered in turn: If V{@0)= 11 then ¥=5((,) =0 from the conditions of Theorem 3
with k =3, hence in this case, by the theorem of HANAL and CorrADiI [1], G, 2 O3
contrary to hypothesis. If ¥(§o)=12 then V(§")=9, and by (10) V.,(§") -
—V22(§")=4, so in this case, by Theorem 1.V, Cﬁ"’: 0O 2, which contradicts (6).
The assumption that Theorem 3 is false therefore leads to a contradiction.

ReEMARKS. 1. Theorem 3 is probably not best possible. On the other hand if
Vol @) — Vf_h“_z(@) =2k —1 then it is possible that @ D OF whatever the values
of k(=3) and of V(§). For example let V(G)={xy, ..., Xax—1, V15 ---Vus Z1---2}
{H E%{k'{_ I)) and (rf?{{_?):{{x{, xj): (x,-, .Vh)! (.Virs 2_;,)} (I= 1) ERisk | 2k— l; J= I‘: ¥
2k—1;i=j:h=1, .., u). V}zk(§)=% V(G +1(2k—1).

2. It is worth noting, that in the proof of Theorem 3 only the particular case
of the theorem of CORRADI and HAJNAL in which k*+2k—4= V(Cj)gk2 +2k—3
was used. By a simpler method not using the theorem of CorrADI and HAINAL
at all the weaker result can be proved that corresponding to any integers k=2 and
¢=1 there exists a number n(k, ¢) such that if the graph Lg satisfies the conditions
Voa-1(§)=cand V(§)=n(k, c), then § > OF.

In the case of finite graphs without multiple edges which contain loops much
weaker conditions than those of Theorem 3 ensure the existence of k independent
circuits, as Theorem 4 shows, In any concrete case it is best to delete all vertices
incident with loops (together with all edges incident with at least one of them) and
apply Theorem 2 or Theorem 3 to the remaining graph however, because Theorem 4
takes into account all the most unfavourable situations.

THEOREM 4. Let @ be a finite graph without multiple edges and k a natural
number =3. If exactly k—1 vertices of § are incident with loops, and V(§) =k +1
and V_,., 2('&;} o Vék(n__f;‘) =k -2, then C;la > Ok If exactly | vertices of q are incident
with loops, where 1=k —2, and V(§)=I+9 and Vyy (§)— V:_-_zk_!_z(éj')é
=(k—N*+2k—1—4, then Cj’:: O,
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ProoF. Let L denote the set of those vertices of § which are indicent with loops.

Suppose first that [L| =k —1, V(§) =k + 1 and Vo o(§) — Vi(§) =k —2. Then
clearly Vaa(@ L= Va;u-z(q} k+1land Vg 1(5» L)=V.,(§). Hence V;s(q = S
—V=(§—L)= +1, consequently, since V. I(Ej —-L)=2, C‘;’ —L> . Therefore
go ok

Suppose secondly that [Li=/=k-2, V(=I+9 and V.o (§)—
= Vﬁ!k—l—z(@}é(k —2)24+2k—1—4. Clearly Vgu—zt(@ —L)= Vgu-:(@)—f and
Vas-21-20G—L)=Vag—1-2(§). Hence Vapp (§—L)—Vap-y- 2(@ —1)=
=(k—1)* +2(k—1)—4. It follows by Theorem 1.V (¥(§—L)=9) or Theorem 3
that (%’ — Lo Q-1 Therefore C‘; o Ok,

4. Concerning the existence of independent circuits in
finite planar graphs without multiple edges

TueoreM 5. Let § denote a finite planar graph without loops or multiple edges.
L If V(§)=6, V.,(§)=0 and V.y(§)=2, then §> O2.
IL If V()=8 and V=4(Q)=1V(§) +11, then §O O
L I V() =8 and V.u(§) — Vo Q=3 then §> 02
If Vol §) = Vo o(§) =5k —7 where k is an integer =3, then §= DX

ProoF oF [. Suppose first that V(L%') =6 and that CJ‘ barely satisfies the conditions
of I. Then clearly V;{(%‘) =1. Let V(§)={g:8,..-8} and suppose that v(g,, §) =3
and that g, is joined to g,, g5 and g, in §.

(1) (gs.26)€G.

(2) v(gs, §)=3 or v(gs, §)=3.

3) E(@(S:: g3, 3'4)) =l.

For if (1) or (2) or (3) were untrue then (g;, gj)EGj fori=2,3,4and j=1,5,6
and so (%‘ would not be planar.

The three alternatives E@{gz, g3, g4)}= 1, 2, 3 will now be considered in turn.

Assuming that E(G(g2,83,84))=1 it will be supposed that (g, g3) €§. Then
(gd-vgﬁ)ﬁq and (g4, gs)Et’%". In this case by (1) C';D[g,, g2, 831U [84, &5 86l

Assuming that E(§(g;,g3,84))=2 it will be supposed that (g;,g;)€§ and
(25 £4) €G. Theneitherv(g;, §) =4 orv(gy, §) =4, because if v(g,, §) =v(g4, §) =3
then v(gs, §)=4 or v{gﬁ,ﬁ,’}édt since V.4(§)=2; and if e. g. v(gs, §)=4 then
(83:85) (84-85)€G 50 (g3,86), (84,86)4(, therefore v(gg, §)=2 whereas
V2a(§)=0.If e. g. v(g4, §) =4 then G284, 82, &3] U [24, 85, &l-

Assume finally that E(§(g3, g3, 84)=3. At least one of g, g5, g4 is joined
to both of gs, g5 because v(gs, §) =3 and v(gg, §) =3; suppose that (g4, g5)€§
and (g4, 86)€G, then §O[gy,8:,8:1UI84,85,8,) I is thus true if V(§)=6.
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The proof of I will now be completed by reductio ad absurdum. Assume that [
is untrue. Then there exists a planar graph §, with the following properties: ¢,
barely satisfies the conditions of I and L?O:b 02, and all graphs which satisfy the
conditions of I and have fewer vertices than {%’.0 contain two independent circuits.
V (L%‘D) =7 because 1 is true for planar graphs with six vertices.

(4) At least one of the end-vertices of each edge of Gy has valency 3 or 4, and
at least one vertex of Cj' o has valency 3.

Because {, barely satisfies the conditions of I and ¥ (§,) =7.

Let d denote a vertex of L"}}o having valency 3 and let d,,d,, d; be the three
vertices of §, to which d is joined. The three alternatives E(Go(d,,d,,ds))=1,
E(§o(dy, dy, d3)) = 2, E(L%‘c.(d1 ,d,, dy))=3 will be considered separately.

E(Go(dy, dy, d3)) =1 leads to a contradiction exactly as in the proof of Theorem
1. 1.

E(Go(dy, dy,d3))=2 and (d,,d>), (d,,d5)€Go and v(d,, o) =5 leads to a
contradiction exactly as in the proof of Theorem 1. L. If v(d;, §o) =4 then a contra-
diction is arrived at as follows: If § —d —d, —d, — d3 has v connected components, then
EGo)=V(Go)—2—v+uv(d,, Go) +u(ds, §o) as before. On the other hand, summing
the valencies of all the vertices of §o, 2E (L',j’g) =u(d,, L%‘o} +v(ds, §o) +3 (V(t%'.{,) —2).
From the two inequalities it follows that V(o) =v(d,, §o) +0(d5, Go) +2—2v.
v(dy, §o)=v+2 and v(d;, Go)=v+2, since d, and d; are each joined to at most
one vertex of each connected component of C}"D —d—dy —d, —d; because 'ng. POL
Hence V() =6 which contradicts V(§o) =7.

The only remaining alternative is that E((&;ﬂ(m , dy, d3))=3. By (4) it may be
assumed that o(d;, §o)=4 and o(d,,§o)=4. Go—d—d,—d,—d, DO so
EGo—d—d,—d,—d3)= ¥(§o) —4 —v where v is the number of connected compo-
nents of §,—d—d, —d, —d;. Consequently E(§o)=V(§o)+v(ds, §o)+1—v. On
the other hand, summing the valencies of all the vertices of §o, 2E({o) =v(d5., {,‘?0]+
+4+3(V(Go)—2). From the two inequalities it follows that V({,) =v(ds, §o) +
+4 —2v. But d, is joined to at most one vertex of each connected component of
§o—d—d, —d, —d; because §, D 02, s0 v(d;, §o) =v+3. Hence V(§y)=7—v=6.
But ¥({,) =7. With this contradiction the proof of I is complete.

Proor oF I1.

(5) If % is a graph without loops or multiple edges and V(¥)=6, V_4(H)=5
and V(1) =1, then I is not planar.

For suppose on the contrary that 9 is planar. Let b denote the vertex of ¥
having valency 2 and let b, b, denote the two vertices of H to which b is joined.
In 3 —b every vertex other than b, and b, has valency 4. Consequently (b, , b,) ¢ I
since ¥ is planar. Therefore (3 —b)\(b,, b,) is a planar graph without loops or
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multiple edges containing five vertices each having valency 4. This contradiction
proves (5).

Now suppose first that V(t%‘) =8. Then V§4{Q‘) =6, Gg‘ does not contain a vertex
of valency 4 joined to two vertices of valency 1, because if it did then the graph
obtained from L? by deleting the two vertices of valency 1 together with the edges
incident with them would contradict (5). Therefore C‘j:‘; 2?2 by Theorem 1. IlI.

The proof of I1 will now be completed by reductio ad absurdum. Assume that
IL is untrue. Then there exists a planar graph §, with the following properties: (o
barely satisfies the conditions of Il and C;;’OZD ©2, and all planar graphs which
satisfy the conditions of II and have fewer vertices than Cjﬂ contain two indepe-
ndent circuits. It has just been proved that

6) V(G =9.
As in the proof of Theorem 1. IV

(7) At least one end-vertex of every edge contained in L%fg has valency 4, and
VasGo) = 1.
By summing the valencies of all the vertices of Li;';{] we have that

(8) If Vo(Go) =0 then EGo) =14 ¥(Go) +24, if Vo(Go) =0 and V,(§o)=1 then
E(Go)=13V(Go) +24, and if Vo(§o) =0 and V3(§o) =1 then E(Go) =1} V(§o)+34.

It will now be proved that ¥(§,) =0 for i=0, 2, 3.

9) VoG =0.

For suppose on the contrary that the vertex « of ¢, has valency 0. Then (o —a)
satisfies the conditions of 1I (by (6)) and thercfore L‘:;n —a> 2 by the minimal
property of (.

(10) ¥3(Go) =0.

For suppose on the contrary that the vertex ¢ of §, has valency 2 and is joined
to the vertices ¢, and c,. The two alternatives (c;, ¢,) 4§, and (¢, c;) €, will be
considered in turn and a contradiction will be derived in both cases. If (¢,, rz}&éj‘
then (Eg‘n -¢)lJ(ey, ¢;) satisfies the conditions of II (by (6)) and therefore contains
two independent circuits (because of the minimal property of {'53'0}, it follows as in
the proof of Theorem 1.III that (‘30: )2, whereas éj(,j: 2. Suppose next that
{fhcz)ﬂgo- By (7) vley, ‘-‘?o) = v(¢ez, 'L'-'Ea) =4 E(ﬂ—:ju‘"f'—'ﬁ —6,) = V((';';U)—“
because o —c—cy—c; P O. It follows that E(§o)=V(§o)+3. By (8) E(§o)=
E!}V(C}?D)—I—zi. From the two inequalities it follows that V(L’:ED)E 1, which con-
tradicts (6). Hence ¥,(§o) =0.

(11) Va{(go]:ﬂ'-
For suppose on the contrary that the vertex d of L%"D has valency 3 and is joined
to the vertices d,,d, and d;. The two alternatives E((§o(d,.d,.dy))=1 and
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E@o(dl ,dy,d;))=2 will be considered in turn and a contradiction derived in
both cases.

Assuming that E(Go(d,,d,,d;))=1, let it be supposed that (d,.ds)§§, and
(d3, d3)§§o. Then (§o —d) U(d,. d3) U(d., ds) satisfies the conditions of I (by (6))
and therefore contains two independent circuits (because of the minimal property
of §y), it follows as in the proof of Theorem 1. I that §o> O? whereas §o > O2.
There remains the alternative that E(§o(d; , d,, d5)) =2. By (7) v(d,, §o) =v(d,, §o) =
=v(ds, Go)=4. E(Go—d—d;—d,—d5)=V(Go)—5 because §o—d—d,—d,—
—d; D O. It follows that E(G) = V(Go)+5. By 8) E(Go) = 14(V(Go) +34. From
the two inequalities it follows that V(L?o) =7, which contradicts (6). Hence V;(Cj 0)y=0.

From the conditions of I it follows that Vy((gu) =6and V= 4(§o) — V=3(Go) =3.
By (9). (10) and (11) ¥(§o) =V1(Go) + ¥=4(§o) and by (7) each vertex of valency 1
is joined to a vertex of valency 4. If §, does not contain a vertex having valency 4
joined to at least two vertices having valency 1, then let CJ‘ ” denote the graph ob-
tained by deleting all vertices of valency 1 from §,. Clearly V(§") =6, V..(§")=3
and V=,(§")=0. Therefore by I §”"> O?, whereas L%‘Q.LD 2. This contradiction
proves II in the case considered.

If '('.f,‘o contains a vertex, say d, having valency 4 which is joined to two vertices
of valency 1, say 4, and d,, then let 4, and 4, denote the remaining to vertices of
Go joined to d. Let §" =((%‘0 —d)U(dy, dy)\ U(dy. dy) U(d,, d,). § satisfies the
conditions of 11 (by (6)) and therefore contains two independent circuits (because
of the minimal property of G,), it follows as in the proof of Theorem 1. I that
Gy 2 2, whereas Gy » O 2. This contradiction proves Il in the remaining case.

Proor oF III. For k=2 III follows from Il in the same way as Theorem 1. V
follows from Theorem 1. IV. For k=3 III will be proved by reductio ad absurdum.
Assume that I1I is untrue. Let » denote the least value of k for which the assertion
of III is false, and among the planar graphs to which the assertion of 11l with k=x
does not apply let (, be one with the least number of vertices and barely satisfying
the conditions of I11 with k=3,

(12) At least one of the end-vertices of every edge of Lgu has valency 2% or 2= — 1.

For GJ‘[, barely satisfies the conditions of 1II with k=3,

(13) Var o) =1.

Because »=3 and (), is planar.

(14) V=1(Go)=0.

Forif xis a vertex of valency =1 in {o then V. ,)(Go—X) = Vag-2(Go —x) =
=5x—7 and (§,—x3P O which contradicts the minimal property of Go-

(15) Go contains at least one triangle.

Replace %2> +2x—4 by 52 —7 in the proof of (5) in the proof of Theorem 3.
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Let x, X;, x; be the vertices of a triangle contained in §o and let §"=
=‘%1—xi —xZ"'x_g-

(16) §"p O*-L.

Because §o D O™

Let s denote the set of those vertices of & which are in §, joined to all three
vertices x;, x5, X3.

(17) |s|=2.

Because § is planar.

From (17) and the conditions of III it follows as in the proof of Theorem 3
that

(18) Va2 2(§) = Var-u(§) = szx{\%‘o) = Vﬁzx—z{‘-%}o) —5=5(x—1)-17.

It follows from (18) that »x =3, because if x =4 then, by (18) and the minimal
property of %, §”= O*~" contrary to (16). If =3 then Veo(Go) — V=a(Go) =8.
In this case obviously V(o) =11 because o is planar. Hence V(§") =8. Therefore,
from the first part of III, éj "> 2, wich contradicts (16). The assumption that III
is false therefore leads to a contradiction. Theorem 5 is now proved.

REMARKS. 1. The condition of 1 cannot be relaxed, V(§)=6, V_.,(§)=0 and
V- 4@) =1 does not necessarily imply that the planar graph (;]'-' contains two indepen-
dent circuits. This is illustrated by the planar graphs consisting of a circuit together
with a vertex not belonging to the circuit joined to every vertex of the circuit.

2. If Lgf is planar and V.4 (§)=1V(§)+ 1} then ¥(§) =7, as the reader can
easily verify. If V_,(§)=1V(§)+14 and ¥(§)=7 then the planar graph § does
not necessarily contain two independent circuits. For example if “P(X) = {x,, ..., x5}
and J(X}:{(xl L] xz)! (xl -} xs)s (xl L] x4).‘| (—xl ] xSJ’ (xz L] ).‘3), '[xz ] xd-)-: {xz ] .1'5), (X3_. xd.)v
(x3, x5), (x4, %), (x5, x7)} then X is planar and contains no loops or multiple
edges, and V(X)=35, Vi (X)=2,but Xp O3

If § is planar and V(§) =8 and V_4(§) =31 ¥(§) + 1, then § does not necessarily
contain two independent circuits, as is shown by any graph Y obtained from X by
subdividing an arbitrary edge through inserting a new vertex.

3. X shows that if § is planar, V=4(§)—V=,(§)=3 and V(§) =7 then § does
not necessarily contain two independent circuits. X —x, shows that if :.? is planar,
V=s(§)—V=5(§)=3 and V(§)=6 then § does not necessarily contain two inde-
pendent circuits. ¥ shows that if § is planar, V=4(§)—V=,(§)=2 and V(G =8
then \:'3' does not necessarily contain two independent circuits. III is surely not best
possible for k=3,

4. The remarks after Theorem 2 apply equally to planar graphs, because the
counterexamples described there are planar,
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5. Concerning the existence of two circuits without a common
edge in finite planar graphs

TueoreM 6. [f § is a finite planar graph which may contain multiple edges and
loops, and if E(§)=V(§) +3. then §220.

NOTE. lf@ is finite and contains a loop and if £(§)= V(L*;)-}—Z, a loop being
counted as two edges, then § 220, whether § is planar or not. For if / is a loop
then E(§ —/)=V(§), hence §—12 O, therefore §=220. If E(G)=V(§)+1 then
C‘; need not contain two circuits without a common edge, a simple example is a
path with a loop incident with one of its edges.

Proor oF THEOREM 6 by reductio ad absurdum. Assume that Theorem 6 is
untrue. Then there exists a finite planar graph G, such that E(§,)= V(o) +3,
and §, ©20, and Theorem 6 is true for all graphs with fewer vertices than §,.
Clearly V(§o)=3.

(1) Cj o contains no circuit having fewer than four edges,

For if C is a circuit with fewer than four edges contained in f;'?o then
E(@o—-E(C))g V(Go), s0 §o—&(C)2 O and consequently §o=220 contrary to
hypothesis.

(2 Vs 2.((?0) =0.

Vo(Go) =0 because if a is an isolated vertex of Go then E(§o—a) =
= V(Go—a)+4,s0 §o—a=220 from the minimal property of §,, whereas §, =2 0.
VI(L%'U): Vz{(.?n):(} can be proved by the same argument as is used in the proof
of Theorem 3 in [2].

It follows from (2) that ZE(L?‘)) =3¥(§o). Consequently, since £(§o) =¥ (Go) + 3,
.V(qo)*éﬁ. On the other hand it follows easily from (1) and (2) that V(Cj’n)%&
Hence ¥((,)=6. From this and (1) and (2) it follows easily that §o contains a
circuit having exactly four edges and vertices.

Let the vertices of @3'0 be denoted by g4, g3, ..., g6 and suppose that (f, contains
a circuit whose vertices are g, g,., g5, g4 in this order. By (1) g5 and g4 are each
joined to at most two of g,, ..., g,, therefore by (2) (g5, g6) €Go and by (1) it may
be supposed without loss of generality that (g, gs), (&3, &), (821 &5): (84, 85) €Go-

So §, contains the circuit [gy, 82, 83, 84, 85, 8] and the edges (g,, £4), (22, &5);
(g1.gs)- Therefore L%‘c. is not planar. This contradiction proves Theorem 6.

Remarks. 1. If V(§)=3 and E(§=V(§)+2 then =220, as the reader
may very easily verify.

2. If ¥(§)=4 and E(L%‘) = V(L?}-I-Z then the planar graph § need not contain
two circuits without a common edge. This is illustrated by the graph containing
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four vertices, each pair of distinct vertices joined by one edge (this graph is
3-fold connected) and by all graphs obtained from this graph through subdividing
edges by the insertion of new vertices (these graphs are all 2-fold connected) — in
other words by the complete 4-graph and the topological complete 4-graphs.
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