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Let 8 be a family of sets. 8 is said by E. W. Miller [3] to possess 
property B if there exists a set B such that 

F n B =/= 0 for every FE 8, 
FQB for every F E 3 . 

Miller used the letter B in honour of Felix Bernstein, who in the early 
years of this century proved that the perfect sets have property B and 
using this “constructed’ a totally imperfect set of power continuum 
(that is, a set of power continuum which does not contain a perfect set). 
I put constructed in quotation mark, since he used the axiom of choice 
(in fact, without the axiom of choice the existence of a totally imperfect 
set has never been proved). 

Several other well known theorems can be formulated in terms of 
property B. For example, a well known theorem of van der Waerden 
states that if we split the integers into two classes, then at least one 
class contains for every k an arithmetic progression of k terms. This 
theorem can be formulated as follows: The family of all arithmetic 
progressions of k terms does not have property B. 

Hajnal and I [Z] recently published a paper on the property B and 
its generalizations. One of the unsolved problems we state asks: What 
is the smallest integer m(p) for which there exists a family 3 of finite 
sets A,, . . . ,A*), each having (p elements, which does not possess prop- 
erty B? 

For p= 1 there is no problem since m(p) = 1. Trivially m(2) = 3 and 
by trial and error we showed m(3) = 7. m(3) 4 7 is shown by the set of 
Sthmr triplets (h&3), (1,4,5), (1,6,7), (2,4,7), C&5,6), (3,4,6), (3,5,7). 
It is easy to see that every set which has a non-empty intersection with 
each of these sets must contain at least one of them. By a somewhat 
longer trial and error method we showed m(3) > 6. Thus m(3) = 7. The 
value of m(p) is not known for p > 3 and it does not seem easy to deter- 

mine m(p) even for p = 4. We further observed that m(p) 5 
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defining the family 3 as the set of all subsets taken p at a time of a set 
of 2~- 1 elements. 

We shall now show tha,t for all p 2 2 : 

(1) m(p) > 2P-J) 

and for every e> 0 if ~>>&a): 

(2) m(p) > (1-&)2plog2 * 

A=k will denote the number of elements of A,, and A,\A, will denote 
the set of those elements of Ai which are not contained in Aj. Instead 
of (1) and (2) we shall prove the following 

THEOREM 1. Let (Ai}, 11 i 5 Ic be a family 8 of finite sets, zi = xi h 2. If 

(3) 

(4) &(1-f) 2; 
k=l 

holds, then 3 has property B. 

(1) clearly follows from (3) and (2) from (4). In fact (4) clearly implies 
(3), and we include (3) only because its proof is very simple. 

I do not know the order of magnitude of m(p) and cannot even prove 
that 

(5) lim m(j9)rIP 
P--fc= 

exists. Quite possibly the limit in (5) is 2. 

Put UtclAi=T, T==n. If 8 is a family of sets, g will denote the num- 
ber of sets in the family. Denote by ST the family of sets 8 for which 

- 
We have to show that if (3) holds then s-, > 0 (since this implies that 

the family of sets Ai, 16 i 2 k satisfying (3) has property B). Denote 
by gi the family of sets X satisfying 

(7) ScT,AicS or A,nX=O. 

Clearly an S c T is in the family ST if it is in none of the families pi, 
15 i 5 7G (that is, it satisfies (6) if it does not satisfy (7) for any i, 1 5 i 5 k). 
By a simple sieve process we thus have 
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The proof of (8) is indeed easy, 2” is the number of a11 subsets of T, 

and to obtain & we have to subtract away all the sets of gi, 15 i s k. 
But the sets which contain A,uA, have been subtracted away twice 
and there is at least one such set (namely T), which explains the sum- 
mand + 1 on the right hand side of (8). We evidently have 

(9) Lgi = g-i+1 , 

since clearly there are 2-4 sets SC T satisfying Ai cS and 2%-&i sets 

satisfying Ain S = 0. From (8) and (9) we have sr 1 1 if (3) is satisfied. 
This proves the first statement of Theorem 1. 

To prove the second statement we need the following 

LEMMA. Let T c T,, FI = m 2 n. The nz6mber of subsets S c T, which do 
not contain any of the sets A,, 1 _I i 5 k is greater than or equal to 

(10) 2m&(4J. 
i=l 

with equality if and only if the sets Ai are pairwise c&joint. 

We use the set T, 1 T only to make our induction proof easier. Denote 

bY fkL . . I, dj ; T,) the number of subsets S of 27, not containing any 
of the sets Ai, 1 si $j, and by f(A,, . . . ,A,; Af+l, T,) the number of 
sets S c T, which contain Aj+r, but do not contain any of the sets Ai, 
l_Ii=<j. 

If the sets A, are pairwise disjoint, we evidently have 

(11) f&> . . ..A.;T,) = 2nz-&2at-l) = 2-$I-$), 
i=l i=l 

since we obtain the sets S c T,, Ai + S, 15 i 5 k by taking the unions of 
all the proper subsets of the sets L43 with any subset of T,\T. Thus 
there is equality in (10). 

Assume next that the sets Ai are not pairwise disjoint, say A, n A, + 0. 
If 7c= 2, a simple argument shows that 

where n= A,uA, < a,+ x2. Thus for h = 2 (10) holds with the sign of 
inequality. Assume next that if we have any k- 1 (k 2 3) sets which are 
not pairwise disjoint, then (10) holds with the sign of inequality. We 
shall show that the same is true for X: sets A,, . . . ?-4k, A,n A, + 8. 

By a simple a’rgument we have 

(12) f& . . . : A,; T,) = f(A,, . . . : -4k-1 ; T,) -&A,, . . . , Ak-l ; A,, T,) . 
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By our induction hypothesis we hat-e 

(13) f (A,, . . . ,AkMl; T,) > P 

Further clearly 

(14) f(Ab . . . ,Ak-l; A,,T,) = f(A,\A,, . . . , AB-l\AL; T,\A,) . 

To every subset S’ of T,\A, which does not contain any of the sets 
Ai\Ak, 15 i 2 k- 1, we make correspond 2”k subsets S of T, which do 
not contain any of the sets Ai, 15 i 4 k - 1. It suffices to consider the 
sets 

(15) S’ u S”, S” t A,. 

Clearly if two subsets S,’ and S,’ of T,\AI, are distinct, all the sets 
(15) are distinct. Thus we have 

From (12), (13), (14), and (16) we obtain 

f (Al, . . . , A,; T,) 1 f(A,, . . . jAk-1; Td 
( > 

I- f > 2-h l-f , 
i=l ( > 

which proves the Lemma. 
The Lemma in fact follows immediately from the following special 

case of a theorem of Chung [l] : Let Ei, 15 i 5 k be k events of probab- 
ility pi, E’i denoting the event (of probability 1 -pi) that E, does not 
happen. Assume that for every i, 2 $ i 5 k : 

(17) P(E, u . . . u E,-, I EJ 2 P(E, u . . . u E,-J , 

where P(E 1 P) denotes the conditional probability of E happening if 
we know that F has happened. (17) implies 

(18) P(P, n . . . n&J 2 & (L+J, 
i=l 

with equality only if there is equality in (17) for every i, 2 5 i 5 k. We 
obtain our Lemma by defining the event E, as the event that SC T, 
contains A,. 

To complete the proof of Theorem 1 we have to show that if Ai, 

15 i g k satisfies (4), then g* > 0 (see the proof of (3)). Clearly 
2n-f (A,, . . . , A,; T) equals the number of subsets S of T for which 
Ai c S holds for some i, 1 $ i 5 k, and it also equals the number of subsets 
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S c T for which Ai c T\S for some i, 15 i 6 Ic. Denote by L the number 
of subsets 6’~ T for which Ai, CX and Ai, c T\S for some i, and i,. 

A simple argument shows that 

(19) & = P-2(29(A1,. . .,A,; T)) -t L. 

If the sets A, are not pairwise disjoint, then (a), ( 19) and our Lemma 
implies gr > 0. If the sets Ai are pairwise disjoint (in fact if A,nA,= 0), 
then L > 0 since A,c A,, A,c T - A,. Thus in any case (4) implies 
gr > 0 and hence Theorem 1 is proved. 

By slightly more complicated arguments we could prove the following 

THEOREM 2. Let A,,A,, . . . be a finite or Cnfinite sequence of finite sets 
scLtisfyi?&g 

and Al’, AZ’, . . . a finite or infinite sequence of infinite sets. Then the 
fudy {Ai) u (Ai} has property B. 

Now one can ask the following problem which I cannot answer: Let 
{Ai) be a finite or infinite family of finite sets which does not have the 
property B and for which zi 2 p 2 2 for all i. What is the upper bound 
C@) of n,( 1 - 2-q) and the lower bound CD of & 2-a$‘ ? Very likely 
C(a = 8 and C, = 2. Probably 

lim C&J = 0, lim C, = 00 . 
P+‘~ P-+W 

If f@L . . .,A,; T)>2?+l, our proof immediately shows that the 
family {Ai}, 16i~ k has property B, but if f(A,, . . .,A,; T)=2+l, the 
family (Ai>, 15 i 5 3c does not have to have property B, for instance if 
it consists of the subsets taken p at a time of a set of 2p - 1 elements. 

A family of sets 3 is said to have property B(s) if there exists a set - 
B such that FnB=j=0 and FnB<s for every F of 3. 

Hajnal and I asked [2] what is the smallest integer m(p,s) for which 
there exists a family 8 of sets A,, 15 i Sm(p,s) not having property 

B(s) and satisfying & = p, 15 i 6 m(p, s). Clearly m(p, p) = m(p), and we 

remarked that m(p, s) s (p+;+l) _ 

Using the methods of this note we can show that positive absolute 
constants ci and ca exist so that 

(1+c,)8 < m(p,s) < (1+@. 
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