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by
P. ERDO3

A well known theorem states as follows:!
Let n, < g < ..., fgy; /0 > A > 1 be an infinite sequence of real
o

numbers and > (a} + b}) a divergent series satisfying
k=1

i -%
) lim (a?v+bﬁ)%[2az+b§) =0.
N== k=1
Then
’ N
:fg l‘.;:—: (a,cos2an,t b sin2mn,tl) <
(2) .
N l':, ! l »
<w { D@+ 1= ] e~ du.
2 k=1 l V2m .

-
(!E| } | denotes the Lebesgue measure of the set in question).
t

In the present paper I shall weaken the lacunarity condition
n, . /n > A > 1. In fact I shall prove the following

Theorem 1. Let n, < n, < ... be an infinite sequence of integers satis-
fying
(3) Rygr > ”s.—‘1+‘c—"‘il
Jla
where ¢, — ==, Then
i Q‘ f 1 ] I[ l — 1%
(4) lim (B, 2 |cos2an,(—)<o N l=-——= | e*hdu.
os.rlar 1= 27

—

It seems likely that the Theorem remains true if it is not assumed that
the n, are integers. On the other hand if n,.,/n, — 1 is an arbitrary sequence
of integers it is easy to construet examples which show that (1) is not enough

1 R, SALEM anul A Zvanesp: “On lacunary trigonometrie series I and 1L, Proc.
Math. Acad. Sei. U7SA 33 (1947) 333—338 and 34 (1948) 54 —62.

For the history of the problem see M. Kac: ~“Probability methods in analysis and
number theory™. Bull. Amer. Math. Soc. 55 (1949) 641 —665.
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for the truth of (2). It is possible that (3) and

1
?tlm > at + bﬁ] [B{akﬁ—bﬁ)] =0
i L
where in _> 9N < M= =< ny suffices for the truth of our Theorem, But I can

notat present decide this question and in this paper only consider the case
ﬂ,k = bk == ]..
I can show that Theorem 1. is best possible in the following sense: To

. . [
every constant ¢ there exists a sequence n, for which n,,,>n, 14 —} but
. o

(4) is not true. To see this let u;, tend to infinity sufficiently fast. Put

R == R Lf.-,[-f;-*'- L 1<1<2k+1.

Clearly n, ., = n, (l + —| if ¢, is sufficiently large and it is not difficult to
r 2
see that (4) can not be satisfied. We do not give the details.
Further I can prove the following

Theorem 2. Let ny << ny, < ... be an infinite sequence of integers for
which for every e = 0 there exists a kb, = k,(e) so that for every k =k,
[5} R-‘f'f’l > ﬂﬁ' + ﬂ’-‘—]l k’!!l &

Then (4) holds.

It is not difficult to construct sequences for which (3) holds but (5) does
not hold and sequences for which (3) holds and (3) not, or Theorems 1 and 2
are incomparable. (3) seems to be easier to verify. thus Theorem 1 is probably
more useful. We will not give the proof of Theorem 2 since it is similar to that
of Theorem 1.

To simplify the computations we will work out the proof of Theorem 1
only for a cosine series, the proof of the general case follows the same lines.

Theorem 1> Let ny << ny << ... be an infinite sequence of integers satis-
fying (3). Then

i | . J N——
2l JI Vam_

A well known theorem of Chebyshev implies that to prove Theorem 1’
it will suffice to show that forevery I, 1 < | < o=

N
(4") hm l 20052:”!“!‘ <
N===i il k=1

. p - 0 iflisodd,
2 cos2mn,t
T T L = — Le=%sdpy =
JEJLK:»IN z}.rl.—ﬁ N % H={2a)™ | 2 o —ifliseven.

— el
2112 —]1
(6) g 12 - [2,
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It is easy to see that (5, = £ 1. 1 =1 =)

1 - !
1 &l B(ysees W
(7) J 1 cos2ant= -—-J N 1-03(2:{ Z BTy ")‘” e T e )
" R ol — ] ol
i=1 = wiam i=1 "
]
i
where k(n,. ... . n) denotes the number of solutions of » & n; = 0. From (7)
i~
we have
N2 1
(%) [_i_ 1Y) = 2;2&(1:“ e Myy)
where i,. ... .i, runs through all the Il-tuples formed from the integers
1 < r < N (where order counts). Clearly X k(n,. ... .#n;) equals the number
of solutions of
]
(9) >en,=0. 1=r, <N (order counts here t00).

Thus to estimate /¢ we only have to estimate the number of solutions of (9).
Assume first / even I = 2s. Then (9) has trivial solutions such that among the
terms in (9) each n, oceurs the same number of times with a positive as with
a negative sign. The number of these trivial solutions clearly equals

l

! N2
I
2,

Lemma 1. Let {n,} be a sequence of integers salisfyina (3). Denote by
g(d. N) the number of solutions of

(10) (1 +o(1))

Now we prove the following

!
(11) Deny=A4, 1E£#HE i EHEN
fe=1
where the trivial solutions are exeluded.
Then
{12) max ¢,(A. N) = o(N*?) .
A

(The trivial solutions can only occur if 4 = 0 and [ is even).
From Lemma 1, (8) and (10) it follows that

0 if 7 is odd

el

lim I = —i—{— if [ is even

o112 _]!
2

which implies Theorem 1. Thus to complete our proof it will suffice to prove
Lemma 1.and in fact Lemma 1 is the only new and difficult part of our paper.

N==
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First we show that the Lemma holds for I = 1 and | = 2. For I = 1 the
Lemma is trivial, the number of solutions of (11) is at most one for I = 1.
Now we need

Lemma 2. The number of n; satisfying (k — oo)
nart<n < ngx

is o(k* log x) + o(1) 4 o((log x)?).

The Lemma follows immediately from (3). (The term o(1) is needed only
for small x and the term o((log «)?) only for very large «.)

If +n, +n, = A(n, > n,) we must have (by (3))

A
5

(13)

| Zn, = |4 N.

I

From (13) and Lemma 2 we obtain that the number of solutions of (11) for
[ = 2is o(N* log N)=o0(N) uniformly in A which proves Lemma 1 for { = 2.
Now we use induction with respect to /. Assume that (12) holds for all
1" < I, we shall then prove that (12) holds for ! too. We assume now 7 > 3
and distinguish four cases.
In case I.

(14) 1— Npy = Ny, = Ny
holds for all

1 =
Put (1 £ s

1 =<1--1.
g b=

—

(15)

Cleall\ 0 < n = log N/log 2. Evidently there are at most N choices for z,,.
Let i < 1 — 1. If Ty + - - Ty have already been determined then by (15)
and Lemma 2 there are at most o(N%n) choices for n,, .- Now we show that

2" < max npfny, = e/, < 27FL

A
for n,, there at most are o(N%/2") + o(1) = o‘;TtI choices (if »,....,n,,
an/

has already been chosen). To see this observe that from (15) we have

I
(16) J N e ?I,_.:!él -
| |

Thus from (11) and (16)

5—1

> 0l

(17) ‘4—ﬁs,n.;:es-n,‘+5ﬁn,,.|9;<1‘
= -

cf)

(17) implies that »,, must lie in an interval (a, p) with e < g < a|l 4 =,

w-

Ti44 ATLS
;\ = ;_\ 72 .
Thus from Lemma 2 there are at most Gl_”] +o(l)y=o0 gTi' choices for
a2 ony

n,, as stated. Finally if »,. ..., n,_ has already been determined there are
-1

at most 2/~1 choices for #,, (i. e. > ¢ n,, can be chosen in 2'~! ways). Thus the
=
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total number of choices for n,,. ... . n, satisfying (15) is at most
. N4 ni-3
(18) eN(o(N%n)) 30 0—] = o(NV -'} — .

From (18) we evidently obtain that the number of solutions of (11) in
case I is

mNmtzgnJHMNmy
In case IT (14) holdsfori < j,j = 3andfori =j <1 - 1

1
19 Neyy < — Ty
(19) e < 5

We show that if n,,, .. ., Ny, has already been determined, then there are
only a bounded number of choices of n,,. To see this observe that by (19)

’. l
2 & ?a,;) < 3 e
i=f+1 a
Thus from (11)
j-1
(20) A= X emy=eeym, +051, 19 <1
=1

or n,;must lie in an interval (a, f) witha < g < a [1 -+ %{— .Thus by Lemma 2

there are only a bounded number of choices for »,, .
Put
(15%) 2" £ max n.,/n, = n,[n,, < 2",
1Zigj—1
As in case I. there are at most o(N*/2"1) choices for n,,, o(N'=) choices for
n. 1< i< j issandat most N choices for n,.. Thus we see as in case I
that for n,,, ... .n,, there are at most o(N7?) chmcoﬂ Ifn,, ..., n,arealready

J’
chosen there are 2/ choices for e, n,. Hence there are only 2/o(Ni%) —
|=l

L

— o(N/*2) choices for > ¢, n,,. By our induction hypothesis there are o( N( —//2)

i
solutions of

j :
(21) 4 — -;\-‘F: Ry = : €y,
i=1 i=j-1
inn, . ... N, Thus finally there are o(N"%) solutions of (11) in case I1.
In case 111 (14) holds for ¢ = 1, but

M, =

rs ? n,,.
The same proof as in case II shows that if #, has already been chosen there are

only a bounded number of choices for =, . Thus since there are at most N
choices for n, there are at most cn choices for & n, -+ & n,. Hence arguing
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as in (21) we see that by our induction hypothesis the number of solutions of
(11) is o(N"?) in case III too.

. 1 ; )
In case IV n,, < —n,, i. e. (14) never holds. We see by the same argu-

ment as in (20) that there are only a bounded number of choices for », and
therefore again arguing as in (21) we obtain by our induetion hypothesls that
in case IV (11) has o(N"?) solutions.

Thus combining the four cases we obtain that the number of solutions of
(11) is o(N"?) uniformly in 4, or (12) — and therefore Lemma 1 is proved.
Hence the proof of Theorem 1 is complete.

Let f(k) — == monotonically. It is easy to see that

(22) Ny = [e’*‘l"’ 1)

satisfies (3), hence Theorem 1 holds for the sequence (22).
It is not difficult to see that Lemma 1 is best possible in some sense.

namely if (3) is replaced by
Mygy > My ‘1 - -f-’ ¢ independent of I

k)

then (12) in general will not hold. On the other hand (12} may very well hold
for spe cial sequences which do not satisfy (3). In partncu!ar T would guess that
(12) and therefore Theorem 1 will hold if »n, = [¢¥"] for every « > 0.1 cannot
even prove this for a =1/,

(Received August 25, 1061.)

0 JJAKYHAPHbIX TPUITOHOMETPHUECKHX PAJIAX

P. ERDOS
Pe3ome
B pafore JoKasblBaeTcsi Cjelylouiasi Teopema: NMycTb 7t << Ny < ... fo-
CJIeI0BATEIbHOCTL HATYPAJILHBIX YMCETT 7151 KOTOPBIX
c
Npisq =W ll S K (k=1,2,...),

riie
lim ¢, = + oo.
k==
&
Mycts Sy(f)= 2 cos 2mn,(t — ) rie BellecTBeHHbe YHCaa ¥ NPOM3BOJIbHBIE.

Iycrn Ef{ } oﬁoauaqaeT MHOYKeCTBO Tex uucen ¢ B uHTepBane 0 £ ¢ <1
18 KOTOPBIX YCI0BHe B CKOOKAaX BBIMOJHACTCS, i I1yCThb ,I%! — mepa Lebesgue-a

MHOYKeCTBa I;E Toraa uMeeM JUisl BceX @ (— oo < @ < o0)
w

o 2 =5 1 L
;{fga?{&v(” < w|N}| = V;_j; J e 2 du .
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