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ON THE INTEGERS RELATIVELY PRIME TO » AND
ON A NUMBER-THEORETIC FUNCTION
CONSIDERED BY JACOBSTHAL

P. ERDOS
Dedicated to T. Jacobsthal for his 80t birthday

Let » be any integer. Jacobsthal [6] defines g(n) to be the least integer
so that amongst any g(n) consecutive integers a, a+1,...,a+g(n)—1
there is at least one which is relatively prime to n. He further defines

(1) maxg(n) = C(r)+1,

where on the left hand side the maximum is taken over all the integers
n with »(n)=r, »(n) denoting the number of distinet prime factors of n.
The growth of the function g(n) is very irregular and even the growth
of C(r) is very difficult to study. We have (throughout this paper
€y:Cys - . ., denote positive absolute constants)
@) ¢, #(logr)? logloglogr <O <eyrs.
(loglogr)?

The left hand side of (2) is a result of Rankin [8] and the right hand
side follows easily from Brun's method.

Jacobsthal asked (in a letter) if

(3) C(r) < cyr?

is true. The exponent ¢, can be reduced by Selberg’s improvement of
Brun’s method, but it seems hopeless at present to decide about (3).
Jacobsthal also informed me that for # <10 the value of C(r) is deter-
mined by n,=2,3,...p,, the p’s being the consecutive primes, and that
this perhaps holds for all values of ». Possibly the value of g(n,’) for
%, =T1}_, Psis, is alveady considerably smaller than C(r). In a previous
paper [4] I estimated g(n) for integers m of a certain special form, e.g.
if n is the product of the first r consecutive primes =3 (mod4).

It is easy to see that for almost all integers satisfying »(n)=r we have
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g(rn)=r+1. To see this observe that the number of integers n <z with
y(n)=r is by a well known theorem of Landau (ef. [7, vol. 1, p. 211]).

x(loglogzx)™1

(4) (1+o0(1)) o) g

Further Jacobsthal [6] observed that if »(n)=r and all prime factors
of n are greater than r, then g(n)=r+1. Now from (4) we obtain by a
simple computation that the number of integers n<z with »(n)=r,
whose smallest prime factor is not greater than r, is less than (¢; depends
on 7)

(5) esz(loglogz)r=2/logz = o(x(loglogz)"—/logx) .
(4) and (5) complete the proof of our assertion.

In the present note we shall prove that for almost all integers n

(6) g(n) = (1+o0(1))n loglogn/p(n) ,

where ¢(n) denotes Euler’s g-function. In other words, for every ¢ the
density of integers for which

(1—eyn loglogn/p(n) < gln) < (1+e&)n loglogn/g(n) ,

is not satisfied, is 0. In fact we shall prove somewhat stronger theorems.
Denote by 1=a, <... <a,,,=n—1 the ¢(n) integers relatively prime
to ». Some time ago I conjectured [3] that

win)—1
(7) kz (A1 —ap)? < cgn¥p(n) .
=1
I have been unable to prove or disprove (7). In the present note I shall
outline a proof (Theorem IlI) that to every & >0 and % >0 there exists
an Agy(e,7) so that for every 4 >4 (e,5) the number of integersz, 1 £x < n,

for which
(1—e)d < @, (2,2 +Anjpn)) < (1+e)4,

is not satisfied, is less than #n. (g,(x,2+ B) denotes the number of

integers z <m <x+ B with (m,n)=1). This result seems to indicate

that (7) is true, but (7) is deeper and I have not yet been able to prove it.
The following theorem easily implies formula (2) in [3].

THEOREM 1. For all n

g(n) > L v(n)

(1 & log]ogv{n)) _
¢(n)

logv(n)
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First we need a lemma which is substantially due to Chang [1].

Levma 1. Let A be any integer and q,.qs, . . . q; be any primes. Then
there exists an integer a, =, (uy), w,=TI5_,q; so that

k
Pupl®p 2y +4) = A l—Il (1—g™),
i=

Pu @ %y +A) denoting the number of integers xy, <m Zw;+ A for which
(m,u)=1.

We use induction with respect to £. Lemma 1 clearly holds if k=1.
Suppose that it holds for k—1. Then there exists an integer z, ;=
gy (1), Uy =T1i21g; s0 that

k-1

Pupy (Bp—1: T +4) £ 4 TT(1—¢;7Y).

t=1

Denote by ;. +j, 1<l<r, r<A4 [T¥1(1—¢,7') the integers in
(2.3 +A) which are relatively prime to %, _,. At least one residue
class (modg,) contains at least r/g, of these numbers, let this residue
class be x;. Let now

T = Ty (moduy ), T = —op+a, (modg) .

In (2,2, + A) there clearly are at least r/g, integers which are relatively
prime to u, , and are multiples of ¢;. Thus

k
Pu@p o+ 4) = ATT (1-g7Y),
i=]

which proves Lemma 1.

Proor or THEOREM I. Let p, <...<p,, be the distinet prime
factors of n and let p, be the largest prime factor of » which is less than
v(n). From the prime number theorem (or from the more elementary
results of Tschebycheff) we easily obtain by a simple computation that

) = loglogy(n)
(8 (1—p;7Y) = (1—r; 1) >1—cg————
) il;c{-l a1=]1 : logy(n)

where r, <r, <..., are the consecutive primes =y(n). Put
4 iy(n) (l__c7 loglogi-(n))_
¢ (n) log »(n)

From (8) and Lemma 1 it follows that there exists an integer (or rather
a residue class modv,, v,=[I* ,p;) for which
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A ﬁ (1 —P-i'l)

Py (xMﬁA) 41l
i
i
< »(n) (1-]0gv(n)) < vni—%

for sufficiently large ¢,. The last inequality of (9) follows from the fact

that
2v(n)

k£ a(n) <

log¥(n)

Denote now by z;, +j,, 1 SI<T <»(n)—k the integers in (x,, 2, +4) with
(x,+Jpvi)=1. By T <w(n)—k there clearly exists an integer z, satisfying
(10 x = x;, (moduy,), x+f;, =0 (modpgy,), 1=1sT.

From k+17 <w(n) it follows that none of the integers in (z,z+4) are
relatively prime to », and this completes the proof of Theorem I.

Next we show that Theorem I is best possible for every »(n). Let
¢y <Gy <...<q, be the r consecutive primes greater than r. Put
n,=TI:_,9;. Clearly g(n)=r+1 and a simple computation (as in (8))
shows that

n, ¢y loglogr
g(n,) logr
Thus oo
¢y loglogr
gn,) =r+1 < r(l—ﬁ——g—g—)
@(n,) logr

if ¢, is sufficiently small, which shows that Theorem I is best possible.
It is much harder to get a good upper bound for g(n). We prove

TuroreM II. For almost all n

g(n) = v(n)+o(10gloglogn)

Since by a well known theorem of Hardy and Ramanujan (cf. [5,
pp. 356-358]) »(n)=(1+o0(1)) loglogn for almost all n, Theorem II
implies (6).

To prove Theorem II we need some simple and well known lemmas.
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Leyva 2. For almost all n
v(n) = (1+0(1)) loglogn .

This is the theorem of Hardy and Ramanujan mentioned above (cf.
[3, pp. 356-358]).

LevmMa 3. For almost all n
> 1= (1+0(1))loglogloglogn .
p<abiogma

Lemma 3 is known (cf. [2]) and can be deduced by the method of
Turan [10] used in the proof of the Hardy-Ramanujan theorem.

Lemya 4. For almost all n
nj@p(n) = o(logyn)
where log,n denotes loglogloglogn.

LeEmma 4 is also known and follows immediately from

i?’blt}c{n) < ep®.

nml

The function log;n in Lemma 4 could of course be replaced by any
function tending to infinity.
First we prove that for almost all »

(11) g(n) < (n/qJ(n))v{n}—i—a logloglogn = Ale,n),
for every ¢ >0. To prove (11) let
Pr <Py < ... <pp = (loglogn)' <ppy <... <P

be the prime factors of n. From the sieve of Eratosthenes we evidently
have (v,=T15_,p:)

k
(12) gvt,k(x,x+A{e,n)) > A(e,n) TT (1 —p; 1) —2F
i1
> A(e,n)(p(n)[n) — 2%
= »(n) +¢(logloglog n)(p(n)/n) — 2% > w(n) .

The last inequality of (12) follows from lemmas 3 and 4.
The interval (z,z+ A(s,n)) can clearly contain at most one integer
which is a multiple of p, ., since

P > (loglogn)t > A(e,n) .
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Thus from (12)

Pn(@. 2+ Ae,n)) > v(n)—(¥(n)—k) =k >0,
which proves (11).

Proor or THEOREM II. To complete the proof of Theorem II we
would have to prove that for almost all »

n

gln) > )v(n) —¢logloglogn .

g(n
In fact we shall prove very much more. We shall show that for almost
all n

(13) g(n) > (n/p(n))(v(n) — (1 +¢) loggn) = Ble,n) .

We will only outline the proof of (13) since it is very similar to that of
Theorem I. From lemmas 3 and 4 we can show by a simple computation
that there exists an integer z;, (determined mod v;) so that

1A

13
(pirk(x‘x %+ B(S,ﬂ)) = B(E,ﬂ) H (1 =3 pi_l)
=1

B(e,n) g(n)[n+o(1)
< v(n)—(1+ fe) logyn < win)—Fk.

It

Thus as in the proof of Theorem I we can find an z with ¢,(2,2 + B(e,n)) =0,
which proves (13) and completes the proof of Theorem II.
Very likely for almost all n

g(n) > (nfp(n))r(n),

but I have not been able to prove this.

The upper bound in Theorem II can also be considerably improved
by using Brun’s method, but I was unable to calculate the distribution
function of g(n)—(n/gp(n))v(n), or even to prove its existence. In fact I
can not guess the scale in which to measure the growth of this function,
On the other hand from (6) and the well known existence (cf. [9])
of the distribution function of =n/@(n) it immediately follows that
g(n)/loglogn has a distribution function (which in fact is the same as the
distribution function of n/g(n)).

TueorEM III. 7o every >0 and 5 >0 lhere exists an Ay=Agyle,n),
so that for every A >Ay(e,n)

(14) (1-2)4 < @ (z.2+Anjp(n)) < (1+8)4
for all n, 1 <x =n, except possibly for nn integers x.
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We use the method of Turan [10], but we will suppress some of the
details of the proof. Theorem IIT will clearly follow immediately from
(4 >Ay(e,m))

(15) I(n,A) = Z (pal@. 2+ Anfp(n)— A)? < ned2n

since (15) clearly implies that the number of integers z, 1<z <n, for
which (14) does not hold is less than #n. Thus we only have to prove
(15). We evidently have

I(n,4) = 3 oufa. 2+ Anfp(n))*—24 z @u(z. 2+ Anfp(n)) +nA?

z W22+ Anjg(n)):—nd2+x,nd

where |x,| <2, since by interchanging the order of summation we have
2 gal. 2+ Anfp(n)) = [An]p(n)]p(n)
x=1
= An—0,¢(n), 0=6, <1.
Let now (u,n)=(v,n)=1, 0 <v—u =< An/p(n). Then the pair (u,v) occurs
in [An/p(n)]—v+u intervals (x,2+ An/g(n)). Denote by ky(n) the num-
ber of solutions of

1=uzn, (u.n)=(@wn)=1 ov—u=1.

Then by interchanging the order of summation we have

> pu(z,2+ Anfp(n))?
(17) =l
[An/en)] ’
=2 3 ([An/g(n)] =) hy(n) + [An/p(n)]p(n) .

t=1

Clearly by the sieve of Erastothenes

(18) him) = n [T (1-2p7") TT (1-p7).
piﬂ' plE n)
P
Thus from (17) and (18)
(19) §l¢n(x,x+An/q;(n))2
[Anje(n)]
=2n Z ([4n/p(n)]—1) H (1-2p7%) |<H)(I —p71) + [An/g(n)]p(n) .
v, n
ph
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Now it can be shown that for every d >0 if D >Dy(8) we have for a
certain |f,| <d

D
(20) _E(D—i)IJ(l—i’p‘I) IT (1—p™) = G +B.)D*g(n)[n? .
=1 pln

2|,
2 dd

I suppress the proof of (20) since my proof is fairly indirect, inelegant
and complicated and I feel that a much simpler proof can be found.
From (19) and (20) we evidently have by a simple calculation by putting
[An/p(n)]=D for A >A(e,n) (if 0 is sufficiently small)

(21) S gz, 2+ Anje(n))? = A®n+6,9:24% ,

=1
where |6,| <}. From (21) and (16) we finally obtain
[I(n,4)| £ |0,ne24%0| + |x,An| < ne2d?n

for A >A(e,n). This proves (15) and hence the proof of Theorem TII is
complete.
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