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A well known theorem states as follows :'
Let ni < n2 < . . ., nk+1 / nk > A > 1 be an infinite sequence of real

numbers and S (ak + bk) a divergent series satisfying
k=1

Then

denotes the Lebesgue measure of the set in question .
In the present paper I shall weaken the lacunarity condition

5k j /p, > A > 1 . In fact I shall prove the following
Theorem 1 . Let n, <. n 2 < . . . be an infinite sequence of integers satis fying

where e,, --> a . Then.

It seems likely that the Theorem remains true if it is not assumed that
the n k are integers . On the other hand if nk ,f-n,. --- 1 is an arbitrary sequence
of integers it is easy to construct examples which show that (1) is not enough
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for the truth of (2) . It is possible that (3) and

1
where in	nN , < nk < ' N suffices for the truth of our Theorem . But I can
not at present decide this question and in this paper only consider the case
a k =bk= 1 .

I can show that Theorem 1 . is best possible in the following sense : To
every constant c there exists a sequence nk for which n, .+1 > nk f l -{ -`- but

(4) is not true . To see this let u, tend to infinity sufficiently fast.. Put

Clearly n., i ,- n, (1 + .̀ if c, is sufficiently large and it is not difficult to
I

	

r'
see that (4) can not be satisfied . 11 'e do not give the details .

Further I can prove the following
Theorem 2. Let 111 < n2 < . . . be an infinite sequence of integers for

which, for every F > 0 there exists a k0 = k„ (e) so that for every k > k ;,

( 5 )

	

nk+1 > nk + nk-fsk''l

Then (4) holds .
It is not difficult to construct sequences for which (3) holds but (5) does

not hold and sequences for which (5) holds and (3) not, or Theorems 1 and 2
are incomparable . (3) seems to be easier to verify, thus Theorem 1 is probably
more useful . We will not give the proof of Theorem 2 since it is similar to that
of Theorem 1 .

To simplify- the computations we will work out the proof of Theorem 1
only for a cosine series, the proof of the general case follows the same lines .

Theorem 1' • Let n1 < n2 < . . . be an infinite sequence of integers satis-
fying (3) . Then

9 well known theorem of Chebyshev implies that to prove Theorem 1'
it will suffice to show that for every l . 1 < l <

if l is odd,

if 1 is even



It is easy to see that

r
«-here h(n	n.,) denotes the number of solutions of 1' F, n i = o . From (7)

we have

where i, . . . , i, runs through all the I-tuples formed from the integers
1 < r < A" (where order counts) . Clearly s, h(n,,	n;,) equals the number
of solutions of

(order counts here too) .

Thus to estimate 1„? we only have to estimate the number of solutions of (9) .
Assume first l even l = Zs. Then (9) has trivial solutions such that among the
terms in (9) each n, occurs the same number of times with a positive as with
a negative sign . The number of these trivial solutions clearly equals

No« • we prove the following

Lemma 1 . Let Ink } be a sequence of integers satisfying (3) . Denote b y
g,(A . V) the number of solutions of

where the trivial solutions are excluded
Them

(The trivial solutions can only occur if A = 0 and l is even) .
From Lemma 1, (8) and (10) it follows that

which implies Theorem 1 . Thus to complete our proof it will suffice to prove
Lemma L and in fact Lemma 1 is the only new and difficult part of our paper .



First we show that the Lemma holds for 1 = 1 and l = 2 . For 1 = 1 the
Lemma is trivial, the number o£ solutions of (11) is at most one for l = 1 .
Now we need

Lemma 2 . The number of ni satisfying (k --> oo)

nk x-i < n i < nk .r

is o(k''' log x) + 0(1) + o((log x) 2 ) .
The Lemma follows immediately from (3) . (The term o(1) is needed only

for small x and the term o((log x)'-) only for very large x .)
If ± n, + n, = A(n,, > nr2) we must have (by (3))

From (13) and Lemma 2 we obtain that the number of solutions of (11) for
l = 2 is o(NV2 log N)=o(N) uniformly in A which proves Lemma 1 for l = 2 .

Now we use induction with respect to l . Assume that (12) holds for all
l' < 1, we shall then prove that (12) holds for Z too . We assume now l _>_ 3
and distinguish four cases .

In case I .

holds for all 1 < i < 1 -- 1 .
Put (1<s<1--1)

Clearly 0 < n < log N/log 2. Evidently there are at most N choices for nr1.
Let i < 1 - 1 . If nr1 . . . , nri have already been determined then by (15)
and Lemma 2 there are at most o(Ny~n) choices for n.r,+l . Now we show that~' 1,2

for nrs there at most are of 7'/z/211 ) + 0(1) = o j	 choices (if nr1, . . . , nr8-12n,41
has already been chosen) . To see this observe that from (15) we have

Thus from (11) and (16)

(17) implies that nr8 must lie in an interval (a . (")) with a < f3 < a
. l1 +

cl
2't 1

Thus from Lemma 2 there are at most o 'n + 0(1)
= o 2n 4l

choices for

nr8as stated . Finally if nr1 	n,,-, has already been determined there arel-1

at most 2l-1 choices for nri (i . e . Z e j n,; can be chosen in 2l-1 ways) . Thus the
i=1



total number of choices for nr 1, . . . , n„ satisfying (15) is at most

From (18) we evidently obtain that the number of solutions of (11) in
case I is

In case II (14) holds for i < j, j > 3 and for i = j < l - 1

We show that if n,,, . . . , n,,-, has already been determined, then there are
only a bounded number of choices of v,,. To see this observe that by (19)

Thus from (11)

or n,; must lie in an interval (a, ~) with a < r < a	cl . Thus by Lemma 2
1 	N

there are only a bounded number of choices for Y?,,,
Put

As in case I. there are at most o(N'212' :1 ) choices for -)e,, of l =n) choices for
n ,, 1 < i < j, i + s and at most N choices for Thus we see as in case I
that for n,	nrj there are at most o(Np 2 ) choices . If -iz ,	?a,, are already

i
chosen there are ?i choices for

	

E, 7a, ; . Hence there are only ;ao(Ni'' 2) -
r-1

= o(i~'i ) choices for

	

e, n, . By 0111' induction hypothesis there are 0('V( -j)12)

solutions of

in n: ; _,, . . . , ii,, . Thus finally there are o(íá ~' 2) solutíons of (11) in case 11.
In case III (14) holds for i = 1; but

The same proof as in case II shows that if n„ has already- been chosen there are
only a bounded number of choices for 11,2 . Thus since there are at most N
choices for n.,, there are at most cn choices for 81 n,, + e2 n, ., . Hence arguing



as in (21) we see that by our induction hypothesis the number of solutions of
(11) is o(N' ,2 ) in case III too .

In case IV nr2 < I n„ i . e . (14) never holds. We see by the same argu-
N

ment as in (20) that there are only a bounded number of choices for nr 1 and
therefore again arguing as in (21) we obtain by our induction hypothesis that
in case IV (11) has o(14'" 2 ) solutions .

Thus combining the four cases we obtain that the number of solutions of
(11) is o(N"2 ) uniformly in A, or (12) - and therefore Lemma I is proved .
Hence the proof of Theorem 1 is complete .

Let f (k)

	

monotonically. It is easy to see that

(2 2 ) 	nk = [e' 1'2
satisfies (3), hence Theorem 1 holds for the sequence (22) .

It is not difficult to see that Lemma 1 is best possible in some sense .
namely if (3) is replaced by

c independent of k

then (12) in general will not hold . On the other hand (12) may very well hold
for special sequences which do nott satisfy (3) . In particular I would guess that
(12) and therefore Theorem 1 will hold if nk = [ek"] for every a > 0. I cannot
even prove this for a = 1/2 •
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