SOME EXTREMAL PROBLEMS ON INFINITE GRAPHS

by
J. CZIPSZER, P. ERDOS and A. HAJNAL

1. A well known theorem of TurAN ([1]) states that every graph G+t
of n vertices and f(k, n) + 1 edges where

s m= o= =)

?], n=(k—1)tdtr 0<r<hk—1

contains a complete k-gon and that this theorem is best possible since there
are graphs G, not containing complete k-gons, and in fact the structure
of these gra,pﬂs is uniquely determined.

Some problems in measure and set theory led us to consider the follow-
ing problems. Let the vertices of the infinite graph (=) be the integers
1,2,...,n, ....(In what follows G(=) will always denote such agraph.) Denote
by G® the subgraph of G(=) spanned by the vertices 1,2, ...,7n and by
g(n) the number of edges of G“. At first thought it seemed possible
that if g(n) is “large” for all » > n, then this will imply that G(=)
contains a complete k-gon even though g(n) does not have to be as large as
f(k, n). But it is easy to see that no such theorem can hold. To see this let the
edges of G(=) be (i,j): ¢ odd, j even. Clearly g(n) = f(3, n) for every n and
nevertheless G(=) does not contain a triangle. Nevertheless it will be possible
to obtain using our function g(n) some results which do not seem uninteresting
to us. First some definitions: By an [ ;-path (increasing path of length %) of
G'=) (or of a finite graph with vertices 1, 2, ..., n) we shall mean a path
Ty dy on gty (B <Tfy < ... <1y <ipqq)- A path of length % will denote an
ordinary path of k edges. Clearly if G{=) contains a complete graph of k+-1
vertices it also contains an I ,-path, but the converse is not true.

By an I.-path of G(*) we shall mean an infinite path %4, ... i, ...
where 4, <% < ... <8 < ii o

ErD6s and Garrat [1]found nearly best possible estimates for the smallest
integer A(n) for which every G{(,); will contain a path of length %, but these
results will not concern us here. It is easy to see that there is a graph with
vertices 1, 2, ..., n and with f(£ 4+ 1, n) edges which does not contain an 7 -
path. To see this it suffices to consider TurAN’s well known graph G{,,
and enumerate its vertices in an obvious way. Nevertheless the situation chan-
ges completely if we assume a suitable lower bound for g(n) which holds for
all sufficiently large %. In fact we shall prove
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Theorem 1. Let G(=) be a graph and assume that for all n > n, and an
e>0
(L1) MM>f L 1 o]
' 4 4k ]
where k = 2 or k = 3.
Then G) contains infinitely many I-paths.
The theorem holds perhaps for £ > 3 also, but at present we can not
decide this question.

Remarks. Since f(k - 1,-:rz)=l 1—-—l n?2 - O(1) for n-—>co our
2 k

theorem implies that if £ =2 or 3,g(n) > (%4— s] flk+1,n) for all n <n,

then G(=) must already contain infinitely many I ,-paths.

It is easy to see that our theorem is best possible.

To see this define G(=) as follows: Let m, and m, (m, < m,) be two vertices
of G=). m; and m, are connected if and only if 1 < 4, < i, < k where m; =i,
(mod k) and m, = i, (mod k). It is easy to see that for our G(=)

g = (1= |+ 0

and it clearly does not contain an I ,-path. In fact we shall prove the following
sharper
Theorem II. Let G- be « graph for which

;nz

g(n)>nh-{—(i+e it n>n,.

8 32
Then Q=) contains infinitely many IL,-paths. The result is best possible since
there exists a G=) for which
n2 1 n? [ n?
e + 0
gr) 8  32log*n |_10g‘2 nJ
and which does not contain any I,-path.
By the same method as used in the proof of Theorem IT we can prove the
following theorem: Assume that for n > n,

nl [ 1 n2
€

log®> n

g(n) > Y o i

32 1'log? n

Then G(=) contains infinitely many pairs of I,-paths whose first and last
endpoints coincide, i.e. it contains infinitely many quadruplets 4, <4, <¢,,
i, <1y <1y (i, 9ty and the edges (i}, i), (i, i3), (42, %y), (45, %,). We do not

discuss the proof. By induction we can easily prove the following Turdnian
|

2 o
theorem (see [17): If G'is a graph with vertices 1,2, . . .,nand [—2—] + I:?a
edges then G contains two I,-paths whose first and last endpoints coincide.
The estimation for the number of edges is best possible.
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Theorem III. Let G(=) be such that

(1.2) g{n)ginﬂ—(}n.

Then G(=) contains an infinite path. This result is best possible in the sense that
C can not be replaced by A(n) where A(n) — oo.

Tt seemed to us Likely that g(n) > % + ¢|n® will also imply the exist-

ence of an /.-path. But this is not the case. In fact we have
Theorem IV. There exists a G(=) with

lim inf g(_n“) = L

n? 4
which does not contain an I_-path. But there exists a constant o > 0 such that
every Q=) with
gln) _ 1

lim inf 2~ >_— — @«

n? 2
contains an I.-path.
VERA T. S6s asked the question: What condition on g(n) will imply that
G(=) should contain an infinite complete subgraph? We prove

2
Theorem V. If g(n) > % — On for infinitely many n then G(=) contains

an infinite complete subgraph. But if we only assume that

— f(n) n

]

n
(1.3) g(n) > -
for all n where f(n) tends to infinity as slowly as we please then G(=) does not have
to contain an infinite complete graph.

At present we can not answer the following question: Let G be any in-
finite graph every vertex of which isincident only to a finite number of edges
what has to be assumed about g(n) to make sure that G(=) should contain
a subgraph isomorphic to &' ? In fact we get two problems here depending whe-
ther we require the vertices of G to be ordered or not. Our example used in the
proof of the negative part of Theorem V (cf. § 5.) shows that we have to assume
that every vertex of & has finite valency.

Without proof we state a few results connected with Theorem V. Assume

that g(n) > [Z] — (1 — a)n for every n > n, and some ¢ > 0, then G(=)
contains an infinite complete graph whose vertices form a sequence of positive
— n 4+ o(n) it is easy to see that

—Cn

lower density. If we only assume g(n) > ”

raf

this does not have to remain true. If we only assume that g(n) > t

]

for infinitely many » and some C then G(=) contains an infinite complete
graph whose vertices form a sequence of positive upper density. In fact the
following stronger result holds: To every & > 0 there exists a & so that G(~)
contains k complete graphs the union of the set of their vertices forms a sequ-
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—Cn

for every n and some C then to every & > 0 there exists a & so that G(=) contains
I complete graphs, the union of the set of their vertices forms a sequence of
lower density > 1 — e. We leave the proof of these statements to the reader.

2. Proof of Theorem I for & = 2. We shall show that if G(=) contains
only finitely many I,-paths then

(2.1) lim inf 2 £ &
n? 8

ence of upper density > 1 — &. Finally if we assume that g(n) > {:

which contradicts (1.1) for 2 = 2. Omitting a finite number of edges we can
assume that G{=) does not contain any I,-path. Then if a vertex u is the upper
endpoint of an edge it can not be the lower endpoint of another edge. Denote
by #; < u, < ... the vertices which are not lower endpoints of any edge.
Clearly the u, sequence is infinite and two u, are never connected. Hence

gin) < 3 (up— k).
up=n

Now we establish a lemma which belongs to the theory of series and which
clearly implies (2.1).

Lemma. If u,, u,, ... 18 ¢ sequence with positive terms then
n2
u1+...+un—? i
(2.2) lim inf =,
u 8

Put lim sup u?" =c¢. If ¢ = 0, (2.2) obviously holds. If 0 <¢ < oo we

choose a sequence u,, for which
Up,

Im -~ =c¢.
ns
Then
Lt g 2
w— =< ek — 25 4 o(nd) = (c— 1) 2= 4 o(nd),
2 2
and
Mg '??/E
.u_k_ e
(2.3) Z 2 _¢—1 1
a2 +o(l) = —+o(1),
uy, 2¢2 8

which proves (2.2).
Finally if ¢ = oo, we choosc a scquence u,, such that

W U u
K<™ (1<sk=<n) and o0,
k ng ng

Putting :2—"‘ = ¢ (2.8) holds with c, instead of ¢ and consequently (2.2) holds

5

also.
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Remark. It is clear that in (2.2) there is strict inequality unless

lim sup —* — 2. This statement can be inverted in the following sense:
1 R g

If uy, u,, ... is an increasing sequence of positive numbers and
n2
U+ .. u,— o
(2.4) lim inf 3 =—
Up, 8

then e T 2.
n

In the proof of (2.4) we can suppose lim sup %’— = 2 so that
u, <20+ o(n).
Put lim inf % = o and suppose « < 2. We choose two numbers 3 and & such
that

e B)\?
a<f<2—e<?2 and ——<l1——
2 2
and two sequences of integers m,, m,, ... and %, n,, ... such that
°
n1<n2< ELARE 'm'v<nv’ '_@éﬁ’
m,

o

U

n<c2—efor m<n<m, and T2>2_¢.
n 7,
Hence for any 1 < [ < m, we have

Hy 1 My %
lZukg 12(2k+o(k})+ Hz:m,mmzﬂ (2—8k+0()<

ny — my 2
=B+ollt) + (m,—Om,f+ (2 — &) =—— +o(un,).

Putting [ = [mz"ﬁ] we obtain from here

Hy

Dlu= m%(ﬁ-%] + (2—¢) L‘E_gﬁ+ o(ud,) =

| =— ([ ~ 2}2— %sz +[1 - %]ﬂz +ofuh,) <

n? (2 —¢g)? &2 2
<4 n?— —n? L olu,) <
= 2 . + ofun,) <

n  ud,
gf+£——ﬁﬁq@)

which contradicts (2.4).

14 4 Matematikai Kutaté Intézet Kozleményei VIT. AJS.
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3. Proof of Theorem I for & = 3. We suppose that G=) does not con-
tain infinitely many /,-paths. We shall then show that

(3.1) lim :'lnfg—(ﬂ-1 = *
n? 6

which contradicts (1.1) for £ = 3. Moreover we can suppose that (=) does
not contain any /,-path since the omission of a finite number of edges of G¢(~)
does not alter the validity of (3.1). We denote by & the set of natural numbers
and by C the set of those numbers which are not lower endpoints of any edge.
Analogously let B be the set of natural numbers which belong to N — € and
which are not connected with any greater number in N — (. Putting 4 =
=N — (B U C), it is clear that if two numbers m, n (m < n) are connected
then meA,ne B U Cormé€B,ncC. It is also clear that C is infinite since
otherwise G=) would contain an 7. -path.

Let w;, uy, ... be an enumeration of the elements of B |J C in increasing
order. Let », <, < ... <w, < ... be those indices for which u, € C. Since
C is infinite, the » and » series are also infinite. For every u«, the number of
elements of A less than u, is u; — k and for every u, the number of elements
of B less than w,, is v, — I, consequently

s+ 1

s St (1]

t 41
]+v1+.-. -H;;—[ + ]

2

where
U 2B < Uy, U8 < Vg

For every natural number £ we denote by w, the number of v, less than k.
By an elementary computation we get

E}l—f—...+¢r=,S’f-—-(wl—['—...+'ws).
Hence

2 s+ 1) (t+1
(3.2) g(n)gZ(uk—wk)-u( 3 ]-[ 3 ]-{—st.
Sinee wuy, = k> w;, we have w; — w; > 0.
We can select a sequence s, s,, ... (s, > o) so that

(33) S (=0 <% (s, — ) + 003

w — w,

If lim sup u’—;i = oo then we choose the s,-8 in such a way that il <

u-s

2%~ % should hold for 1 =< k < s, and for this sequence (3.3) is clearly

S,

=

Y

satisfied. If lim sup = — " — 5 < co (3.3) will hold for any sequence s,
s

L Us, — W
for which % ¢

S,

v
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From (3.2) and (3.3) we have for s = s, and n = u,
Y i £ sy,

u s
9( 3) é'_(us_ws)'_ : i
u2 2 202 2ui ul
Considering that w, = i — 1 we deduce from here
1 1 8% ¢
Mé_il_i —f——[l——-.-o(l)g
ul 2 u, U 2 ut s 8
1 s 1 s? 3 2 1
S ot g a = -2 o s 2 o)
2 ug U 8 u 8 lug 6

for s = s,. This proves (3.1).
4. Proof of Theorem II. First we show that there exists a G(=) with

a

E

L +oq)

.n_'! i
(1) 9 8 l32 log2n
which does not contain any I,-path. To see this put
w=1 u=2 wu=2%k [ k (k=3,4,...)
log k

and consider the graph G¢=) in which m and » (m < n) are connected if and only
if n is an u, and m is not an u,. Clearly G=) has no /,-path. A simple comput-

ation shows that if u, < n < u,, then

! 2 ~ k
g(n) Z i — B Z TR
_ 1’ p2 2 v‘:‘ B [ P2 ] _
2 2logy  4logy | log?»
w1 vy o omr 1 oa? n2
' 0 =—=4— +o0
28 32 log2n log? -n)

= i —l_
§ 32 log?u,

which proves (4.1).
Theorem II is clearly implied by the following lemma which is essentially
a refinement of the Lemma in § 2 and which may deserve interest for its own.
is « sequence with terms > 1 for n > n, then for any

Lemma. If u,, u,, .
&> 0 the inequality
ﬂ‘-’ ui I

zr,+u-2+‘.‘+u-n—') i

holds for infinitely many n.

14%*
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To prove this we shall distinguish several cases.
Case A. For infinitely many »n u, > 2n.

Case A. 1. lim supleg—n (u,—2n)=0.
n

Put U, =2n-+ 4,

(n=2,3 }
logzn
then
A, =< o(logn).
If lim sup A, = oo for infinitely many = the relation
A, =4, (m=1,2,...,0)
holds and for these n

Zuk——s ""’"+A 2———4—0

log? k&

n* n? ( n? u2
= — -} fln = — 0 é_ — 0
2 2log*n log® n 8

If lim sup A, = ¢ < == then for a suitable subsequence of the %, we have

uz

]og Uy,

and for these u,

Euk—%?ég-k(cl;o )2—+0

—. .n.a |

; u?
e + O‘ =
2 2log®n  llog®n

=-—+O
8

ne

B e )
gﬁ+o[ n J

logn| 8 log? u,

l ;
Case A. 2. 0 < lim sup Ogn(un—Qn)=c<: 0o .
n

Put
7

Uy, =2n+8B, ————— (n > €).
log n loglog n
We can choose a subsequence B, so that B, < B, if m < n, and
i =c¢-+o(l).
log log n,

We have by a simple computation for n = n,

- B, 0 .
2 " 2log n log log n ey log2 n log log n * logzn ]
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and ’
u ( 1 u? n2 n?
—+|——+e =—+ B
8 32 ] log?u, 2 "2log nloglogn A
Hs p [l+4a Ly, Akl
8 log?n{loglog n)? 8 log? n log2n

We have to show that
B, n? < 7 5 o1 n?
4logznloglogn ~ 8log®n(log logn)?

ie.
B B} 1
B Fosiieidlt)
4loglogn  8(loglogn)* 8

for sufficiently large n = =, but this amounts to
c _ ¢ 1
o WS Rl
4 8 Ch 8
which is true.

Case 4. 3. lim suph%(un—2n)=oo.

Put

log2n :

449

For a suitable subsequence C,, we have 0, <C,, if m<n, and C,, — o

Hence

2 n2 _ n2 ek
_H g o, N "1 ) =
Su-Tstr0 3k om

a

2 2 2 2
4 n +0, n J O[ n )_S._%
2logn 4log®n 8

n?
=—+C
2 i log2n

if » = n, and » is sufficiently large.

Case B. u, < 2n for n = n,. If lim sup @;—" = 0 then the statement of the

lemma is evidently true. If 0 < lim sup% < 2 the lemma directly follows

from (2.3). So we can suppose lim sup%: 2. Putting w, =2n — Dpn

we have lim inf D, = 0 and for a suitable », and infinitely many #» D, < D,,

if n, £ m < n. For these n

Ui

< n? _ m? ud
Zuk"gé‘g(l—-pn)'i‘ O(“)é’é——i—ﬂ[

log?u,

This concludes the proof of the lemma.
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5. Proof of Theorem V. First we prove the second statement of the
theorem. Let k(n) tend to infinity sufficiently fast and connect # with all the
m for which either n <m < h(n) or m <an < h(n). Clearly our G(=) does
not contain an infinite complete subgraph since in fact every vertex has
finite valency and if A(n) tends to infinity sufficiently fast (1.3) is clearly
satisfied.

Now we prove the positive part of Theorem V.

If G¢=) does not contain an infinite complete graph we can construct
by induction a sequence 1 =i, <<4; <%, < ... so that if i, < y then y is
not connected with at least one vertex lying in [7,_;, ,). Now if £ is fixed and
n = iy then for every i; < y < n there are at least k vertices to the left of y

which are not connected with y. Hence g(n) <[:’]— (n—1)k g[;’] _% n

if » = 24, If & > 2C, this is a contradiction which proves the theorem.

6. Proof of Theorem ITI. We can assume that (=) does not contain any
infinite complete subgraph. The proof will be based on the following lemma.

Lemma. Let us say that an infinite graph G whose vertices are natural
numbers, has property 55 if

a) G has no infinite complele subgraph,

b) Denoting by v(n) the number of vertices < n and by g(n) the number
of edges connecting vertices < n the inequality

(6.1) gln) = é o2(n) — Co(n)

holds for some C and for every n. If G has property S G has an infinite component
who has also property .

First we deduce the theorem from the lemma. Applying the lemma to
G(=) we get an infinite component @ of G(=), with property 5. Omitting
an arbitrary vertex ¢, of G, we get a graph G, which clearly also verifies .
Hence &) has also an infinite component &, with property &7 and because
of the connectedness of G, G} contains a vertex 4, which is connected with ¢,.
Putting G, = G — {i,} @, has also property .50. Repeating this construction
ad infinitum we get a sequence 7, ,, ... of distinet vertices which form an
infinite path.

In the proof of the Lemma we can assume that G is a G(=)-graph that
is »(n) = n and g(n) has the usual meaning. Let us denote by Gy, G,, ... the
components of ¢. vi(n) and gy(n) denote the number of vertices < n of G,
respectively the number of edges of G, which connect vertices < n.

First we prove that

(6.2) There exists a subscript k, such that the function v (n) majorizes
the functions v(n) for every n > n, and for every k.

The negation of (6.2) would clearly imply the existence of an infinite
sequence n; < 7, < ... satisfying the following condition.

For every » there exist numbers £k, & for which &} < &k} and for every
k vy(n,) < ve(n,) = vig(n,).

Putting

(6.3) Yo = tgg(n,) = vig(n,)
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it follows

n
6.4 Aoy
(6.4) R
and
1

1
= Qu — 2
g(nv) = gku(ﬂ‘v) = 5 Vv o 5

D' viln,) <
ke

1
_5_ gk;v(ﬂ'u) + E (ﬂ'p - yv) yv‘l

Combining this with (6.1) we obtain

1 n, (7,
6.5 n)=z —y2 4+ =22 —y,— 20]|.
(6.5) gk,(v)_2y+2[2 y }
Considering that g(n,) < %yﬁ, . —
(6.6) y, = "% —20.
From (6.5), (6.4) and (6.6) it follows
(6.7 Giln,) 2 57— 207, —4C*
Considering (6.3) it follows from (6.6) that
(6.8) v(n,) <40 if kjFk=k.
Let v, be an integer for which
n,, >12C.

In view of (6.6))
Voo > 40
Thus for v > »,
Vi (n,) > 40 and wg(n,) > 4C

and so in view of (6.8) we have
=k, K=k,

Hence (6.7) means that & satisfies the hypothesis of Theorem V and
so it must contain an infinite complete subgraph which contradicts our
assumption on @. Thus (6.2) is proved.

We can suppose ky, =1 i.e.

v(n) < v, (n) for n>n,.

! Deducing the second inequality we used the fact that if Zz; = @, 2; < b then
Zz; < ab, all numbers occuring being supposed nonnegative.
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We have then
o) = () +5 > viin) S g3m) + 5 (0 — 0,(m) ()

k=1
(cf.p. 447, footnotel). In view of (6.1) we get from here
1 1
(6.9) gi(n) = 'I”g_ 35 (n — vy(n)) v,(n) — Cn =
1 1 il o 1 12
= (E“ s v,(n) + 0]] e F vi(n) — 5 vy(n) + Cl

and finally

L, 2
(6.10) gi(n) = 1 vi(n) — Cvy(n) — C2.

It is evident from (6.9) that &, is infinite; this together with (6.10)
means that | has property .9 and the lemma is proved with G = @,.

To show that our theorem is best possible we have only to choose a
sequence %, < m, < ... of positive integers and consider the graph G(=) in
which two vertices are connectid if and only if they belong to the same interval
[7k, ngyy). Clearly G(=) does not contain any infinite path and if A(n) — oo
is given and the sequence is chosen to increase sufficiently fast then we clearly

n2
have g(n) = e A(n) n.
7. Proof of the first part of Theorem IV. We choose a sequence l,, [, I, . ..
of integers such that
{

lﬂ=0, 539<2£v+1, Y0,
w1

We put

0 if 1<n=<2l,
1 if 2L <n=9L,
0 if 3L, <n=<s5l,
1 if 51, <mnm,

Il

P,(n)

-

and consider the graph G(=) in which two edges n, and n, (n, < n,) are connected
if and only if ¢(n,) = @(n,).
Since ¢@(n) > v if n> 5[, we have lim g(n) = oo. Consequently G(=)
can not contain an I..-path. We shall show that on the other hand
Bmiarf®s 1 1
n? 4 36

We estimate g(n) from below if 21, < n < 2[ .,. First we have g(n) >
= g,(n) where g,(n) is the number of the edges of G(=) whose endpoints belong
to the interval (5/,;, 2],,,]. Now in this interval all functions ¢,(n) except
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for p = v are constant (namely ¢ (n) = 1 if p <v and g@,(n) = 0 if » <p)
so that for 5I,_, <n, <n, < 2], n, and n, are connected if and only if
@,(n) = @,(n,). Using this remark we easily obtain

(8]

21 (’!L —2 lv)z =+ 0(??.-2) (2 lL,<n=<3 lv) ,

0o | =

(1.1)  gun) = ﬁ+%m~SMHJLW—NJ+Wﬁ Bl<n=35l),

bo L\QIU:

21

I%+_%'(ﬂ-5lv)+lv(ﬂ_5gv) +O(n2) (5lv<nézzv+l)'

o

In these relations » should be considered as function of » defined by the
mequalities 21, <n < 2/,,,. We obtain by a simple and elementary compu-
tation that

) 06y g B35 oy

n2 n? 2dp<m=2ly,, m2 18
which completes our proof.

®(n) is an integer valued function which assumes each value on a finite
number of places. We shall somewhat modify ¢(n) by introducing a function

@’(n) in the following way: If £ is any value of ¢(n) assumed for n,, n,, ..., n,
(7, <m, <...<mn) then we put
’ 1 1
?WJ=kT; =12 ...,0.

It is clear that ¢’ is schlicht and for any two positive integers n” and n’”
@(n’) = @(n”’) is equivalent to @’(n’) > p’(n”’). The range of ¢’ is an infinite
set of positive numbers without a limit point, hence it can be mapped by a
strictly increasing function y onto the set of natural numbers. Thus » = ypog’
is a permutation of the set of natural numbers for which »’ and »’ are connec-
ted in G(=) if and only if (n” — n”) (x(n’) — %(n"")) < 0. So we can state
the somewhat paradoxical fact that the positive integers can be rearranged
in a series ky, k,, ... in such a drastic way that the number of inversions
devided by the number of all unordered pairs formed by ki By, ..., ky is more
than a half plus a fix positive number for all sufficiently large n.

8. Proof of the second part of Theorem IV. We suppose that G(=) does
not contain any I.-path and we prove that then

(8.1) ]iminfz@gi—i.
n? 2 16

This means that the second part of Theorem IV is valid with « = -11—6 (although

we do not know the greatest possible value of o).
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Omitting from G(=) all edges (n, m) with n®> <m we get a subgraph
G(=) every vertex of which has finite valency? and for which g(n) = g(n) =
> g(n) — Cw'h, consequently

hmmfg( n) =lim i nfg( n)
n? n2

This means that we can suppose without loss of generality that every
vertex of G¢=) has finite valency.
We define by induction the sets A4,, 4,, 4,, ... requiring that 4,= 0
k=1

and for & > 0 4, is the set of those ne N — l-:} A, which are not connected
1=0

k—1

with any m if n <m and m¢N — U 4,. (N is the set of natural numbers.)
=0

The sets A, exhaust N:

(8‘1) AR = N.

o

To prove this suppose that for some n; n; € N — g A;. It is clear from the

definition of the sets 4, that for every k> 0 =, is the starting point of an
I-path. Since n, has finite valency an infinite number of these I, paths
must have the same second vertex that is there is an edge (n, m,) where
ny, > n, and n, is the starting point of 7 ,-paths for arbitrarily large k’s. The
repetition of this argument clearly yields an JI.-path nmmg ... against
our assumption which proves (8.2).

Put
k
By = lU() 4y, By(n) = B, N [1,7]

and denote by 8, the upper density of B, that is
:‘( )

fi = lim sup——

where b,(n) is the number of elements of B ( n). Suppose first that

(8.3) for some k fp = 1

Denoting by k, the least of these £ we have
1
ﬁf-‘g ==} E ] kﬂ >0

(since B, = 0) and
1

(8.4) Brs < -

Given a natural number n, and ¢ > 0 we can choose an n > n, such that

(8.5) Bi(n) [— —e|n, byy(2n) < 7.

#The valency of a vertex is the number of edges emanating from this vertex.
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In view of (8.4) we can not have for every integer v = 0
bye—1 (27 1) — by (2°0) = 21,
since this would imply by addition
By 1 (24178) — by (m) = [2" — %} n (=012 ..)

which would give 8-, = é Hence there is an integer », > 0 such that

(8.6) bi-1(21 1) — biyy(27) < 2%-1m
and
(8.7) by,—1(2°F1m) — b, 1(2"0) = 215 for 0 S v <.

Putting 2% n = m we get from (8.5), (8.6) and (8.7)

r—1

big(m) = by(27m) = by, (7) + 2 (bi (271 m) — by, (2 n)) >

(8.8) e
1 - 1
= Pr—=1 — (2re—1 e .
>’2 an—[—nv;D' ( s)ng[z ]m
and
(8.9) bro—1(2 M) — by (m) <—;— m.

(If vy = 0 then the sums figuring in (8.8) are void.)

It is clear from the definition of the sets 4, that if w € 4;, v € 4, and
w <,k <1 then 4 and » are not connected in G(=). Consequently there is
no edge connecting a member of B, (m) with a member of (m, 2m] — B, _.
Now the first of these sets has b, (m) members and the second one m —
— (bg—1(2m) — by, —y(m)} members hence using (8.8) and (8.9)

o(2m) < (7] — Bufm) (m — (B (2 m) — By 0)) <

2 2 16

Since 2m >m = n > n, and n, and ¢ have been chosen arbitrary, (8.1) is
proved under the assumption (8.3)

Next we consider the case that

- 4mh..._ .l_._.s lm2:—_.41_w£__]l_4m2+_£_m2_
2 2 4

(8.10) ﬁk<~§- for k=0,1,2,....

Given n,> 0 we can choose k, so that By (n,) = [1, n,] (cf. (8.2)) i.e.
(8.11) bo(m0) = Mo
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Let us denote by v, the least non negative integer for which
b (20 1) < 2701 .

v, exists since otherwise we would have Sy, = 4 which would contradict

(8.10), (8.11) implies that v, > 0, hence
by (271 my) > 22 .
Putting 2%~1#n, = m, we have

(8.9) bi(2m) <m and by(m) > é—m

The members of B, (m) are not connected with those of (m, 2m] —
— By, (m). Using (8.9) it follows

g(2m) < {3;—"'- — by (m) (m — (byy(2 M) — by (m))) =

4m? 1 1 4m?2  4m?
= ——mlm —|m——m||= — -
2 2 2 2 16

&

Since m = n, (8.1) is proved under the assumption (8.10) also.

(Received October 12, 1962)
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9KCTPEMAJIBHBIE IPOBJIEMbI OTHOCHUTEJIbHO BECKOHEYHbBIX
Ir'PA®OB

J. CZTPSZER, P. ERDOS, A. HAIJNAL
Peziome

IMyct G=) ects rpad, BepuUIMHEl KOTOPOr0 CyTh HATypajbHble uKcIia
1,2,...,m,.... Jns Kaaoro » 0603HauuM yepes g(n) uucyo Tex pedep rpaga
G(=), BeplUUHBI KOTOPBIX HAXOIATCA cpew uucen 1,2,...,7. Jlexauuit B G(=)
MYTb %47, . . . Ny, HA3bIBAETCH MOHOTOHHBIM IYTeM JUIMHBI & UM I -nyTem,
LI My <My < . o < Mg < Mgepy. JlKamuil B G4) GeCKOHEUHBIH TYTh 747y . . 7. . .
HA3LIBAETCS  0ECKOHEUHBIM  MOHOTOHHBIM — TyTeM WM [.-TIyTeMm, eciu
Ny <My < ... <np<....Hxecmeaymouue TeOpeMbl MOKA3HIBAIOT, KaK MOXKHO
¢ [TOMOILBIO YCJIOBLI OTHOCHTENILHO MOpPSAKA POCTa g(n) rapaHTHPOBATh CYIIECT-
popamie B G(=) GecKOHEYHOTo uucia I,-nyTeif, OeckoHeunoro uucna fg-
nyTed, Gec KOHEUHOro NyTH, [o-MyTH MIH DeCKOHEYHOTO MOIHOro noarpada.
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Teopema 1. Ecau k= 2 uwau 3 u oaa Hexomopoeo &> 0 u docmamouto
Gosbuiux n
1 1

o) > (=g e

n?,

mo G codepmcum Geckoneurno muoeo Iy-nymeid. Smo ymeepacOenue modHo
8 MOM CMblcAe, UmMo en® He moxcem Oblmb 3ameHero Ha Ofn).

[Toka He M3BeCTHO, MMeeT JIH MECTO Teopema M npu &k > 3.
Teopema 2, Ecau 048 Hexomopoeo € > 0 u docmamouro 60AsUUX n

ne

g(n)}—?f-{— —1—+£J
8 l32 log? n
mo G codepucum OGecroneurio Muo2o I,-nymeil. 3decs gléue Moucem Gbimb

) MEHbULIEHO.
Teopema 3. Ecau 0as scex n

1
= 2
g(n) > —n?2— Cn

mo G codepucum GeckoHeunvtll nyms. 3dece C He Moycem Oblmb 3aMeHEHO HA
A, ecau A, — oo,

Teopema 4. 3 mozo, umo

fg@>_1_
n? 4

lim in 3

ewe He caedyem, umeo G=) codepyucum I.-nyme. Ho cywecmeyem maras nocmo-
1

aaHaa 0 < o < Z’ YT eciu

gla) L
.n'z 2

-

lim inf —a,

mo G) codepycum I..-nymo.
Teopema 5. Ecau 041 (ecKoHeuHo MHOZUX 7

a

g(n)}%:ﬁOn,

-

mo G codepycum GeckoHeundblil noaustl nodepad. Imo ymeepucoenue moyHoe
& mom cmblcae, umo emecmo C Heavb3st nucams Ay, ecau A, — o




